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Finite-element analysis of hydrogen in superstrong magnetic fields
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The ground state of hydrogen in a magnetic field has been analyzed using the finite-element
method. Accurate values for the binding energy have been obtained for fields up to 10' G. Unlike
other approaches, the computational eAort required to obtain converged results is independent of
the strength of the magnetic field. Values obtained for the lower bounds on the binding energy at
very high fields are the most accurate to date.

I. INTRODUCTION

II. FINITE-ELEMENT ANALYSIS

The Schrodinger equation for s-state hydrogenic atoms
(spin down) in a uniform magnetic field is
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There is considerable interest in astrophysics and
solid-state physics in obtaining accurate values for the
ground-state energy of hydrogenic atoms in superstrong
magnetic fields. Many numerical and analytical calcula-
tions have been reported in the literature. ' Liu and
Starace were among the first to recognize the need for
rigorous bounds on the binding energy in order to estab-
lish the validity of the approximation techniques applied
to this problem. Handy et al. improved these bounds
using the eigenvalue-moment method. The weak-field-
expansion calculation by Le Guillou and Zinn-Justin
yielded very accurate energies in the transition region be-
tween low and high fields. Rosner et al. ' have calculat-
ed the energies of the ground state and many excited
states via a modified Hartree-Fock approach. In this pa-
per, the ground state of hydrogen in a magnetic field is
analyzed using the finite-element method.

tion, the infinite coordinate space spanned by r and z is
truncated by choosing cutoff values r, and +z, . In this
case, cutoff values were selected by requiring that the
wave function be at least 6 orders of magnitude smaller in
the region of r, and +z, than at.the origin. The finite
two-dimensional space is discretized into rectangular ele-
ments. The grid points, which are called nodes, form the
corners of the elements. Table I gives the values of the
nodes used for each calculation. Although no attempt
was made to optimize the grid at each field strength, the
choice of node sites reAects the anticipated behavior of
the wave function. The concentration of nodes is greatest
near the origin where the wave function is sharply
peaked. For increasing values of +z, the element size was
gradually increased to allow for an accurate approxima-
tion of the slowly decaying wave function. In the r direc-
tion, the wave function fell off more sharply, particularly'
at high fields, and the element size was small even near
the asymptotic region. The energy was remarkably stable
with respect to minor variation in the number and loca-
tion of nodes. It is an obvious advantage of this algo-
rithm, that for su%ciently dense grids, tedious fine tuning
is not required in order to obtain converged results.

In each element n, the wave function is approximated
by a local function P",

(3)

+B +2E &tt(r, z) =0, (1)

where r =(x +y )'~ . Atomic units are used
throughout, with 8=1 corresponding to 2.35X10 G.
Since the energy scales for atomic charge Z, it is sufhcient
to examine the case Z=1. The physical solution to Eq.
(1) is subject to the asymptotic boundary conditions,

Q(r ~ ao, z)~0,
g(r, z~+~ )~0 .

(2a)

(2b)

In finite-clem|:nt analysis, Eq. (1) is solved numerically
for the ground-state energy E and corresponding wave
function P(r, z). The approximate energy E is a rigorous
upper bound to the exact energy, " within the limits of
numerical error.

As in any numerical solution of the Schrodinger equa-

H fl+7f —EUn?II f? (4)

With the exception of the Coulomb interaction in the
Hamiltonian, the matrix elements of 0" and U" involve
integrations of simple polynomials over the area of each
element. However, the presence of the Coulomb term
necessitates the use of high-accuracy numerical integra-
tion. The bound principle of any variational calculation
is not applicable if the cumulative numerical error is

where the unknown expansion coefficients g;~ are the
values of 1(, t)/It)r, t)g/Bz, and d Qldzt3r at the four
corner nodes; the basis functions are the locally defined
cubic Hermite polynomials. "' Substituting Eq. (3) into
Eq. (1) and projecting onto the local basis set, one obtains
a simple matrix relation for each element,
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TABLE I. Grid points for finite-element analysis.

r nodes

+z nodes

0.05
1.2
8

0.05
1.2
8

0. 1

1.4
9
0. 1

1.4
9

B =0,2X 10,2X
0.15 0.2
1.8 2.2

10 11
0.15 0.2
1.8 2.2

10 11

10-',2 X 10- '

