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Relativistic all-order equations for helium
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The ground-state energy of helium is calculated to all orders in perturbation theory starting from
a relativistic "no-pair" many-body Hamiltonian in which contributions of virtual electron-positron
pairs are ignored. In this calculation only Coulomb interactions between the electrons are con-
sidered. Two all-order calculations are presented: one calculation is based on nuclear Coulomb-
field orbitals and the second is based on Hartree-Fock orbitals. For each calculation the all-order
equations of many-body perturbation theory are solved iteratively. The resulting numerical value
for the ground-state energy from the Coulomb-field calculation is —2.903856(1) a.u. , while the
Hartree-Fock calculation gives —2.903 855(2) a.u. Both of these values agree with that obtained by
correcting the well-established nonrelativistic energy for lowest-order relativistic effects.

INTRODUCTION

Many-body perturbation theory (MBPT), introduced
into atomic physics by Kelly, ' provides a powerful and
systematic approach to the calculation of atomic proper-
ties. In MBPT, one introduces a central potential U(r),
which is in principle arbitrary, though in practice is most
often chosen to be the Hartree-Fock potential. One uses
this potential to determine a set of single-particle orbitals.
In the lowest order of perturbation theory, the atomic
state is a Slater determinant formed from these orbitals
and the total energy is the sum of the orbital energies.
The difference between the actual electron-electron in-
teraction and the central potential U(r) is the perturbing
Hamiltonian. Consideration of this perturbing interac-
tion in higher orders leads to the formulas of MBPT. In
practice, these formulas become so complicated that
direct perturbative studies are rarely carried out beyond
second order. Instead, higher-order corrections are treat-
ed by so-called all-order methods in which infinite sub-
classes of contributions are summed. It is our aim to set
up a relativistic all-order formalism for use on heavy
atoms such as cesium or thallium, which are of great
current interest because of the recent accurate measure-
ments of parity nonconserving electric dipole ampli-
tudes. As a first step towards this goal, we consider here
the application of all-order methods to the ground state
of helium.

Generally, all-order methods fail to account for all
terms of a given order in the perturbation expansion. In
the specia1 case of the ground state of the helium atom,
however, the presence of only two electrons allows one to
formulate and solve exact all-order equations. We treat
the ground state in two different ways; one treatment is
based on nuclear Coulomb-field orbitals and the second
treatment is based on Hartree-Fock (HF) orbitals. Both
calculations are relativistic; they may be considered as ex-
tensions of recent all-order work by Lindroth. The re-
sults of the present calculations can be compared with
the highly accurate calculations of the nonrelativistic
ground-state energy of helium corrected to order (Za)

a.u. for relativistic effects. Such a comparison provides
a stringent test of the numerical methods used in the
present approach to the many-body problem. We find
that our methods are powerful enough to recover seven
digits of the ground-state energy for neutral helium;
several more digits could be added if desired. We stress
that the most accurate calculations so far carried out on
this state are the nonrelativistic variational calculations
mentioned above. The purpose of this work is to show
that all-order methods can also be highly accurate; more-
over, all-order methods can be formulated to account for
relativistic effects automatically. Furthermore, although
variational techniques work very well for two-electron
systems, the all-order approach described here can in
principle be applied to more complicated atoms. In the
terminology of Lindgren and Morrison, the approach
described here generalizes to the pair approximation, in
which effects associated with single and double excita-
tions from the core are summed to all orders in perturba-
tion theory. While no work has been done on atoms as
large as cesium or thallium, there is considerable evi-
dence from nonrelativistic calculations on smaller atoms
and molecules that terms omitted in this approximation
are a small fraction of the total correlation. For example,
Bunge finds for Be that triple excitations constitute
1.1% of correlation, while quadruple excitations (dom-
inated by coupled cluster terms) co-nstitute 3.4% of corre-
lation. If these terms in cesium and thallium are also rel-
atively small, it should be possible to account for them to
sufficient accuracy using only low orders of perturbation
theory (coupled cluster terms can also be incorporated in
the pair approximation and iterated to higher order if
necessary), and the use of all-order methods may then
provide the best way to treat the structure of many-
electron atoms.

