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We present a new coordinate-space model of spherically averaged exchange-hole functions in in-

homogeneous systems that depends on local values of the density and its gradient and Laplacian,
and also the kinetic energy density. Our model is completely nonempirical, incorporates the
uniform-density electron gas and hydrogenic atom limits, and yields the proper 1lr asymptotic ex-
change potential in finite systems. Comparisons of model exchange energies, holes, and potentials
with exact Hartree-Fock results in selected atoms are very encouraging.

I. INTRODUCTION

The Hartree-Fock approximation is the foundation of
theoretical atomic, molecular, and solid-state physics.
Unfortunately, its most interesting feature, the Hartree-
Fock exchange energy, is rather unwieldy from a compu-
tational point of view. Consequently, a long history of
simple approximations to the Hartree-Fock exchange en-
ergy has developed, beginning with the early work of
Dirac' and Slater, and progressing to current efforts (see,
for example, Ref. 3 and references therein) in the frame-
work of the so-called "density-functional" theory.

Reasonably accurate exchange approximations depend-
ing only on local properties of a system are desirable, and
the simplest such approximation is the well-known and
popular "local-density" (or, more precisely, local spin
density) approximation, hereafter referred to as the LDA.
The LDA is based on a model of the exchange or Fermi
"hole" function inspired by the uniform-density electron
gas. Though the LDA works surprisingly well overall, it
has recently been emphasized by Sahni et al. and by
Ziegler and Tschinke that the uniform gas model fails to
reproduce, even qualitatively, important features of exact
spherically averaged exchange holes in atomic systems.

Corrections to the uniform gas model have been pro-
posed by the present author, by Perdew, and most re-
cently by Ziegler and Tschinke. Each of these models
suffers inadequacies, however, which are eliminated in
the present work. Our own earlier model of Ref. 7, for
instance, incorrectly allows negative exchange-hole
values, while, on the other hand, the models of Perdew
and of Ziegler and Tschinke are analytically discontinu-
ous.

In the present work we introduce a new, analytically
continuous exchange-hole model that satisfies all (we
think) currently known constraints on exchange-hole

functions, including non-negativity, short-range behavior,
and normalization constraints. Our model also gives ex-
act results for both the uniform electron gas and hydro-
genic atom limits, and yields the correct 1/r asymptotic
dependence of the exchange potential in finite systems.
Moreover, our model is completely nonempirical and yet
generates exchange energies in very good agreement with
exact Hartree-Fock results in typical atomic systems.

In Sec. II we define the so-called exchange or Fermi
hole function on which Hartree-Fock theory is based and
then summarize its properties. Much of this discussion
recalls previously published work but is repeated here
for convenience. In Sec. III we consider the special case
of the hydrogenic atom and derive an explicit expression
for the spherically averaged exchange-hole function in
this simple but interesting case. The resulting hydrogenic
expression is then used as a model for hole functions in
arbitrary inhomogeneous systems. Unfortunately, we do
not quite attain the correct uniform gas limit, but a sim-
ple adjustment of our model described in Sec. IV satisfac-
torily resolves this problem. In Sec. V model exchange
holes are compared with their exact spherically averaged
counterparts for atoms Ne and Ar at reference points
reflecting a wide spectrum of qualitative behavior. Also,
plots of exchange potentials for atoms He, Ne, and Ar
are presented. Finally, in Sec. VI, we conclude with com-
ments on advantages and disadvantages of the present
model. Note that atomic units are employed throughout
this paper.

II. EXCHANGE ENERGIES, HOLES,
AND POTENTIALS

The material in this section is well known and has been
discussed previously in Ref. 7. For convenience, howev-
er, the salient properties of Hartree-Fock exchange ener-
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where Ex is expressible in the form

Z.= ,
'—f—f ' ' dld2

r12
(2)

and p, (1,2) is the one-body spin-density matrix of the
Hartree-Fock determinant:

gies, holes, and potentials are reviewed in the following
paragraphs.

