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Quantum mechanics of a classically chaotic system:
Observations on scars, periodic orbits, and vibrational adiabaticity
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We present a detailed study of the classical and quantum mechanics of a strongly chaotic quartic
oscillator. The topology of the motion is such that there is a channel in which one has good separa-
tion of time scales. Many quantum states are found to scar along these channels. An adiabatic
breakup for the action of the periodic orbits based on adiabatic stability of orbits is used to derive
an approximate, integrable Hamiltonian. Semiclassical quantization of this Hamiltonian yields ac-
curate energies for all states scarred along the channels.

I. INTRODUCTION

The study of quantum states and their statistical prop-
erties has received an enormous amount of attention in
the past decade. ' A large number of studies have fo-
cused on the statistical properties of energy levels and
have demonstrated the applicability of random matrix
theory. These results have been refined and reformu-
lated by Berry and co-workers and today one recognizes
universality classes in the level spacing distributions and
rigidity of quantum states. '

The statistical properties of eigenvalues are intimately
connected to the relationship between quantum mechan-
ics and classical mechanics. For classically chaotic sys-
tems much eftort has been guided by the Gutzwiller
periodic orbit summation formula' ' which provides a
semiclassical approximation for the quantum density of
states. The recent experiments of Welge and co-
workers' on the quadratic Zeeman eftect and the
theoretical analysis by Wintgen and Friedrich ' have
demonstrated that the summation formula is of practical
use. The Fourier transform of the quantum density of
states revealed periodicities which coincided with those
of families of classical periodic orbits. It has been shown
that the quantum density of states for this system can in
fact be reconstructed from the periodic orbits via the
summation formula.

Taylor and co-workers have recently demonstrated
how frequencies of classical periodic orbits may appear in
Fourier transforms of quantum densities of states. They
note that the periodic orbits indicate classical mechani-
cally a weak decoupling of the classical phase space from
its surroundings. Therefore they suggested use of the
periodic orbits to construct a quantum basis set localized
around the orbits. This basis set is then used within the
context of a Feshbach theory of resonances. Peaks in
correlation functions are interpreted as arising from these
Feshbach resonances.

Periodic orbits have appeared in a dramatic way in the
studies of Heller ' on the quantum eigenstates of the
stadium. Heller observed that many of the quantum
wave functions both at low energies and at very high en-
ergies appear to localize around the classical periodic or-
bits of the system. This localization has been termed as
"scars" of periodic orbits. The Feshbach resonance pic-
ture is consistent with the observation of scars. Bo-
gomo1ny ' has recently used a semiclassical expansion
of the Green's function, which is similar in spirit to the
derivation of the periodic orbit summation formula, in an
attempt to "explain" scars.

Scars have actually been observed, prior to the study of
the stadium problem, in scattering wave functions. Res-
onances in collinear atom-diatom collisions give rise to
localization in the scattering wave function around unsta-
ble periodic orbits. This localization is actually well un-
derstood. Pollak ' has suggested that one should distin-
guish between adiabatically stable and adiabatically un-
stable periodic orbits. An unstable orbit in the Lyapunov
sense may still be adiabatically stable. Adiabatic stability
is a weaker concept of stability. However, it enables the
extraction of the necessary additional quantization condi-
tions and so the prediction of resonance states. The con-
cept of adiabatic stability has thus far not been applied to
discrete bound-state systems.

The purpose of the present work is to try and obtain a
somewhat better understanding of scars and their relation
to classically unstable periodic orbits. To the best of our
knowledge, at present, scars around unstable periodic or-
bits have only been observed in discontinuous systems
such as the stadium. In Sec. II we report extensive nu-
merical computations on a model two-degree-of-freedom
quartic potential. A large number of converged eigen-
functions and periodic orbits have been computed. Even
a cursory comparison of the two shows extensive scar-
ring. All periodic orbits we have found are unstable in
the Lyapunov sense.
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In Sec. III we show that scars are formed around adia-
batically stable periodic orbits. A novel method is pro-
posed for extraction of the adiabatic frequency for
motion perpendicular to the adiabatically stable periodic
orbit. The method is based on the observation that an
adiabatically stable orbit is usually surrounded by more
complex (longer period) orbits that wind around the cen-
tral orbits. These orbits may be viewed as the remnants
of broken tori. The motion of these orbits may be split
into a projection along and perpendicular to the path of
the adiabatically stable orbit. From the perpendicular
component one extracts an effective Hamiltonian for the
perpendicular degree of freedom. This provides the extra
quantum condition needed for prediction of quantum
states. Good agreement is found between predicted ener-
gies, exact energies, and scars along the adiabatically
stable orbit. Extensions and limitations of the method as
well as the relationship of the method to the Gutzwiller
summation formula and the Feshbach picture are dis-
cussed in Sec. IV.

II. METHODS AND RESULTS

A. The model

p(r)=(E/E, )'"po(t), q(r)=(E/E, )' 'q„(t), (2)

where the scaled time ~ satisfies

r=(E/E, )
"4-

Accordingly, the classical action

S= ' fpdq

(3)

(4)

satisfies the scaling relation

S(E)=S(EO)(E/Eo)

The ratio s=(E/Eo)' will be referred to below as the
reduced energy. The reference energy Eo will be fixed,
Eo= —,'. lt is also easy to see that the integrated classical
density of states X(E) grows asymptotically as

We chose to study the Hamiltonian

H=(p, +p )/2+x y l2+/3(x +y )/4

for several reasons. The extensive numerical work of
Carnegie and Percival, Saviddy and co-workers, ' and
more recently Meyer indicate that this Hamiltonian is a
very strongly chaotic system, without any stable periodic
orbits, in the limit /3~0. Secondly, this Hamiltonian
shows dynamical similarity because of homogeneity of
both kinetic and potential energy. As a result, all period-
ic orbits depend trivially on energy although they do
change with /3. This feature implies that one can study
quantum classical correspondence without worrying
about bifurcations which can complicate matters enor-
mously.

The scaling relations between orbits at different ener-
gies are simple. A trajectory (p(t), q(t)) at energy E is
determined by a trajectory (po(t), qo(t)) at energy Eo by
the scaling

g2

2
6+x y /2+/3(x +y )/4 P=Eg . (7)

Using the scaling x =h ' x', E=A" E', one finds that A

is replaced by a value of unity in the Hamiltonian [Eq.
(7)]. Thus the semiclassical limit A'~0 becomes
equivalent to the limit E'~ ~ for fixed E.