Before turning to a description of the calculation, we
note the present treatment of the energy is incomplete in
several respects. Specifically, we neglect finite nuclear
size effects, mass polarization and reduced mass effects,
radiative corrections, and finally we neglect the Breit in-
teraction; each nf these terms can be treated as perturba-
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tions later, if desired. With these approximations, the
ground-state energy is known to be —2.90385649 a.u.
We obtain this value by adding to the highly accurate
nonrelativistic energy, E„,„„~= —2.903 724 38 a.u. ,
those relativistic corrections of order (Za) not associat-
ed with the Breit interaction, AE„~ = —0.000 132 11
a.u. , where 4E„, is the electrostatic energy. Our calcula-
tions should in fact be expected to deviate from this value
after some number of digits since our calculations also in-
clude higher-order relativistic effects starting with correc-
tions of order (Za) a.u. For neutral helium, however,
these higher-order relativistic corrections are very small;
indeed they are below the level of sensitivity of the
present calculations. Therefore, in the subsequent discus-
sion, we shall for simplicity ignore the fact that our ap-
proach implicitly contains contributions of higher order
than (Za) a.u. For the calculation based on Coulomb-
field orbitals, the lowest-order energy is —4.00021303
a.u. , and the first-order energy is 1.25009806 a.u. Thus
in the present calculation we should expect to obtain—0. 153 741 53 a.u. for the Coulomb-field correlation en-
ergy (we shall use the term correlation energy to refer to
all corrections of second and higher order in whatever
perturbation series is under discussion). For the calcula-
tion based on Hartree-Fock orbitals the HF energy is—2. 861 813 34 a.u. , so that here the correlation energy is
expected to be —0.042 043 15 a.u.

Since one novel feature of the present work is the com-
bination of relativity with correlation, it is of interest to
examine what fraction of these correlation energies are
relativistic in origin. We summarize the situation in
Table I, where the nonrelativistic MBPT energies are
given together with the corresponding (electrostatic) rela-
tivistic contributions for both potentials. From this table
we see how the order (Za) a.u. relativistic correction
mentioned above is apportioned between the correlation
energy and the zeroth and first-order energy for each po-
tential. It should be borne in mind that the numerical ac-
curacy of the present calculation is of order 1 or 2 in the
sixth decimal place. Thus, while there is a detectable rel-

ativistic contribution of —0.000017 a.u. to the Coulomb-
field correlation energy, the relativistic contribution to
the HF correlation energy is just below the limit of detec-
tability at the present level of precision.

Our point of departure for the development of the all-
order treatment of the ground-state of helium is the rela-
tivistic "no-pair" Hamiltonian

H =Ho+ Vr

Ho= gh, ,

h =ca p+(P —1)c + V„„,(r)+ U(r),
1

VI g A++
(

~

A++ —g A+ U(r, )A+ .
I)J I

In Eq. (3), U(r) is the central potential introduced in the
model Hamiltonian Ho to account approximately for the
electron-electron interaction. This potential is subtracted
out again from the interaction potential VI in Eq. (4).
The positive energy projection operators A++ and A+ in
Eq. (4) refer to states calculated in the potential U(r).
These projection operators are introduced to avoid the
well-known difhculty of continuum dissolution associat-
ed with relativistic many-body calculations. Negative en-
ergy states do play a role in calculations of the energy
shift, but contributions from negative energy states enter
in order a a.u. ; they are associated with the Lamb shift,
and can be treated separately.

For the first of our two calculations we choose U(r) =0
and base our calculations on Dirac-Coulomb orbitals. In
the second calculation we choose U(r) = VH„(r), the
Dirac-Hartree-Fock potential,

In Eq. (5) and later we adopt the convention that the
letters at the first part of the alphabet, a, b, c, . . . ,
represent occupied core states; those near the middle of

TABLE I ~ Comparison of nonrelativistic MBPT contributions with the corresponding relativistic
electrostatic contributions. All values are in a.u. Note that (i) the correlation energies given are de-
duced by subtracting the lower-order contributions from the total, (ii) the totals are taken from the
sources given in the Introduction, and that (iii) in obtaining the total relativistic energy, we have disre-
garded contributions of order (Za) a.u. and higher, which are in principle included in relativistic
MBPT.