The total Hartree-Fock exchange energy Ex consists of
two distinct parts, one for each spin o. , as follows:

Ex= +Ex

Notice, also, that the exchange potential Ux con-
sidered in this paper is not the variational potential

5Ex
3' o.

pa

appearing in the single-particle "Kohn-Sham" equation
of density-functional theory. We are here concerned
with exchange holes and exchange energies only, and wi11
consider variational self-consistency in future work.

The exchange hole in the important special case of the
uniform-density or "homogeneous" electron gas is spheri-
cally symmetric and reference point independent and is
given by

p, (1,2)= g tt,*(1)Q;(2), (3)
j, (kFs)p"' (s) =9p
(kFs)

(1 la)

with summation over orbitals of o. spin. It is useful for
purposes of physical interpretation to rewrite Eq. (2) in
the form

where j &(x) is the spherical Bessel function of first order,
s denotes distance from the reference point, and kF is the
Fermi momentum

P (1)Px (1 2)
E = —-' d1d2,

kF=(6~ p )' ' (1 lb)

where p (1) is the total o.-spin density at "reference"
point 1, and px (1,2) is called the exchange or Fermi
hole function. This exchange-hole function is defined by

ip .(1,2) I'
Sx.(1 2)=

p 1 U LDA 3
xo. 4

1/3
P~ (12a)

If the spherica11y averaged exchange hole at any given
reference point r in an inhomogeneous system is modeled
by the above uniform gas expression, with the local value
of p (r) inserted in Eq. (11), then the following so-called
local-density approximation is obtained:

1/3

and we note that its value is always non-negatiue.
In addition to non-negativity, further hole properties

are easily deduced. From the definitions of Eqs. (3) and
(5), its value at the reference point 1 is given by

1/3

ELDA

2 4~ f 4/3d 3r (12b)

px (1,1)=p (1) (6)

and, from the orthonormality of the Hartree-Fock orbit-
als, we deduce the following normalization condition:

px 1,2 Gj2=1 (7)

at any reference point. These simple conditions are, in
fact, quite restrictive, accounting for the remarkable suc-
cess of approximate exchange theories, such as the Xo. or
Hartree-Fock-Slater theory, which employ them.

The Coulomb potential generated by the exchange hole
at its reference point 1,

which is the basis of the previously mentioned Hartree-
Fock-Slater or Xa exchange theory. The LDA gives
reasonably good atomic exchange energies. In Table I,
for instance, we present total exchange energies of the
noble-gas atoms He through Rn and find that the LDA
gives a rms deviation from exact Hartree-Fock results
(obtained from the orbitals of Clementi and Roetti' and
McLean and McLean") of only 8%, quite respectable for
such a simple theory.

TABLE I. Exchange energies of noble-gas atoms (a.u. ).

Sx.(1 2)
Ux (1)=—f d2,

12

Atom Exact LDA'
This work

y=1
This work

y =0.80

is hereafter referred to as the exchange potential, and is
related to the total exchange energy by

Ex.= ,' fV.Ux.—d'r .

Observe that the exchange potential and hence the ex-
change energy depends only on the spherical average of
the exchange hole about the reference point 1, and we
shall therefore conveniently and without loss of rigor re-
strict ourselves to spherically symmetric exchange-hole
models.

He
Ne
Ar
Kr
Xe
Rn

—1.026
—12.11
—30.19
—93.89

—179.2
—387.5

—0.884
—11.03
—27.86
—88.62

—170.6
—373.0

—1.039
—12.19
—30.09
—92.88

—176,4
—380.0

8.2% 1.3%

'LDA: local-density approximation.
5: rms relative deviation from exact results.

—1.039
—12.33
—30.55
—94.77

—180.3
—389.2

1.1%
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However, despite the success of the LDA in estimating
energies, the uniform gas exchange hole itself fares very
poorly in a reference point by reference point comparison
with exact spherically averaged hole functions in typical
atomic systems (see Sahni et al. or Ziegler and
Tschinke ). In fact, the discrepancies are quite serious,
with important qualitative features such as nonlocal max-
ima at s&0 noticeably absent from the LDA model. Im-
proved models which better reproduce the observed
features of exact spherically averaged atomic hole func-
tions are therefore required.