For later reference we also show the result of
Gutzwiller's semiclassical analysis of the density of states.
Besides a smooth term po(c. ) measuring the average densi-

ty of states there are oscillatory contributions from
periodic orbits. For our system, one finds

X exp(i 2~S, s/R, iv—
, ~/2 ), (8)

where the summation extends over all primitive oriented
periodic orbits labeled by y, P is the 2 X 2 matrix of the
linearization in a Poincare surface of section perpendicu- .

lar to the orbit, S is the action of the periodic orbit
(determined at reference energy so=i), and v&, is the
Maslov index of the orbit. The summation over r takes
care of multiple traversals of the same orbit. A discus-
sion of symmetry effects is given in Sec. II C.

B. Quantum states

The eigenstates of the Hamiltonian [Eq. (7)] may be
classified according to the symmetry classes of the C4„,
symmetry group. The group C4, has eight elements (four
reflections on the axes and the diagonals and four rota-
tions by multiples of rr!2). The irreducible representa-
tions split into four one-dimensional representations and
one two-dimensional representation. In this paper we re-
stricted ourselves to the four one-dimensional representa-
tions. These are labeled A, (symmetric under rellections
on the axes and symmetric under reflections on the diago-
nals), 8, (symmetric, antisymmetric), 82 (antisymmetric,
symmetric), and A 2 (antisymmetric, antisymmetric).
This ordering corresponds to increasing energy of the
ground state.

For each symmetry class the Hamiltonian was expand-
ed in a suitable harmonic oscillator basis set and then di-
agonalized using standard library routines. Two
modifications improved convergence considerably. First,
the Hamiltonian was rotated by ~/4, as seen in the
figures below. This minimizes the classically forbidden
region spanned by the basis set. Second, the frequency of
the harmonic oscillator basis was chosen so as to mini-
mize the trace of the matrix. Since a finite basis set al-
ways provides upper bounds to the true eigenvalues, such
a minimization can only improve the upper bound. Even
with these improvements, we could not get a sufhcient
number of converged eigenvalues, let alone eigenstates
for the Hamiltonian [Eq. (7)] with /3=0. Therefore we

X(E)= f f d pdq6(E —H(p, q))=E'~ =F.

The scaling properties also show up in the Schrodinger
equation:
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TABLE I. Scaled energies of the A, and 8, states. The predicted energies in the fifth column are
based on a linear approximation to the adiabatic Hamiltonian co =0.47995m+1. 82994. The states
marked by an asterisk are in the nonlinear regime and their energies were determined by a cubic fit to
the periodic orbit actions.

No.

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

states

1.093
2.705
3.702
4.628
5.478
5.840
6.618

7.554
7.929
8.516
8.960
9.519
9.924

10.470
10.816
11.375
11.607
12.366
12.635
12.820
13.347
13.469
14.033
14.318
14.690
15.012
15.288

15.849
16.015
16.257
16.594
17.044
17.216
17.350
17.805
18.080
18.242
18.607
18.933
19.127
19.432
19.660
19.974
20.143
20.524
20.868
20.987
21.202
21.274
21.679
21.922
22.012
22.267
22.644

No.

9
10
11
12
13
14
15
16
17

18
19
20
21
22

23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
50

B& states

2.412
3.587
4.638
5.635

6.590
7.110
7.608

8.526
8.969
9.514

10.288
10.526
11.197
11.453
11.877
12.373
12.776

13.345
13.602
14.084
14.322
14.757

15.262
15.346
15.837
16.025
16.264
16.890

17.153
17.292
17.713
18.096
18.274
18.769
18.848
19.092
19.317
19.819
19.987
20.165
20.570
20.739
20.980
21.204
21.547

21.940
22. 136
22.344
22.398

Predicted
energies

j. .197*
2.787*
3.808*
4.711*
5.670

6.629

7.589

8.549

9.509

10.469

11.429

12.389

13.349

14.309

15.269

16.228

17.188

18.148

19.108

20.068

21.028

21.988

Quantum
numbers m~~

10

14

20

22

24

26

30

32

34

36

38

42
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TABLE I. (Continued).

No.

55
56
57
58
59
60

A, states

22.907
23.057
23.275
23.567
23.730
23.875

No.

51
52
53
54

55
56

8, states

22.883
22.960
23.273
23.350

23.842
23.893

Predicted
energ&es

22.948

23.908

Quantum
numbers m

44

46

chose to cut off the channels along the axes (the main
feature responsible for "spoiling" convergence) by fixing

P at 0.01.
High-accuracy solutions for the eigenvalues were ob-

tained using 79 (for the Ai and Bt states) or 80 (for B&
and A z) harmonic eigenstates for each degree of freedom,
resulting in matrices of dimension 3240. For the plots of
the eigenfunctions, smaller matrices were used (size( 1000) but we made sure that changes remained margin-
al. The first 60 eigenvalues for the symmetry classes A, ,
B ] B2 and 3 z are tabulated in Tables I and II. All
these eigenvalues are converged to within five significant
figures.

The densities ( g ) of the first 60 eigenfunctions for the
A, symmetry class are plotted in Fig. 1. (Deviations be-
tween the numbers given in the table and the eigenvalues
listed with the eigenfunctions are due to basis sets of
different size and are thus a measure of convergence. )

Here we have rotated the potential energy contour by
m/4 so that the (x,y) coordinates lie along the diagonals.
The densities of the first 24 eigenfunctions for each of the
other symmetries are plotted in Figs. 2 —4, respectively.
In these plots there are some obvious properties associat-
ed with the respective symmetries. For the A i symmetry
there are no nodal lines on the axes or the diagonals. The
B, states have nodal lines along the axes, the Bz states
along the diagonals, and the A2 states along the axes and
the diagonals. Beyond these symmetries, it is obvious
that many of the wave functions are localized in
configuration space, in contrast to what might be expect-
ed from a classical microcanonica1 distribution. By
studying the periodic orbits of the system we will see that
these localizations are scars of unstable periodic orbits.

In Fig. 5 we plot the Fourier transform of the quantal
spectra for the A, states. Here the Fourier transform is
in reduced space and defined as

2

C(s)= I doe "'p(E) = ge

where p(s) is the quantal density of states, E„are the (re-
duced) eigenvalues, and we did not subtract the classical
average since it would make little difference with the rela-
tively few states involved in the summation. The "time"
variable s has the dimensions of an action. From the
figure one can resolve some very distinct peaks. In the
next section we will show, as one might expect on the

basis of Eq. (8), that many of these peaks may be
identified with the action of a periodic orbit whose insta-
bility is relatively weak. This result is identical to a simi-
lar analysis of quantum states of Wintgen and
Friedrich.