Zeroth order
First order
Correlation

E„)
Coulomb potential

—4.000 213 03 —4.000 000 00
1.250 098 06 1.250 000 00—0.153 741 52 —0.153 724 38

Ere) Enonrel

—0.000 213 03
0.000 098 06

—0.000 017 14

Total —2.903 856 49 —2.903 724 38 —0.000 132 11

HF energy
Correlation

Hartree-Fock potential
—2.861 813 34 —2.861 679 99
—0.042 043 15 —0.042 044 39

—0.000 133 35
0.000 001 24

Total —2.903 856 49 —2.903 724 38 —0.000 132 11
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the alphabet, i,j,k, . . . , designate arbitrary states; while
those later in the alphabet, r, s, t, . . . , represent unoccu-
pied excited states. The quantity g; -kt =g; kt

—
g; tk, where

the Coulomb matrix element g;Jkt is given by

g;,ki= f f d r d r', u;(r)u„(r)1

and u, (r) is a single-particle orbital.

COULOMB POTENTIAL CALCULATION

The first method we describe is based on orbitals deter-
mined in the nuclear Coulomb potential with U(r)=0.
The corrections to the ground-state energy from the
lowest four orders of MBPT are shown in Table II. It is
noteworthy that for this particularly simple system the
convergence of perturbation theory is relatively rapid, so
that at fourth order there is agreement with the known
result at the 10-ppm level.

To organize the perturbation expansion so that all or-
ders can be accounted for, we write

~i + j ~a b )Pijab Tgijab X gijklPklab +~ Pijab
kl

z P gabab g Pijabgabij (10)
a, b a, b, i,j

It is convenient to rewrite the Coulomb matrix elements
in terms of Slater-type integrals. To this end we set

g,,« ——g XL(ijkl)Jr. (ijkl),
L =0

both be 1s states; that is the meaning of the prime in Eq.
(8b).

For a general atom, Eq. (7) would be incomplete since
one could, for example, include a wave function correc-
tion ~3c &, in which three destruction operators were fol-
lowed by three creation operators. However, since ~0c &

for helium contains only two electrons, all such terms
vanish in the case considered here and this representation
is complete. If we define E =Ep+ AE, then
(Ho+ Vl)~%&=E~C'& reduces to the following set of
equations:

(7)
where

where

~oc & =a~„,a~„, ~0&

and

(Sa)
L J

X M mk —mi

L

M m —mt

j.+j . +L+m, . + m. +M
JL(ijkl = —1

M

(12a)

~2c &
= g' p, ,ba, aa, ab ~"OC &

. .
a, b, i,j

(Sb) and

The operators a ' and a refer to the creation and destruc-
tion of Dirac-Coulomb states, N is a normalization fac-
tor, and 0 & is the vacuum, so that Oc & describes a rath-
er inaccurate starting wave function, with binding energy
Ep =26'] = —4.000 2 1 3 03 a.u. This inaccuracy is reme-
died by including ~2c &. We use a notation appropriate to
a general closed shell system; in our case the sum over a
and b ranges over only is) and ls g. Thus the destruc-
tion operators empty the core, which is then repopu1ated
with states i and j, with the exception that i and j cannot

XL (ij kl ) = (
—1 ) Cl (ik )CL (j 1 )R L (ij kl ) . (12b)

CL (ij )=( —1) ' Q(2j, +1)Q(2j +1)

X 0 i i 11(l &1 &L)
2 2

R~(ijkl)= f f dr dr'r
& /r &+'[g, (r)gk(r)+f, (r)fk(r)]

(13a)

In Eq. (12b) we have introduced the angular factors CI
and the Slater integrals RL which are defined by

X [gj(r')gi(r')+ fj(r')fi(r')], (13b)

TABLE II. Low-order corrections to the ground-state energy
of helium from many-body perturbation theory from calcula-
tions based on Coulomb orbitals and for calculations based on
Hartree-Fock orbitals (in units of a.u. ).

TABLE III. Partial-wave contributions to the all-order
Coulomb-field correlation energy (in units of a.u. ).