Improved coordinate-space models have indeed been
proposed by the present author, by Perdew, and by
Ziegler and Tschinke. In particular, our previous model
of Ref. 7 is founded on the following Taylor expansion of
the exact spherically averaged exchange hole near the
reference point:

px (r, s)=p + —,'(V p 2yD —)s + (13a)

where the arguments (r, s) denote spherical average on a
shell of radius s about the reference point r and where

1 (Vp )
D

4 p
(13b)

and ~ is the positive definite kinetic energy density
defined by

(13c)

A parameter y with nominal value y=1 is included in
Eq. (13a) for later use (see Sec. IV). The model of the
present work relies largely on the second-order term of
Eq. (13a), as did its predecessor of Ref. 7, and is described
in Sec. III.

where r denotes distance of the reference point from the
nucleus (note that its angular position is irrelevant), s
denotes distance from the reference point itself, and
~r —s

~
is the absolute value of their difference.

Though Eq. (16) has physical significance as the ex-
change hole of a hydrogenic atom, we shall view this ex-
pression somewhat more abstractly in the present work.
Let us view Eq. (16) as a purely mathematical object,
namely, as a function of the independent variable s de-
pending parametrically on two constants a and r. To em-
phasize this purely mathematical interpretation, we write

px(a, b;s) = [(a~b —s~+1)e
16m.bs

—(a~b+s~+I)e ~l +
1 (17)

The second-order term yields the additional constraint

where a and b are now parameters assumed to have posi-
tive value only and not to be accorded any physical
significance. The original definition of Eq. (14) ensures
non-negativity and also unit normalization in the sense

4mfp. x(a, b;s)s ds =1

for arbitrary positive a and b. Furthermore, as we shall
see below, it is possible to force Eq. (17) to reproduce the
second-order Taylor expansion of Eq. (13) at any refer-
ence point in any inhomogeneous system by suitable
choice of a and b. Therefore a very interesting, general
purpose exchange model is at hand.

Imposing the condition of Eq. (6), corresponding to the
zeroth-order Taylor term, yields the following constraint
ona and b:

a3e "=8~p

III. THE PRESENT MODEL a b —2a =6bQ Ip (20a)

Conventional treatments of exchange holes begin with
the uniform electron gas as the prototypical system.
Here, however, we take a rather different approach and
begin with the special case of the hydrogenic atom. The
spherically averaged exchange-hole function in this sim-

ple one-electron case is given by

where

Q = ,'(V p 2yD —) . — (20b)

Then, defining x =ab, we find after fairly simple algebra
that x satisfies the nonlinear one-dimensional (1D) equa-
tion

1
px(r, s) = pH(r+s)dQ, ,

4m
(14) —2x /3

(x —2)

5/3
2 ~2/3 (21)

where dQ, denotes integration on a spherical shell of ra-
dius s centered at the reference point r and pH is the nor-
malized hydrogenic 1s orbital density,

CX
3

pH(r)= e
8~

after solution of which b is given by

b =3 x e

8'„ (22)

px(r, s ) = [(a~r —s ~+1)e
16mrs

—(a/r+s/+1)e '"+'] (16)

with e depending on nuclear charge Z in a manner that is
unimportant in the present work. Evaluation of the
spherical average in Eq. (14) is a straightforward exercise
with the following result:

and, of course, a is given by a =x ib. Inspection of Eq.
(21) reveals that a unique and positive root x exists under
all conditions, though a simple algebraic solution is not
possible. Nevertheless, we have implemented a reliable
and efficient Newton-Raphson algorithm' for automatic
solution of Eq. (21) for arbitrary input densities and gra-
dients.