C. Periodic orbits

The Hamiltonian used is given in Eq. (1) with P=0.01.
As shall be shown shortly, all periodic orbits we could
find for this choice were unstable. Poincare surfaces of
sections (an example is shown in Fig. 6) were space filling
and configuration space plots of trajectories integrated
for very long times gave uniform distributions in
configuration space. These attributes indicate classical
mechanical chaos.

A practical method for obtaining all periodic orbits
whose period is less than some predetermined time T is
not available. A search for all periodic orbits involves in
principle a multidimensional search in a Poincare surface
of section. However, substituting completeness for
eSciency, it is possible to locate many orbits by searches
along symmetry lines. For the Harniltonian at hand
there are three immediate such lines; the coordinate axes,
the diagonals, and the boundary of the classically allowed
configuration space at energy E. For the first two cases,
one initiates trajectories perpendicular to the symmetry
line and searches for perpendicular intersections after a
given number of crossings using interval bisections. For
orbits initiated along the boundary we used the turning-
point method of Ref. 40 which is also implemented with
interval bisections.

The actions and periods of the orbits are not very sen-
sitive to the accuracy of determination of the orbit.
However, the eigenvalues obtained from a linear stability
analysis are very sensitive to the accuracy in determining
the precise period of the orbit. We therefore used an idea
suggested by Henon ' which enables numerical integra-
tion exactly to the point where the stopping condition is
met. In this manner, the accuracy is determined solely
by the number of interval bisections used. We could con-
verge eigenvalues up to modulus of about 10 .

Altogether a total of 150 periodic orbits were comput-
ed, not counting symmetries or multiple traversals. In
order to analyze quantum states with the aid of periodic
orbits it is necessary to consider the role of symmetry.
As mentioned, the quantum states are symmetrized ac-
cording to the group elernentss of C4, . The orbits too
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TABLE II. Scaled energies of the 82 and A2 states. The predicted energies in the fifth column are
based on a linear approximation to the adiabatic Hamiltonian ci =0.47995m+5. 00988. The states
marked by an asterisk are in the nonlinear regime and their energies were determined by a cubic fit to
the periodic orbit actions.

No.

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55

B& states

3.367
5.390
6.493
7.436
8.166
8.814

9.787
10.401
10.785
11~ 319
11.935
12.352
12.904
13.409
13.813
14.214
14.845
15.125
15.290
15.898
16.037
16.657
16.957
17.126
17.685
17.983
18.480
18.572
18.882
19.346
19.422
19.744
20.177
20.444
20.733
21.067
21.148
21.684
21.738
22. 103
22.368
22.725
22.793
23.268
23.388
23.690
23.849
24.019
24. 176
24.656
24.838
25.037
25.366
25.659
25.820

No.

7
8

9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

A2 states

4.848
6.407
7.656

8.712
9.312
9.920

10.833
11.422
11.921
12.686
13.070
13.498
13.913
14.514
14.873
15.375

15.912
16.183
16.606
16.961
17.285
17.788
18.049
18.271
18.696
18.999
19,639
19.715
19.966

20.394
20.724
20.988
21.350
21.402
21.738
22. 148
22.370
22.730
22.959
23.067
23.513
23.726
23.949
24.374
24.680
24.718
25.001
25.196
25.421
25.666
25.965

Predicted
energies

3.592*
5.495*
7.044*
8.362*

9.502*

10.506

11.423

12.309*

13.205*

14.132*

15.089

16.049

17.009

17.969

18.928

19.888

20.848

21.808

22.768

25.648

Quantum
numbers m

13

15

17

19

21

23

27

29

31

33

35

37

43
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TABLE II. (Continued j.

No.

56
57
58
59
60

B, states

25.904
26.291
26.448
26.639
26.832

No.

52

53
54
55

A, states

26.160

26.480
26.653
26.808

Predicted
energies

26.608

Quantum
numbers rn

45

can be invariant under some symmetry operations. This
affects their contribution to either an adiabatic approxi-
mation or to the semiclassical expansion (8) and thus also
the analysis of the Fourier transform of the 3

&
states

shown in Fig. 5. In particular, the periodic orbit expan-
sion extends over periodic orbits that are different in
phase space. The summation must take into account the
symmetries of the equations of motion in phase space. In
our system, there are eight geometrical symmetries to the
potential and time-reversal symmetry, making for a total
of 16 symmetries in phase space. (The geometric sym-
metries are extended to act on momenta as well. ) We will
say an orbit is invariant under one of the symmetries, if
the set of points in phase space belonging to the orbit is
mapped into itself (preserving the orientation where appl-
icable). By inspection one then finds the following possi-
bilities.

The only orbits invariant under time-reversal symme-
try are those that have two points on the equienergy con-
tour. As a result, these orbits usually have only twofold
geometrical symmetries, i.e., invariance under rotation by

as for orbit 1 in Fig. 7(a) or invariance under a
reflection as for orbit 25. Any higher symmetry would
imply four points along the equienergy contour which is
impossible unless the orbit itself runs along a symmetry
line (nos. 2 and 9). On the other hand, an orbit in this
class may have no other symmetry at all, as, e.g. , orbits
52,3, 11,38,46, . . . in Fig. 7(b). Thus self-retracing orbits
belong to groups of eight (no geometrical symmetry), four
(one geometrical symmetry), or two (orbits along symme-
try lines) degenerate periodic orbits.

Orbits without time-reversal symmetry exist at least in
pairs. If the orbit does not have any geometrical sym-
metries, then it comes in 16 copies, 8 geometrical ones
traversed in two directions each. Our methods of search
are incapable of finding these orbits, though we did estab-
lish that they exist by finding one using two-dimensional
a (2D) Newton method.

There are orbits that do have at least a twofold geome-
trical symmetry [such as nos. 24,7,48, . . . in Figs. 7(a)
and 7(b)]. However, if the geometrical symmetry is a
reflection then it needs to be combined with time rever-
sal; for instance, for orbit 7 the symmetry is reflection
along the diagonal plus time reversal. These orbits then
belong to groups of eight twofold-degenerate orbits. If
the symmetries of the orbit are higher, then the number
of copies is decreased correspondingly. If the orbit has a
four-dimensional symmetry, then it belongs to a group of
four fourfold-degenerate orbits. Again some of the sym-
metries can be combinations of time-reversal and geome-

where sH I Ai, B&,Bz, Az, E). Each one has the usual
representation in terms of the eigenstates of that symme-
try class:

g„'(x)g'„(y)
G, (x,y)=g

n n

Applying a symmetry operation P to one of the argu-
ments of the reduced Green's functions changes the sign
of one of the wave functions according to the character of
the group element. One can thus obtain the symmetry re-
duced Green's functions from the full Green's functions
by suitable sums and differences of G for different argu-
ments.