AE(L)
Tel m

E

E3

Esum

Coulomb

—4.000 21
1.250 10

—0.157 68
0.004 34 (NR)'

—0.00021 (NR)

—2.903 66

Hartree-Fock

—1.835 98
—1.025 83
—0.037 37
—0.003 77 (NR)
—0.00085 (NR)

—2.903 80

—0.129 049 6
—0.151 423 9
—0.153 079 6
—0.153 461 1
—0.153 595 4
—0.153 655 5
—0.153 686 5

—0.129 049 6
—0.022 374 3(1)
—0.001 655 7(1)
—0.000 381 5(2)
—0.000 134 4(2)
—0.000 060 1(1)
—0.000 031 0(1)

'The nonrelativistic (NR) values are taken from Ref. 12.
—0.153 741(1)
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where H equals 1 if the sum of its three arguments is even
and zero if the sum is odd. The functions g(r) and f (r)
are the upper and lower components of the radial Dirac
wave functions. In order for ~4) to have the same angu-
lar momentum as ~0c ), it is necessary that p has an angu-
lar momentum expansion of the same form as that of g.
We may therefore write

p&lab
= g Sl (ijab)JI (ijab) .

L=0
(14)

Substituting Eq. (14) into the basic equation, Eq. (9), and
making use of the JLV4 theorem (Jucys-Levinson-
Vanagus theorem 4, as defined by Lindgren and Mor-
rison ) we find

1 Jb Jj L J J L
r (ijab)= Xl (ijab) —,

' g—g (2L +1)(—1) '
2 ei+Ei E& eg) 1 2 Jl 1 2 Jk

Xi (ijkl)Si (klab)

+E. 6g Eb 6; +6 Ea Eb

TABLE IV. Alternative partial-wave contributions to the
all-order Coulomb field correlation energy compared with the
nonrelativistic results of Ref. 10 (in units of a.u. ).

Ere'

—2.879 165
—2.900 650
—2.902 901

Enonrel

—2.879 029
—2.900 516
—2.902 767

While it would be possible to absorb the last term by
rearranging the denominators, it was found that doing so
caused the iterative scheme to diverge. The divergence
can be traced to the large value of AE. The numerical
method used to solve this set of coupled equations was
based on the use of the finite basis sets described in Ref.
9. Thirty-five positive energy states were generated from
piecewise quartic polynomials. The basis set was chosen
to reproduce the highly accurate second-order calcula-

tion with an error of less than 10 a.u. , which was the
accuracy chosen for this application. The last ten states
for s, p, and d orbitals, and the last five for f and higher
orbitals were not summed over, as this approximation
affected the result only in order 10 a.u. Equation (15)
was then solved iteratively until the seventh digit past the
decimal place was stable. The iteration solution required
on the order of ten passes. This procedure was carried
out for angular momentum cutoffs from 0 to 6. The same
cutoff was applied to all angular momenta in the prob-
lem, namely, L, I, , and 12, with all J values allowed by the
triangle relation included. The resulting values of hE are
presented in Table III. The calculations were performed
on a CRAY XMP/48, and took about three cpu hours.

We note that the L=O result is in excellent agreement
with the calculation of Lindroth, which involved the use
of very different numerical techniques. To extrapolate
the cutoff angular momentum to infinity, the change in
AE from adding one more partial wave is tabulated in the
second column of Table II. This change for L=3, 4, 5,
and 6 is then fitted to an expression of the form
2/L +B/L +C/L . This form was chosen because it
reproduces with very high accuracy the L=7, 8, 9, and
10 partial waves when used in the same way for the par-
tial wave expansion of the second order energy. If A, 8,

I

and C are fitted with the L=3, 4, and 5 data, and the
sum carried out to L = 1000, one finds AE(3,4,5)
= —0. 153 7402 a.u. If instead the L=4, 5, and 6 result
are used, then AE(4, 5,6) = —0. 153 740 9 a.u. Adding in a
term D/L gives finally b,E(3,4,5,6) = —0. 153 7410 a.u.
From these values together with an estimated basis set
truncation error, we assign an overall estimate of one in
the sixth digit past the decimal place, and quote as the
final answer for the Coulomb-field calculation

Ec,„i, i,
= —2.903 856( 1 ) a. u. , (16)

in agreement with the expected result.
The method of cutting off the angular momentum de-

scribed above is not unique, and in fact it is more com-
mon not to restrict the summations over L, 1„and Iz, re-
stricting instead only the angular momenta of the inter-
mediate states. In order to compare with previous nonre-
lativistic work' we have used this second cutoff for
L,„=O, 1, and 2. This cutoff was also used for the fol-
lowing HF calculation; it is described in more detail in
that discussion. The relativistic and nonrelativistic re-
sults are compared in Table IV. The results are in close
agreement, with the difference being consistent with the
expected relativistic effects.