With parameters a and b (or, equivalently, x and b)
thus suitably fixed at any given reference point, the ex-
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change potential of Eq. (g) is given by

Uz = —4w pz a, b;s s ds
0

= —(1 —e "—
—,'xe ")jb

and the total exchange energy is finally obtained by the
integration of Eq. (9) over all reference points. The
present model is clearly local in the sense that the ex-
change potential is completely determined by p, Vp,
'7 p, and ~ at the reference point only. Despite this lo-
cality, however, it can be shown that for reference points
r very far from a finite system, our theory yields the
asymptotic potential

asymptotically in any finite system as well, and therefore
the exact 1lr asymptotic behavior, Eq. (24), of the ex-
change potential is also unaffected by adjustment of y.
Our y parametrization has, in fact, been carefully
designed to preserve these important properties while re-
gaining the uniform gas potential limit.

1.0

1
lim UXtT 7 (24)

which is exactly the expected result (see, for example,
Ref. 3). This important feature of the present work will
be further discussed in Sec. V.

IV. UMFORM GAS LIMIT

Of some interest, of course, is the limit of the uniform
electron gas, obtained by setting Vp =0, V p =0, and

3 (6 2)2/3 5/3
CT 5 C7

(25)

The present model, given its hydrogenic roots, does not
yield the exact LDA exchange potential, Eq. (12a), in the
homogeneous limit. Rather, the correct p' functional
dependence is attained, but with a coefficient 2.6% too
small. The problem is graphically illustrated in Fig. 1(a),
where the LDA hole function of Eq. (11) is compared
with the homogeneous limit of the present model. We see
that our hydrogenic model gives a reasonable first ap-
proximation, but obviously cannot regenerate the LDA
exactly.

Fortunately, a minor adjustment of our theory recovers
the exact homogeneous potential at least. It is, in fact, for
this purpose that parameter y was introduced previously
in Eq. (13a). Though its "proper" value is, of course, uni-

ty, we find that the uniform gas exchange potential, Eq.
(12a), is precisely recovered by substitution of the slightly
smaller value

y=0. 80 .

The corresponding "adjusted" hole function is compared
with the LDA in Fig. 1(b), and we note even visually a
slight improvement with respect to the original y'=1
model of Fig. 1(a). This adjustment of y in effect com-
pensates for shape deficiencies of our hydrogenic model
in the homogeneous limit, while sacrificing some accura-
cy at short range (i.e., in the Taylor expansion near the
reference point). Detailed graphical analyses in Sec. V in-
dicate, however, that a reasonable compromise has been
achieved.

Notice, also, that y adjustment has no effect on hydro-
genic systems, nor any system locally dominated by the
spin-orbital of a single electron (i.e., localized spin pairs),
thanks to the fact that the function D of Eq. (13b) van-
ishes identically in one-electron systems. D vanishes
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FICx. 1. Uniform electron gas exchange hole (p =1).
exact; ———,present model. (a) y= l. (b) @=0.80.
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V. APPLICATION TO ATOMIC SYSTEMS

The present model has been applied to the calculation
of exchange energies of the noble- as

e artree-Fock orbitals of Clementi a
esults are presented

a e . ata for both the =1y = and the adjusted mod-
are included. In eit"ther case, the present mod-

e per orms significantly better than the LDA wit
deviations from exact exch
f

c exc ange energies of the order 1

or the present work and 8'f/ f h . oweo or t e LDA. Howe
a consequence of its in

owever, as
i s incorrect homogeneous limit, the

y = 1 model underestimates exact H t -Far ree- ock results in

the case of large Z (i.e. , atomic s si.e., atomic systems become increas-
y e ectron-gas-like" as atomic num

Th =0 80 mo el, though it slightl overestim
yp a ei te

In Figures 2(a) —2(e), exchanIn Fi —,exchange-hole functions
are graphically compared with their

spherically averag d H
several re res

e artree-Fock counterparts at
representative reference points in the Ne

These figures dis la a v
W' hit reference oint R

'
p ay a variety of qualitative f tea ures.