In the semiclassical approximation, the Green's func-
tion contains contributions from all oriented classical
paths from x to y. If the initial and final points lie on a
periodic orbit that has symmetries preserving its orienta-
tion, then this orbit will not only contribute to the
Green's function from x to y, but also to that from x to
Py, where P stands for the symmetry operation.
Specifically, let us consider orbit 23 and its contributions
to the Green's function of the 3

&
symmetry class. As in-

dicated in Fig. 8, points b', b ", and b
'" are symmetry re-

lated to point b. Their contribution to Gz is
l

G(a, b)+ G(a, b')+G(a, b")+G(a, b'") . (12)

In the semiclassical limit, the Green's function is
represented by

G(a, bj= A, be (13)

trical symmetries. The most symmetrical orbits are in-
variant under a group with eight symmetry elements and
thus belong to a pair of eightfold-degenerate orbits [like
nos. 13 and 32 in Fig. 7(c)]. This exhausts all possibili-
ties: orbits come in groups of eightfold- (no geometrical
symmetry), fourfold- (one geometrical symmetry), or
twofold-degenerate periodic orbits. (The case of a single
orbit invariant under all 16 symmetry operations is ex-
cluded since it would have to be self-retracing. )

With this knowledge we can analyze their contribution
to the expansion (8) via a symmetrization of the Green's
function as outlined by Gutzwiller. ' '' Obviously, the
Green's function of the full quantum problem can be
written as a sum over Green's functions for the individual
irreducible representations,

G(x, y) = QG, (x, y),
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S „=S(T/2)+S, 6, (14a)

S „„,=S(T/2)+S, b (14b)

where S, b is the classical action, v the Maslov index for
this piece of trajectory, and the amplitude A, b is given

by (t)S, „/t)ac)b)' . It is easy to derive the relations

for the actions. The Maslov index for a trajectory piece
shorter than half a period is 0, since one can always And a
representation where there are no conjugate points. If
the segment is longer, than the Maslov index is 2, as it
picks up all the conjugate points. Thus Eq. (12) can be
rewritten

i2nS(T/2)/A'+a)[G( b)+G( b )] (l5)

TABLE III. Periodic orbits for the classical Hamiltonian (2.1) with P=O. OI and Fo = —', ordered by
increasing instability.

No.

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
49
49
50

Period

19.6745
19.7210
10.7592
17.6663
8.2891

19.2169
8.0462

39.3603
7.3979

19.4407
10.6287
23.2413
9.3264

19.0585
16.2050
14.0882
18.7857
17.6194
18.3031
12.3195
59.0386
18.5181
11.3391
13.7570
12.7114
59.0736
15.9764
16.8774
17.8905
14.9309
39.2228
22.2993
17.0924
15.1863
16.2501
16.0705
25.0201
19.0658
38 ~ 3707
21.0885
39.1609
58.8291
15.9036
58.9527
29.2439
19.0224
20.9747
16.3201
27.5799
58.8293

Action

2.0875
2.0925
1.1416
1.8745
0.8795
2.0390
0.8537
4.1763
0.7849
2.0627
1.1277
2.4660
0.9896
2.0222
1.7194
1.4948
1.9932
1.8695
1.9420
1.3071
6.2642
1.9648
1.2031
1.4597
1.3487
6.2679
1.6951
1.7907
1.8982
1.5842
4.1617
2.3660
1.8136
1.6113
1.7242
1.7051
2.6547
2.0229
4.0713
2.2376
4.1551
6.2420
1.6874
6.2551
3.1029
2.0183
2.2255
1.7316
2.9263
6.2420

1.29
1.68
3.94
4.07
4.20
4.44
4.60
4.70
4.77
5.23
5.25
5.43
5.58
5.83
6.01
6.05
6.07
6.10
6.29
6.48
6.64
6.68
6.72
6.86
6.92
6.94
7.00
7.02
7.03
7.09
7. 1 1

7.20
7.29
7.37
7.48
7.62
7.63
7.81
8.01
8.28
8.31
8.33
8.59
8.65
8.76
8.75
8.76
8.84
9.05
9.10

Sll

1.8891
2.0925
0.6215
1.3704
0.4397
1.6408
0.7378
1.9361
0.3925
1.6427
0.5948
0.7095
0.4948
1.4650
1.1257
0.8845
0.5153
1.2445
1.3363
0.6877
1.9448
1.3087
0.6162
0.8021
0.6990
1.9833
1.0017
1.0876
1.1911
0.8831
1.8530
0.3943
1.0734
0.8806
0.9821
0.4294
0.8158
0.5301
1.6461
0.6645
1.7576
1.8112
0.4224
1.9316
0.9811
0.5227
0.6143
0.7615
0.9165
1.8219

Si

0.0283
0.0(X)0
0.2600
0.1008
0.4397
0.0663
0.0579
0.0217
0.3925
0.0700
0.2664
0.2094
0.4948
0.0928
0.1484
0.2034
0.3209
0.1250
0.1211
0.3097
0.0205
0.1312
0.2935
0.2192
0.3248
0.0151
0.1733
0.1758
0.1414
0.2337
0.0351
0.3943
0.1850
0.2436
0.1855
0.4231
0.1705
0.3209
0.0649
0.2271
0.0492
0.0404
0.4213
0.0230
0.1630
0.3243
0.2492
0.0521
0.1822
0.0388
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The first term vanishes, if S ( T/2) = ( n + —,
' )&

S(T)=(2 +nI/2)p. Analysis of the second term shows
that it vanishes for n even. Thus the (full) action is quan-
tized in units of 4A. This is the same as saying that
within a given symmetry subspace one has integer quanti-
zation of one-quarter the action. It is this symmetry re-
duced action that will appear in the Fourier transform of
the density of states [Eq. (9)].

This type of analysis can be repeated for the other or-
bits as well ~ One finds that self-retracing orbits contrib-
ute either with the full action (no geometrical sym-
metries) or with half action (one geometrical symmetry or
along symmetry lines) and that non-self-retracing orbits
contribute with action divided by degeneracy.