CALCULATION BASED
ON HARTREE-FOCK ORBITALS

~r ~o+ ~2

I'0 —
—, X gabab

ab

rs

i,j,k, l

(17)

(18a)

(18b)

where the operators inside the colons (::)are arranged in
normal order with respect to the core, so that core
creation operators and excited state annihilation opera-
tors lie to the right of core annihilation and excited state
creation operators. For the Hartree-Fock potential, the
interaction Hamiltonian has a zero-body part Vo, which
is just the first-order energy shift, and a two-body part

In the second calculation we choose U(r)= VH„and
put the interaction Hamiltonian in normal order,
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l% & =N 1+ g p„,a„a, + —,
' g p„„ba„a,aba, lOC &,

r, s, a, br, a

Vz, but no one-body part. Owing to the positive energy
projection operators in Eq. (4), the sums over excited
states i, j, k, and l are restricted to positive energy states
only.

To obtain all-order equations, we write the no-pair
wave function as

z=(o, lH, + v, le&yN

E(o&+E(i i+ ~E

E'"=2m is

E'"=V, ,

gabrsprsab
a, b, r, s

(20)

(21a)

(21b)

(21c)

(19)

where N is a normalizing factor and lOC & is the ls
ground state, now formed from Hartree-Fock orbitals
and having total zeroth-order energy 2@i,= —1.83598137 a.u. By writing the wave function in
this way, we consider all possible single and double exci-
tations out of the core, and thereby ensure a complete
treatment of helium within the context of the no-pair ap-
proximation. However, with only a slight modification,
the equations we derive will also be useful for a general
closed-shell atom; we shall thus keep the indices a and b
for core states completely general.

One readily finds for the total energy of the atom,

(Eo+ f&E Ho }I
+ &

= v2 I

sit
& . (22)

We now substitute the expressions (18)—(21) into Eq. (22),
normally order each side with respect to the core, and
equate coefficients of ar a, and ar a, aba, on each side, ob-
taining

where Vo is given by Eq. (18a). The sum of the zero- and
first-order energies is just the Hartree-Fock energy, and
for helium has the value EH&= —2. 8618133 a.u. The
remaining contribution 6E is the correlation energy,
equal to the sum of all second- and higher-order contri-
butions to the energy. The no-pair equation can now be
written as

(~a +~+ r )Pra g grbaspsb + X grbstpstab X gbcasprsbc (23a)
b, s b, s, t b, c, s

a + b +~+ ~r ~s )Prsab grsab X gcdabprscd g grstuptuab
c& d

Xg-bp Xg- bP. + X&-bP. +(~ »" (23b)

The final term in the equation indicates that the term in large parentheses is to be repeated with the specified inter-
change of indices. As before, we have used the tilde notation to denote the inclusion of exchange

Pabcd =Pabcd Pabdc

Equations (23) are not unique, because the equation of coefficients of a„"a,aba, can be made in more than one way.
For example, upon substituting (19) into (22), one obtains terms of the form

r, s, a, b

(ea+&b+~& &r &s)prsab&r~s&b~, l0c&= ' ' + X Qgcstbprt c& &s&b& + ' ' ' l0c &

rs, a, b c, t

(25)

leading to the identification

(ea+eb+5E —e„—E, }P„sab

+ gg„bP. ..+
c, t

(26)

However, one could equally interchange the summation
variables r and s on the right-hand side of (25), anticom-
mute ar and a, , and then equate COefBCientS Of ar a, abaQ,
obtaining

(e, + b+5E —e„—e, )p„„b

rt gcrtbpstac +
c, t

In general, any linear combination of the two right-hand
side terms (26) and (27) with total weight unity is permis-
sible. These diFerent equations- will lead to numerically

diFerent results for the pair coefFicients p„„b,but all phys-
ical quantities, such as the correlation energy 5E, will
turn out the same.