F'
p in exactly at the nucleus R =0

i a nuc ear cusp at s =0. Due to the hydro-
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0.012'

0
0, 008

~ 0.004

0.000

0 1 3 4 5

s (a.u. )

FIG. 3. Exchange hole in argon at R =2.48.
———,present model.

, exact;

reproduces this nonlocal maximum reasonably well.
Within the valence shell [R =0.65, Fig. 2(d)] Gaussian-
like behavior reappears, but, in the asymptotic region
[R = l.30, Fig. 2(e)], holes with a nonlocal maximum ulti-
mately prevail.

Also, we plot in Fig. 3 the exchange hole at reference
point R =2.48 in Ar to further illustrate the typical ap-
pearance of exchange-hole functions in asymptotic re-
gions. Figure 3 is dominated by a characteristic nonlocal
maximum attributable to the fact that the Fermi hole in a
finite system remains "attached" to the system as the
reference point is far removed (hence the 1/r behavior of
the asymptotic exchange potential). Generalization of
this interpretation to individual atomic shells accounts
for the nonlocal maximum in Fig. 2(c) as well. Also not-
able in Fig. 3 is considerable structure near the position
of the nucleus (i.e., s =2.48) which, though of minor im-
portance, can obviously not be reproduced by the present
model ~

Finally, exchange potentials U& are plotted in Figs.
4(a) —4(c) for the atoms He, Ne, and Ar, respectively.
Agreement between the potentials of the present model
(y =0.80) and exact potentials (obtained by numerical in-
tegration) is very good, even with respect to detailed shell
structure. Observe also that the correct 1/r asymptotic
limit of the present model is verified in these figures.

genic nature of the 1s core orbitals, the model and exact
holes are virtually indistinguishable. Within the 1s shell
[R =0.10, Fig. 2(b)] the exchange hole assumes a
Gaussian-like appearance, and, again, our model hole
matches the exact hole extremely well. In the region be-
tween core and valence shells [R =0.31, Fig. 2(c)] a new
feature which cannot be emulated by the LDA appears,
namely, a nonlocal maximum at s&0. The present model

VI. CONCLUSIONS

We have introduced in this paper a new, local
exchange-hole model with significant advantages over
previous coordinate-space models. Well-known con-
ditions on value at the reference point, normalization,
and non-negativity are all satisifed. Also, we obtain by
design both exact hydrogenic atom and exact uniform

00'
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E-i c
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—1.5 —1.0 —0, 5 0.0 0.5 1.0
Eog 10(r)

FIG. 4. Atomic exchange potentials. , exact; ———,present model. (a) He, (b) Ne, (c) Ar.
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electron gas exchange potentials in the case y=0. 80.
Short-range quadratic behavior of the exact spherically
averaged exchange-hole function is also reproduced (only
approximately, however, in the case y=0. 80) and thus
our model nicely simulates the various qualitative
features observed in Figs. 2 and 3. Finally, the proper
1/r asymptotic limit of the exchange potential in any
finite system is guaranteed.

A disadvantage of the present model is the role of the
kinetic energy density ~ which enters through the Tay-
lor expansion of Eq. (13). Therefore our theory is not ex-
plicitly a pure density-functional theory, and derivation
of the associated Kohn-Sham variational potential, to be
undertaken in future work, wiH be somewhat complicat-
ed. Furthermore, our theory is not expressible in simple
algebraic form since Eq. (21) has no elementary solution.
Nevertheless, our automatic Newton-Raphson solution

algorithm alleviates this problem. Finally, we note that

the present exchange energies of Table I are not as accu-
rate as obtained by recent semiempirical fits (see, for ex-
ample, Ref. 3). However, the present results are based on
a sound, completely nonempirical exchange-hole model,
and are therefore very satisfying from a theoretical per-
spective.

We hope that this work, along with analogous recent
work on coordinate-space correlation models, ' will in-
spire further efforts to elucidate the nature of exchange-
correlation hole functions in inhomogeneous systems.
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