Besides this rather cumbersome group-theoretical ar-
gument there is also a more intuitive one based on
"standing waves along the orbit. " By this we mean the
following. Introduce a coordinate system along the orbit
and disregard the perpendicular motion. In this coordi-
nate system the motion is either a libration (if the orbit is
self-retracing) or a rotation. Symmetries of the orbit also
show up in this coordinate system and one can argue by
one-dimensional analogy. For instance, the motion of or-
bit 2 is a libration with reAection symmetry, so that one-
dimensional states with even quantum numbers will cor-
respond to symmetric standing waves, whereas states

with odd quantum numbers correspond to antisymmetric
waves. Again the spacings between consecutive energies
in one symmetry class are the same as if the periodic or-
bit had only half the action. A similar argument applies
to the rotation of periodic orbits like no. 13 or 32. Per-
pendicular excitations do not change this picture.

We should point out that the symmetries of the orbit
also affect the stability exponents that enter the periodic
orbit formula. For instance, an orbit hyperbolic after a
full period may be inverse hyperbolic after half a period.
For further discussion of this point see Refs. 43 and 25.

In Table III we provide the (full) actions of the 50 least
unstable periodic orbits (this list is not exhaustive, con-
sidering the limitations of our search). We also list u, the
logarithm of the maximal eigenvalue of the linearization
in a Poincare surface of section perpendicular to the or-
bit. The amplitudes in the periodic orbit formula are
then given by [sinh(ur/2)] '~ or [cosh(ur/2)] '~ [r is
the number of traversals of the orbit, see Eq. (9)], if the
full orbit contributes and if it is hyperbolic or inverse hy-
perbolic, respectively.

In Fig. 7 we show a few selected orbits. All orbits in

Fig. 7(a) move "in the channel, " that is, they are confined
to an elongated region excluding the second channel.
The first two are the least unstable orbits found by our
method. For later purposes we note that orbit I can be
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decomposed into one oscillation along the long axis and
seven oscillations perpendicular to it. Similarly, nos. 8
and 21 correspond to two oscillations along the long axis
and 14 and 15 oscillations perpendicular to the axis, re-
spectively. The orbits in the second row seem to belong
to a family of periodic orbits with four, six, eight, ten,
etc. crossings of' the long axis. Similarly, the bottom row
also suggests a family of orbits crossing the origin with
again a total of four, six, eight, etc. crossings of the long
axis. These symmetrical orbits can also occur in inte-
grable systems (see the discussion by Berry and Ta-
bor ). However, orbit 24 in the last panel of Fig. 7(a)
indicates that a family of asymmetric orbits also exits.
One can imagine a symbolic organization of these orbits
by the number of crossings of the channel axes left and
right of the center.

Figure 7(b) shows orbits that stay mainly in the central
region of configuration space. From these sets one can
identify some "basic orbits, " namely nos. 5, 9, 3, and 11.
All the other orbits shown can be "projected" onto these
basis ones. For instance, no. 7 is roughly half a period of
no. 9 closed by half a period of no. 5. Orbit no. 48 may
be decomposed as either one period of no. 5 and one

period of no. 7 or half a period of no. 9 and —', periods of
no. 5 ~ The symmetry-related orbits can also be connected
in this fashion, see nos. 57, 58, and 121. The existence of
these concatenated orbits follows from the theory of
chaos in dynamical systems: If the system is completely
chaotic, i.e., all periodic orbits are unstable, then their
stable and unstable manifolds intersect in heteroclinic
points. One intersection immediately implies infinitely
many. The heteroclinic points belong to trajectories that
start asymptotically in the far past near one orbit and end
in the far future near another. It is now conceivable that
nearby there are periodic orbits mimicking this motion
for some time. A good example is no. 48. Finally, in Fig.
7(c) we show two highly symmetric orbits (nos. 13 and 32)
as well as some more complicated (heteroclinic) orbits be-
tween all four motions.

A cursory comparison of the orbits in Fig. 7 with the
wave functions plotted in Figs. 1 —4 shows that many of
the wave functions may be thought of as having scars of
unstable periodic orbits. Some of these scars will be ana-
lyzed in detail in the next section. This point is further
stressed by inspection of Fig. 9. Here we plot the actions
of the orbits (as they contribute to the density of states)
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FIC'r. 2. Densities of the lowest 24 eigenstates in the symmetry class B, .
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versus their characteristic exponents [ordinary and in-
verse hyperbolic points are not distinguished since the
differences in amplitude in (8) are small]. Comparison
of this figure and the prominent peaks (at
s = 1.04, 2.08, . . . ) observed in the Fourier transform of
the density (Fig. 5) shows that these peaks may be corre-
lated with the actions of the two least unstable periodic
orbits. These same orbits appear as scars in many of the
wave functions, however, the Fourier transform and the
scars are not sufficient for distinguishing between the
two. Clearly, there are additional peaks in the Fourier
transform and it is not difficult to find orbits whose ac-
tions or multiples thereof lie in the desired range. It is
impossible though to provide unambiguous correlations
for any action greater than about 0.6 (from the orbits we
computed, 13 have symmetry reduced actions less than
0.8 and another 19 have actions between 0.8 and 1.04, the
action of the least unstable periodic orbit).

III. VIBRATIONAL ADIABATICITY

The purpose of this section is to show that scars of
wave functions around unstable periodic orbits may arise
as a result of the adiabatic stability of the unstable (in the
sense of Lyapunov) periodic orbit (henceforth PO). To

show this it is first necessary to review the notion of adia-
batic stability and understand the relevance of this con-
cept to quantum mechanics. Linear stability analysis
gives properties of the orbits associated with behavior at
infinite time. When one finds that a periodic orbit is un-
stable in the Lyapunov sense, one really means that if one
waits long enough an orbit in the neighborhood of the PO
will find itself an arbitrary large distance away from the
PO. This does not preclude the possibility that for short
times, for example, times of the order of the period of the
PO itself, a neighboring trajectory will remain in the
neighborhood of the orbit. An analysis of semiclassical
quantization shows that roughly it suffices to stay in the
vicinity of a PO one period for quantum eftects to become
important. In other words, for quantum mechanics it is
the short-time behavior of the orbit which is really im-
portant.