0.3
2.6

12
0.3
2.6

12

0.4
3

13
0.4
3

13

0.5
4

14
0.5
4

14

0.6
5

15
0.6
5

15

0.8
6

16
0.8
6

16

r nodes

+z nodes

0
0.8
2.6
0
1

5

0.05
0.9
2.8
0.05
1.2
6

0. 1

1

3.0
0.1

1.4
7

0.15
1.2
34
0.15
1.8
8

B=2
0.2
1.4
3.8
0.2
2.2
9

0.3
1.6
4.2
0.3
2.6

10

0.4
1.8
4.6
0.4
3

11

0.5
2.0
5.0
0.5
3.5

12

0.6
2.2
5.4
0.6
4

13

0.7
2.4
5 ' 8

0.8
4.5

14

r nodes

+z nodes

0
0.34
0.94
0
1

5

0.025
0.4
1

0.05
1.2
5.5

0.05
0.46
1.1
0.1

1 4
6

0.075
0.52
1.2
0.15
1.8
6.5

8 =2X10'
0.1

0.58
1.3
0.2
2.2
7

0.14
0.64
1.4
0.3
2.6
8

0.18
0.7
1.5
0.4
3
9

0.22
0.76
1.6
0.5
3.5

10

0.26
0.82
1.7
0.6
4

11

0.3
0.88
1.8
0.8
4.5

12

r nodes

+z nodes

0
0.08
0.26
0
1

44

0.005
0.09
0.28
0.05
1.2
4.8

0.01
0.1

0.3
0.1

1.4
5.2

B =2X10',3X10'
0.015 0.02
0.12 0.14
0.34 0.38
0.15 0.2
1.6 2.0
5.6 6

0.03
0.16
0.42
0.3
2.4
6.4

0.04
0.18
0.46
0.4
2.8
6.8

0.05
0.2
0.5
0.5
3.2
7.2

0.06
0.22
0.54
0.6
3.6
7.6

0.07
0.24
0.58
0.8
4
8

r nodes

+z nodes

0
0.07
0.22
0
0.4
1.8

0.005
0.08
0.24
0.025
0.5
2

0.01
0.09
0.26
0.05
0.6
2.2

0.015
0.1

0.28
0.075
0.7
2.6

B =1X10'
0.02
0.1 1

0.3
0.1

0.8
3

0.025
0.12
0.32
0.15
0.9
3.4

0.03
0.14
0.34
0.2
1

3.8

0.04
0.16
0.36
0.25
1.2
4,2

0.05
0.18
0.38
0.3
1.4
4.6

0.06
0.20
0.40
0.35
1.6
5

r nodes 0
0.04
0.1 1

0
04
1.8

0.002
0.045
0.12
0.025
0.5
2

0.004
0.05
0.13
0.05
0.6
2.2

0.006
0.055
0.14
0.075
0.7
2.6

B =2X10
0.01
0.06
0.15
0.1

0.8
3

0.15
0.065
0.16
0.15
0.9
3.4

0.02
0.07
0.17
0.2
1

3.8

0.025
0.08
0.18
0.25
1.2
4.2

0.03
0.09
0.19
0.3
1.4
4.6

0.035
0.1

0.2
0.35
1.6
5

large enough to make a significant (positive or negative)
contribution to the energy. All integrations were carried
out using 16-point Gauss quadrature, which is exact for
arbitrary polynomials of degree 31 or less, and for the
Coulomb term, provides an approximation equal to using
a polynomial of degree 31.

The local approximate wave functions for each element
are joined in such a way as to guarantee the continuity of
the global wave function and its derivatives across the
element boundaries. "' This is achieved by mapping the
local matrices H" and U" for each element onto global

matrices H and U; similarly, the local vectors %'" are
mapped onto a single global vector %. The matrices of
the global eigenvalue equation,

H% =EU%,
are symmetric and banded. The eigenvector components
are the value of the wave function and its derivatives at
the nodes in the mesh.

The boundary conditions are imposed by requiring that
components of 4 corresponding to a node at r =r, or
z =+z, are set equal to zero, which forces the wave func-
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TABLE II. Binding energy of the ground state of hydrogen (a.u. ).

0
2X10 '
2X10 '
2X10 '

2

2X 10'

2 X 10'

3X 10

10

2 X 10'

Liu and Starace
(Ref. 6)

lower bound
upper bound

0.9832
1.0600

4.6462
4.7387

9.2754
9.3102

Handy et al.
(Ref. 9)

lower bound
upper bound

1.022 213 8
1.022 214 2
2.215 325
2.215 450
4.710
4.740
5.34
5.39
7.55
7.85

Finite
element

lower bound

0.499 999 5
0.500099 5

0.509 899 5
0.590 381 0
1.022 213

2.215 393

4.727 08

5.360 71

7.662 35

9.304 64

Le Guillou and
Zinn-Justin

(Ref. 8)

0.590 381 56
1.022 213 9

2.2153

4.725

5.355

7.64

9.27

Rosner et al.
(Ref. 10)

0.500 100
0.509 900
0.590 382
1.022 214

2.215 398

4.7266

5.3603

7.6621

9.304 48

tion and its derivatives to vanish asymptotically. The
generalized eigenvalue equation can be solved by stan-
dard techniques. Since the global matrices are still quite
large, it is extremely ine%cient to calculate all but the
lowest eigenvalues and corresponding eigenvectors. Sub-
space iteration' is particularly well suited for solving the
eigenvalue equations that result from finite-element
analysis. Requiring a tolerance of 10 ' on the lowest ei-
genvalue, convergence was obtained in ten iterations or
less. Total CPU time for each run (including subspace
iteration) was 6.3 min on an IBM 3090 (with vectoriza-
tion).

III. RESULTS

Values of the binding energy obtained via the finite-
elernent method are given in Table II and compared with
the upper and lower bounds obtained by Liu and Starace
and Handy et al. ; results of Le Guillou and Zinn-Justin
and Rosner et al. ' are also included. For fields greater
than B=2, the lower bounds obtained via finite elements
are the best calculated to date.

It appears that the finite-element method is ideal for
treating atomic systems subject to strong perturbation,
where typical global basis functions are a poor approxi-
rnation to the Schrodinger wave function.

Calculation of the excited-state energies are currently
underway. Only the work of Rosner et al. ' provides
anywhere near a complete analysis of the excited states in
superstrong fields. Even in their work, there is some
di%culty in obtaining converged results at intermediate
field strengths when the wave function is in transition
from spherical to cylindrical symmetry. Since the success
of the finite-element method appears to be independent of
the strength of the B field, it is anticipated that the
excited-state calculations will provide a complete and ac-
curate picture of the energy spectrum.
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