As before, we perform sums over magnetic substates
analytically, and reduce (23a) and (23b) to a set of equa-
tions involving radial coefficients and angular factors;
these are given in Appendix A.

The approach described above is essentially the
configuration-interaction method, being completely
equivalent to a diagonalization of the no-pair Hamiltoni-
an in the subspace of all possible single and double substi-
tutions in the ground-state configuration. This procedure
is exact only for two-electron systems, but may be expect-
ed to give a good approximation for closed-shell systems
with more electrons. As discussed by Lindgren and Mor-
rison, however, the 6E terms on the left-hand sides of
(32a) and (23b) generate unphysical "unlinked" diagrams,
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TABLE V. Partial-wave contributions to the all-order HF
correlation energy (in units of a.u. ).

L

—0.010526 2
—0.038 836 9
—0.041 086 8
—0.041 640 7
—0.041 838 0
—0.041 924 9
—0.041 968 8
—0.041 993 3

—0.042 042(2)

6E(L)
—0.010 526 2(2)
—0.028 3107(2)
—0.002 249 9(3)
—0.000 553 9(3)
—0.000 197 3(4)
—0.000 087 0(5)
—0.000043 9(8)
—0.000 024 5(9)

and are in general better omitted for non-helium-like sys-
tems. With this slight modification, Eqs. (23a), (23b), and
(21c) constitute the basic pair approximation given by
Lindgren and Morrison. More generally, the 5E terms
can be replaced by coupled-cluster terms. For the special
case of helium, however, the 5E terms should be included
because this renders the treatment exact. An alternative
exact formulation for helium is a complete coupled-
cluster calculation up to pairs.

A treatment analogous to that given here can also be
given for the nonrelativistic Schrodinger equation for
helium. In this case, the Coulomb potential formalism
and the HF potential formalism (23a) and (23b) are both
exact and completely equivalent to one another. For the
no-pair equation, however, we would not expect an exact
identity between the two formalisms, since the positive
energy states in each formalism are defined in different
potentials. However, at the level of accuracy of the
present calculation we do not observe any discrepancy
from the use of the two approaches.

We have written a code to solve the relativistic coupled
pair equations for a general closed-shell atom, and can re-
gard the present calculation as a first application of this
code on the simplest possible case. These equations also
constitute the core sector of the equations for a one-
valence-electron atom, so this application is relevant also
to our ultimate goal of applying the method to cesium
and thallium. For helium, we make the trivial adjust-
ment to the general code of including the 5E term in the
energy factor on the left-hand side.

The basis set chosen for this calculation involved 30
basis functions, and is thus somewhat smaller than that
used for the Coulomb calculation: for this reason a larger
error is assigned to the final result. Our approach to the
partial-wave extrapolation is quite similar to that used for
the Coulomb potential, although there are differences.
At a given level of calculation, we now include all excited
states with -orbital angular momentum l ~L „,and al-
low all possible values of L, l, , and l2 (see Appendix A)
consistent with the selection rules. For example, for
L „=1,we include s, p, &z, and p3 jp excited states, and
the following angular momentum channels for the pair
coefficients: 1s ~s (L =0), 1s ~s (L= 1), and
ls ~p, /2(L =0), Is ~p, /2(L =1), ls ~p3/p(L =1),
and Is ~p3/2(L =2). A converged solution is obtained
for each of L, ,„=0,1,2,3, . . . , 7, and the results extrapo-

EH& = —2.903 855(2) a. u. (28)

in agreement with the result of the Coulomb-field calcula-
tion.

CONCLUSIONS

We have shown in the above that the use of all-order
methods allows one, regardless of starting potential, to
reproduce the ground-state energy of helium to seven di-
gits. That energy, as explained in the Introduction, is a
theoretical one, and various perturbations must be added
to it before comparing with experiment. The present
method can also be applied to more realistic calculations
in which the corrections described previously are includ-
ed as perturbations. " Since the pair functions are saved
after convergence, they can be used to evaluate first-order
matrix elements of the Breit operator or of the mass-
polarization operator. As with the energy calculation,
there will be dependence on the maximum angular
momentum used in the pair functions, that can again be
extrapolated with the techniques used above. However,
since fewer digits are required of these small corrections,
a relatively small L,„should suSce. It is an open ques-
tion as to whether the pair functions can be used in the
Lamb shift calculation, though we note that part of the
Lamb-shift calculation reduces to evaluating matrix ele-
ments of delta functions.