It has been noted that periodic orbits can be charac-
terized as repulsive or attractive based on the short-time
behavior of trajectories in their neighborhood. A repul-
sive orbit is one such that any trajectory in its neighbor-
hood will move away from the PO. An attractive orbit is
one such that any orbit in its neighborhood will cross it
before completing one cycle along the orbit. Examples
for the quartic potential are shown in Fig. 10. An orbit
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can be simultaneously attractive and unstable in the
Lyapunov sense.

Consider now the approximation of vibrational adiaba-
ticity. A necessary condition for the vibrationally adia-
batic approximation to be exact is that the barriers and
wells on the vibrationally adiabatic surface are periodic
orbits. ' ' At an adiabatic barrier, neighboring trajec-
tories will move away from the orbit as in Fig. 10(a). At
a well, if the adiabatic approximation is to make any
sense, trajectories will move toward the orbit as in Fig.
10(b). Thus, by inspection alone, one can categorize a PO
as an adiabatic barrier or well simply by the behavior of
nearby trajectories, that is, by the repulsive or attractive
characteristic.

If the adiabatic approximation around an orbit is exact
and the orbit is a well then motion around the orbit is in-
tegrable and the orbit must be stable in the sense of
Lyapunov. Any orbit in its vicinity may be described (in
a two-degree-of-freedom system) by the action along the
direction of the central orbit (S~) and the perpendicular
action (S~). These two actions are by construction con-
stants of the motion. Any orbit in the vicinity, with the
same S~~ and finite S~ must by construction be at an ener-

gy higher than that of the PO. In other words, the action

of the adiabatic well is a local maximum. Similarly it is
easy to convince oneself that around an adiabatic barrier,
the action of the PO is a local minimum.

If the adiabatic approximation is not exact then motion
around the orbit is no longer integrable and the orbit is
unstable in the Lyapunov sense. It is still possible though
to define an adiabatic approximation in its vicinity.
Specifically, one constructs a local orthogonal coordinate
system which coincides along a line with the PO. If the
orbit is an adiabatic well it will retain the maximum
property with respect to the action (S~~). In other words,
adiabatic wells are identified by their attractive behavior
and by the fact that their action must be in some sense a
local maximum.

Before proceeding to the practical aspects we note that
if the Lyapunov exponent of the attractive PO is not too
large, the adiabatic approximation can be expected to be
reasonably accurate for a finite time and so one can ex-
pect that a semiclassical quantization based on the adia-
batic breakup will give reasonable estimates for the eigen-
values. It has been shown by several authors that in the
stadium problem, ' certain states may be approximated
reasonably well by an adiabatic breakup. The main
thrust of the present discussion is to show how the adia-
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FIG. 4. Densities of the lowest 24 eigenstates in the symmetry class A2.
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1.0

0.8

0.7

0.6—
8 0.5a
E

0.4

components S!! and S~. This is shown in Fig. 11. Each
periodic orbit in the channel region, at reduced energy
Eo= 1 defines a point in the (SII,S„)plane. If the adiabatic
approximation were exact for all these orbits then all
points would lie on a single line, and this line would

0.3

0.2

0. 1

0.0
0

I

2
l

3
25

FIG. 5. Fourier transform of the density of states [Eq. (9)] for
the lowest 60 states in symmetry class 3, .

0.0 0.5 1.0 1.5 2 0 2 5 3.0 ;3.5 4.0

batic breakup may be uniquely defined by the periodic or-
bits of the system. This in turn serves to shed some light
on the phenomenon of scars.

Consider now the periodic orbits shown in Fig. 7(a).
All these orbits lie in the vicinity of the "channel orbit"
labeled 2. It is evident that with respect to all other
periodic orbits in its vicinity, the channel orbit is attrac-
tive. Furthermore, inspection of Table III shows that the
action of the channel orbit is greater than the action of all
the neighboring orbits when taken over one traversal
along the channel. Thus the channel orbit is identified as
an adiabatic well. All the other periodic orbits in its vi-

cinity may be thought of as the remnants of tori had the
adiabatic approximation been exact. We will use them to
construct the adiabatic Hamiltonian associated with the
channel orbit. Specifically, the channel orbit defines a lo-
cal orthogonal coordinate system, straight lines that are
parallel and perpendicular to the orbit. The action of
each one of the neighboring orbits may be split into two
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FIG. 6. Poincare surface of section (y =0, p~ )0) for the
classsical Hamiltonian (2.1) with f3=0.01. Because of the sym-
metries only one quadrant is shown. One initial condition was
iterated for 100000 points.

FICx. 7. Selected periodic orbits for the classical Hamiltonian
with )r3=0.01 (and energy Eo = —'). The first panel shows orbits
that we associate with motion "along the channels;" the second
panel shows orbits moving mainly "in the center, " and the third
shows more complicated orbits, mixing both regions. The num-
bers identify the orbits in Table I.
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FIG. 8. Symmetry-related points on orbit no. 23 for the com-
putation of the symmetry-reduced Green's function. The basic
trajectory from a to b is indicated by a heavy line. The arrows
on b and its symmetry related partners 6', b", and b"' are a re-
minder that the orientation has to be preserved.

define the locally integrable Hamiltonian. As can be seen
from Fig. 11, although the system is not integrable one
still finds that to a very good approximation the points
actually do lie on a single line. Asymptotically, as the ac-
tion perpendicular to the orbit vanishes, the adiabatic ap-
proximation should work best, and indeed the scatter di-
minishes for larger parallel actions.

One can now use a plot like Fig. 11 to reconstruct the
adiabatic Hamiltonian. Denote the functional relation-
ship between S~ and S~~ by

S =f(S„) . (16)

The adiabatic Hamiltonian is a function H(S~, SII) and
the eigenvalues are given by semiclassical quantization of
the two actions

SJ e SJ (eo) SII s„SII(eo), (18)

=H(S~ =n+aq/4, SII +alll4)

where a~~ and e~ are the relevant Maslov indices. For our
scale-invariant system the actions are linear in the re-
duced energies [cf. Eq. (5)], so we can write

FIG. 10. Adiabatic stability of periodic orbits, illustrated us-

ing the Lyapunov unstable orbits 9 and 5. Initial conditions are
taken along equienergy contours and the periodic orbit is indi-
cated by a dashed line. (a) Orbit 9 is adiabatically unstable since
orbits started nearby immediately diverge away from the
periodic orbit. (b) Orbit 5 is adiabatically stable, since nearby
orbits cross the periodic orbit.

where the actions with argument co also have to satisfy
the restriction (16). The ratio of the two actions is fixed
so that one can solve say for S~(eo) in terms of SII(eo):

n +a/4
S~' (Fo)= SII™(eQ)

m+a~tr4

Using Eq. (16) one can solve for SII (eo) which together
with the quantization rule and Eq. (18) gives the energy.

For example, let us assume that Eq. (16) describes a
linear relationship (as is indeed approximately the case in
our system)
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FIG. 9. All 150 periodic orbits (solid dots) and their multiple
traversals (open circles) in an action-stability plane. Note the
set of orbits with small eigenvalues and actions near 1.05 and
2.1.
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FIG. 11. Effective Harniltonian as computed from projec-
tions of all periodic orbits.
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S~=aS~~+b . (20) ~ I 1 1
} g I I I

[
I I i I

)
I I I I06

Replacing S7 by (19) one can solve for S~~~. The corre-
sponding eigenvalue now follows by demanding that
ES~~~(Eo)=(m+a~~/4). This leads to an explicit form for
the energies

(21)E„=(—a/b)(m +a~~/4)+(n +aJ /4)/b .

Before applying this result to our system we have to
deal with the symmetries. The adiabatic Hamiltonian is
valid for motion confined to a domain stretched along
one of the channels, with an identical approximation for
the other channels obtained by a rotation of n/2. This
classical degeneracy is quantum-mechanically split by
tunneling. To construct A

&
and B

&
states, we need wave

functions that are symmetric under reflections about both
axes. This holds true for adiabatic channel states with
even quantum numbers. The A, and B, states are ob-
tained by combining these degenerate adiabatic states
symmetrically or antisymmetrically with respect to the
diagonals. The symmetrized states are therefore also de-
generate except for tunneling corrections.

Similarly, to get Az and B2 states, the adiabatic chan-
nel wave functions need to be antisymmetric with respect
to reflections on both coordinate axes, so the quantum
numbers are odd. Symmetric and antisymmetric com-
binations along the diagonals then give B2 and A 2 states,
again almost degenerate in energies. In Tables I and II
we compare eigenvalues predicted from adiabatic approx-
imation with exact scaled energies. For low quantum
numbers the tunneling splitting between symmetry relat-
ed pairs is rather large but it quickly decreases and be-
comes negligible.

Instead of comparing computed eigenvalues, one can
use the numerical values of the quantum energies of all
those states that scar along the channel orbit, in conjunc-
tion with Eq. (18) to obtain a direct comparison with the
periodic orbits. Specifically, ordering the eigenvalues
with increasing energy and quantum number, one can
solve for S~

' (eo) and Si" (Eo) to obtain from the n, m ei-
genvalue a point in the (S~~' (co),S7"' (eo)) plane. All
points thus obtained may then be compared with the
similar results obtained from the periodic orbits. This
graphical comparison is provided in Fig. 12. The agree-
ment between between the two panels serves to point out
the quality of the adiabatic Hamiltonian we have derived.

For a more quantitative comparison, note that for
S~ & 1.4 the relationship between S, and S~~ is almost
linear. A least-squares fit of the 18 periodic orbits in that
range gives coeKcients a= —0. 15093, b =0.31447, and
a regression coefficient of r = —0.9992. For the actions
from 26 eigenvalues with S

~~

& 1.6 one finds a
= —0. 150 97 and b =0.314 78, with r = —0.9989.
Again, very good agreement is found.

For the A, and B, states with their low perpendicular
excitation, the linear approximation works reasonably
well even for the ground state. However, for the A2 and
B2 states and all other states with higher excitations, the
linear approximation holds for higher-lying states only
[e.g., if the linear approximation is used for S~~ & 1.4, then
one needs to have c. & 4.75 for quantum numbers (0, m) in

0.4—

0.2—

0.0
0.0 0.5 1.0 2.0

FIG. 12. Effective Hamiltonian as determined from the
eigenstates identified as being scarred along the axes.
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FIG. 13. Superposition of states 22 and 23 of the A& symme-
try. The densities of the added (left) and subtracted (right}
states reveal an adiabatic channel state and another state.

the A &,B &
pair and E & 14.5 for quantum numbers (1,m )

in the B2, A2 pair]. One can improve on that in order to
get lower eigenvalues by fitting a cubic polynomial to the
actions. Energies obtained in this manner are marked by
an asterisk in Tables I and II.

The careful reader will notice that the energy of B&
states is not always higher than the energy for the A,
states, as one would expect if the adiabatic approximation
were exact. In fact, other states can mix in (see the nice
analysis of Davis ') and thus invert the energy difference.
Mixing in of other states also explains the rather large de-
viations between predicted and exact energies for the
group of state nos. 22 and 23 of A z and nos. 25 and 26 of
B2 (see Table II). From Fig. 4 one would identify no. 22
as scarred along the channel and not no. 23 as indicated
in our table. To identify whether another state mixes in,
we show in Fig. 13 the densities for ~1(72z 1(7z3 . The
figure reveals an adiabatic channel state and another state
that interact. A similar figure was found for the states of
the B2 symmetry. Interestingly, the average energy of all
four states is 17.876 in reasonable agreement with the
predicted semiclassical energy of 17.969. This correspon-
dence implies that at this energy there are two different
adiabatic states with the same energy. All of these four
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set of states but also the dominant contribution to the
wave functions.

IV. DISCUSSION

FIG. 14. Superposition of state 7 of the A, symmetry and 5

of the B, symmetry. The densities of the added (left) and sub-
tracted (right) states reveal the underlying adiabatic state, con-
centrated along the channel and having quantum numbers
m =10 and n =0.

states interact weakly to give a quartet of states. We ex-
pect that as the density of states increases, that is as one
goes up in energy, such "accidental degeneracies" will
stop becoming accidental, and one will see that more and
more adiabatic states interact. In some sense this
amounts to having scars of diferent periodic orbits in the
same wave function.

Another check of our analysis is the distribution of no-
dal lines. However, one has to beware of e6'ects of sym-
metrization. For instance, state 7 of the 3, states seems
to have ten nodal lines along the channel whereas state 5
of the 8, sequence, predicted to be almost degenerate
with the preceding state by our analysis, seems to have
only nine. In Fig. 14 we demonstrate that by adding and
subtracting the two states one can recover adiabatic
states with the right number of nodal lines along the
channels. Superposition of states also reveals higher exci-
tations perpendicular to the orbit. An example is shown
in Fig. 15.