A possible extension of this work would be to treat ex-
cited states of helium: only a slight modification of the
above formalism is required. Therefore in principle the
work reported here can be extended to high-accuracy cal-
culations of arbitrary excited states of helium. However,
as noted in the Introduction, our main goal is the calcula-
tion of properties of heavy atoms. In these much more
complex systems, accuracies of even one percent are al-
ready quite good. In this paper we have shown that all-
order calculations can be carried out with far higher nu-
merical accuracy. The focus of work on heavy atoms,
once these methods have been set up and applied to them,
must be the development of techniques to evaluate terms
in the perturbation expansion missed by the all-order
methods. If they are either negligible or enter only in low
orders of perturbation theory, then there is a real possi-
bility of carrying out calculations for heavy atoms with
accuracies approaching those of the present work.
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APPENDIX: ANGULAR REDUCTION
OF HF PAIR EQUATION

p„„b= g St (rsab)Jt (rsab),
L=0

(Al)

p„,b
= g St (rsab) JL (rsab),

L=0
(A2)

As a preliminary, we note that both the pair
coefficients p and their antisymmetrized counterparts p
have angular expansions analogous to Eqs. (11)and (14),

oo Js Jb L
SL (rsab) =SL (rsab)+ [L] g SL.(srab) ' .

L'=0 Jr Jg

(A4)

[L]—:2L + 1 . (A3)

Here JL (rsab), given by Eq. (12a), contains the depen-
dence on magnetic quantum numbers, and the "radial"
coefficients SL (rsab) are the quantities solved for numeri-
cally. We say that a pair coefficient SL.(rsab) corre-
sponds to the channel ab ~a„~,(L =L'); for each chan-
nel, the pair coefficients form an n, Xn, matrix, where n,
is the number of excited states with angular momentum

included in the basis set. For single excitation
coefficients, we require

p„, =S(ra)5(J'„,J', )5(m„m, )

where S(ra) is independent of magnetic quantum num-
bers.

We can now substitute Eqs. (Al), (A2), and (A4) into
Eqs. (23a) and (23b) and project out JL(rsab) using the
JLV4 theorem, as described for the Coulomb equation.
We find

(e, +5E —e„)$(ra)= g Q[j, ]l[j,]5(j„j„)5(jb,j, )Xo(rbas)S(sb)
s, b

jb +j„+I
&+ g ( 1)" " '

. 5(j„j„)5(j„,j, )X, (bras)S(sb)
s, b, l) Jr

b, s, t, 11,12

( 1
)ig+Jr +Js+zr 1

5(j„j„)5(l„l2 )X, ( rbst )S, (stab )'2

( 1) ' ' " . 5(j„j„)5(l,, lz)X, (bcas)$, (rsbc),
b, c,s, I &, 12

(A5)

(e. + eh +5E —e„—e, )SL (rsab)

l2 L I,
=XL (rsab)+ g (

—1) ' ' '[L] ' .
c, d, I &, 12

Ja Jc Jr

l2 L
'Xt (cdab)$& (rscd)

Jb Jd Js '2

+ g (
—1) ' " '[L]'.

t, u, I l, 12
Ja

L 12 I ) L /2
'X& (rstu)St (tuab)

Jt Jr Jb Ju Js 2

g 5(j„j,)5(l &, L )Xt (rstb)$ (ta) —g 5(j„j„)5(I &, L)Xt (csab)$ (rc)
t, 11

j, +j, +L
( —1) ' '

(5l, , lz ) (5l, , L) X(tcstb)$& (rtac)
c, t, I l, 12

+ +L 2 Js Jbl
( —1) ' ' '

I
. . '5(12,L)Xt (sctb)St (rtac) +(r~s, a~b)

, t, I 1, 12
2

(A6)
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