An analysis of the predicted eigenvalues, the exact
quantal eigenvalues, and the wave functions, shows that
there is a one-to-one correspondence between all eigen-
values that are associated with adiabatic quantization and
wave functions that scar along the channels. Indeed, the
adiabatic analysis covers all of those wavefunctions that
scar along the channels. The adiabatic analysis could
thus be used not only to predict the eigenvalues of a sub-

FICx. 15. Superposition of states 11 ( A, ) and 9 (B,). The
dominant contribution to this state is an adiabatic state with
quantum numbers m =6 and n =2.

In the preceding section we presented a detailed study
of all low-lying eigenstates of the quartic oscillator. On
the basis of an adiabatic breakup we could assign quan-
tum numbers to all states concentrated along the chan-
nels, thus also explaining the scars. This success raises
several questions. (a) What limits the accuracy and
predictive power of the method? (b) How critically does
it depend on the adiabatic breakup? (c) Can it be general-
ized to other orbits, to other systems? We will address
these questions in turn.

From the quantization scheme outlined in the preced-
ing section, it is clear that the accuracy of the prediction
for the eigenvalue is given by the scatter of points in Fig.
11. This scatter is rather large if the two actions are
comparable, but it decreases as S~/S~~ 0, i.e., as the
parallel action becomes much larger than the perpendicu-
lar action. Numerically, this scatter is &0.002 for ac-
tions S~~ & 1.6. At a reduced energy of 25 this implies an
uncertainty of about 0.05, which is still smaller than the
average spacing b 8=0. 178 estimated from the classical
density of states [cf. Eq. (6)]. However, for higher ener-
gies this uncertainty will become larger than the mean
spacing at which point the predictive power for a single
eigenstate will be lost.

Our method of quantization also fails, if the perpendic-
ular excitation is too high, for then one is in the regime of
small S~~(Eo) where the scatter is large. For instance, re-
quiring S~~(eo) & 1.6 as in the preceding section leads to
an estimate c, &24.2 for states with quantum numbers
(2, m) (3, , B, states). But already at lower energies
higher perpendicular excitations become noticeable, as il-
lustrated in Fig. 15.

Turning to the dependence on the coordinates, we note
that if the system were integrable, then all points would
lie on a line and any (complete) coordinate system would
be equivalent. This is the invariance of integrable sys-
tems under canonical coordinate changes. Our method is
coordinate dependent. We need to specify the coordinate
axis to compute the perpendicular or parallel actions; this
is done by identifying the adiabatic well around which
the orbits are organized. Then we need to count the
number of excitations in both coordinates and derive
from that the actions per period. Once this is done one
can again imagine in variance of these actions under
canonical changes of coordinates, however, for the com-
putation the proper choice of coordinates is crucial.

Inspection of the wave functions plotted in Figs. 1 —4
shows that scars may be found also in the central region
of configuration space. For example, the 2, states 13,20,
and 50 are highly localized and one could imagine that
they arise from an adiabatic breakup around periodic or-
bits 5 or 13. Similar scarred states may be found in other
symmetries. A quantitative estimate for these states (as
well as for states with E symmetry) will, we hope, be
presented elsewhere. It is, though, clear that the same
limitations found for the channel orbit will remain. If the
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scatter in action space is too large, or the density of states
too high, one will not be able to make accurate predic-
tions for single eigenstates. Since in principle different
adiabatic breakups give different Hamiltonians, one can
imagine a situation where at high energy states from the
different Hamiltonians overlap. At this point, one will
find quantum states that scar along two or more periodic
orbits as seems to be the case for the scars in the stadium
problem.

Here, we note that this method should also be applic-
able to analysis of the quadratic Zeeman effect in strong
magnetic fields. The effective Hamiltonian in semipara-
bolic coordinates is qualitatively similar to the quartic os-
cillator (1): there are channels along the coordinate axes.
An adiabatic analysis of the periodic orbits for the quad-
ratic Zeeman system is in progress.

It is interesting to compare our findings with other
periodic orbit quantization schemes. As discussed in
several places in the literature (see, e.g. , Miller or
Voros ) every primitive (i.e., nonrepeated) periodic orbit
formally leads to a pole in the density of states at

Sr E = ( m +v, ,rr I4 )fi+ I'u, , ( n + —,
'

)A . (22)

If the orbit is unstable (u real), then the correspond-
ing energies are complex and interpreted as resonances
with location given by the real part of the energy and a
width given by the imaginary part. This directly links
the stability of the periodic orbit and the uncertainty in
the location of the eigenvalue (i.e., the width of the reso-
nance). In our approach, the uncertainty in the location
of the energy is associated with the scatter of points in
the (S~,S~) plane. This scatter is not known to be direct-
ly related to u . In other words, the two methods would
predict diff'erent widths.

We also note that the periodic orbit quantization [Eq.
(22)] has difficulty in predicting the nonlinear increase in
the effective Hamiltonian for small S~. The quantization
rule (22) is intrinsically linear (for the scaled variables)
and thus the nonlinear increase could come only from a
collective effect in the superposition of many orbits.

Our results may be interpreted as an effective resurn-
mation of the periodic orbit formula in the following
sense. For an integrable system both the torus quantiza-
tion rule and the periodic orbit formula lead to the same
density of states (see Berry and Tabor ' '), but as demon-
strated recently by Keating and Berry, the latter gen-
erally requires knowledge of all periodic orbits. The clas-
sical Hamiltonian implicitly contains the information
about all periodic orbits and is thus the more efficient
method of quantization. Our method maps every orbit of
the full system onto a periodic orbit of an integrable sys-
tem and in this sense introduces an effective Hamiltonian.
This mapping is many to one, since there are vastly more
isolated periodic orbits in a chaotic system than in an in-
tegrable one. But the numerical results show that the ac-
tions of the true orbits do not differ too much from the
approximate actions. In particular, as long as the devia-
tions are smaller than A, one would expect quantum
mechanics to be insensitive to these changes.

Insensitivity of quantum mechanics to classical effects
smaller than A is also the reason for the success of quanti-
zation methods based on semiclassical quantization of
truncated classical perturbation series (see, e.g. , the work
on truncated Birkhoff-Gustavson normal -forms beginning
with Swimm and Delos ). However, these are usually
considered in regions where the stochastic layers are an
insignificant part of phase space. More recently
Reinhardt and Dana ' (see also Izraelev and Soko-
Iov~ for asimilar ansatz) have studied the adiabaticity
of classical constant action perturbation series for the
standard map and they find them to provide good adia-
batic invariants even for strong chaos in the classical
map. It remains to be seen whether one can use such a
method also for the quartic system.
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