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Multidimensional diNusion in random potentials
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It is shown that, in the long-time limit, d-dimensional diA'usion in a Gaussian random potential

has the logarithm of the average population ln(P) growing as t . The dimension d 4 is

critical. For d~4, (P) only grows as a power of t. Numerical simulations have confirmed this

result.

Diffusion in random media, where disorder involves
presence of traps and sources, has recently received con-
siderable attention. ' In this Rapid Communication, we
will discuss the following diN'usion equation in d-dimen-
sional space:

ep(r, t) Da'P(r, t) +gV( )p( )
|)r

r -gx and t r)r in Eq. (1), then

'P -"D 'P+~).V(g )p.
t)x2

Since (V(gx~) V(gx2)) h(x~ —x2)/g", we have V(gx)-V(x)/g / . The initial condition is now P(gx, O)
h(x)/g . In order to express the dependence of P(r, t)

on D and A, explicitly, we write it in the form
where D and k are constants. V(r) has a "white-noise"
Gaussian distribution, P(r, t)-g(r, t, Dz), (7)

(V(r)) -O, (V(r, ) V(r, )) -a(r, —r2).

The initial condition is P(r, O) -B(r). Equation (1) is re-
lated to many problems in physics, chemistry, and biolo-
gy.

' For example, we can consider that Eq. (1) de-
scribes a biological model. Then P(r, t)dr is the popula-
tion of the bacteria at position r and time t. Previous stud-
ies claimed that (P(r, t)), averaged over the Gaussian
random potential, has the behavior

where g is some unknown function. Then, from Eq. (6),
we have

g(r, t,D,X) g(r/g, t/rI, DrI/g, r)X/("/ )/g . (8)

By selecting ( (D/A, ) and r) =(D/X) /X, we
have

p(r t ) ~ () /D) 2d j(4 —
d)g(r(g/ ) 2/(4 —d)

t) (~/D)"" ",1, 1). (9)

ln(p(r, t)&
lim

t ~ t 2
(3)

The result in Eq. (3) was sufficient to trigger a debate.
For the one-dimensional version of Eq. (1), an exact

solution was recently derived. In the long-time limit,

i/z
X,

2

lim ln(P(O, t))/t "'-
g~ OO 4 D

(4)

This result was confirmed by numerical simulations.
Equation (4) contradicts the former result in Eq. (3).

In this Rapid Communication, we will argue that in d-
dimensional space (tI (4),

0.44 '

0.38

+0.32
egN 0~'

~ 0&4

0~c
0.% '

0.12

X
X

g)(xx X 5 X

XX
x&"

X
)(X

X
X

X
X

X

lim ln(p(r, t))/t' /'-(k'/D' /') xconst,
oo

(5) 0.08-

where const has a finite positive value. The magnitude of
this constant has also been estimated. Dimension d 4 is
critical. For tI ~ 4, (P(r, t)) only grows as fast as a power
of t. As shown in Figs. 1 and 2, extensive numerical simu-
lations confirm Eq. (5) quite well for d = 1 and 2.

Let us first consider a scaling transform. If we set
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FIG. l. One-dimensional numerical simulation. ln((P))/
(2. t t /JD) vs time t The lattice size is 2000, X=.0.01, and

D 0 1. As t increases, the curve tend. s to a constant, —Jz/4.
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At the center r 0,

P(O, t) ~(k/D) t "go(t) 0/D) "~'4 ') (10)

where go(y) g(O, y, 1,1). It is easy to understand that
when t»1, (P(r, t)) is of the same order as (P(O, t)), if

~
r ( (VDt. Therefore, we shall explicitly consider

(P(o, t)&.
The scaling argument cannot further provide the form

of function g or go. But Eq. (10) provides a criterion for
any analytical result. For example, since the previous re-
sult in Eq. (3) cannot be expressed in the form of Eq.
(10), it appears to be incorrect for the present problem.
The form of Eq. (10) is also very useful in numerical cal-

I

culations. We only need to perform numerical calcula-
tions for one set of X and D. The results for other sets of k
and D can then be deduced from Eq. (10).

Let us now apply the path integral formulism ' to
study the behavtor of g or go. From Eq. (1), the solution
is given by

1 BrP(r, t) -—drexp — dz +XV(r(z) )A4 4D 8z

where A is the normalization factor. The integration is
over all paths between r(0) 0 and r(t) -r. The Gauss-
ian property of V in Eq. (2) enables us to find the average

' 2
1 Br 1t rt

(P(r, t)) —
J drexp — dz+ dz~ dz2&(r(z~) —r(z2))A "o 4D 8t 2 4pdp (i2)

Equation (11)can be written in the form

(P& M, exp —)j. dz~ dz28(r(z~) —r(z2))~p~p

~here M, denotes averaging over all paths. In estimating
Eqs. (12) and (13), we note that (P) is affected by both
diffusion and the environment XV(r). As in the above bio-
logical model, the environment either enhances or reduces
the growth of bacteria. Without diffusion, in long-time
limit, the population in the areas with negative V would be

I

eventually eliminated. In some sense, diffusion is an
averaging process in which the densely populated areas
(with big P) give their population to unpopulated areas.
The diffusion rate is proportional to the population gra-
dient. Therefore, in the presence of diffusion, the popula-
tion in the area of negative V cannot be eliminated. Dur-
ing time interval t, the diffusion spreads the population
appreciably to a sphere with radius of VDt. The length
scale thus is VDt. From a scaling argument for Eq. (11),
ln(P) should have the form ), t /L where L has the di-
mension of length. Then, L must be of order JDt, and

hence ln(P) —(A, /dD )t t . We can further estimate

ln(P(O, t)) —2 k „dz~ dz2J dr(z~) ' dr( z)2b(r( ~z)
—r(z2))/V, , (i4)
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FIG. 2. Two-dimensional numerical simulation. In((P))/
(k't/D) vs time t. The lattice size is 400x400, A. 0.01, and
D 0.1. As t increases, the curve tends to a constant.

where the integrals of dr(z~) and dr (z2) are taken in the
sphere of radius v Dt and V, is the volume of that sphere,
V, tr4~ (VDt ) /I (1+d/2). Then, we have, as t

ln(P(0 t)&/(t ' d )'/D t )-I (1+d/2)/2xdt (15)

The constant at the right-hand side of Eq. (15) is only an
estimate, i.e., not exact. For example, if we set d 1, it
gives 4 which is close to but not the same as the analyti-
cal result Jx/4. The total population P, can be estimated
at t&) 1,

(P )-(P(O, t))x '(JDt ) /r(1+d/2) .

Therefore, it is also true, ln(P, )—t (z dt2)X /D2"t . 2

Extensive numerical simulations have also been per-
formed. A detailed discussion about the method solving
diffusion equation can be found in Ref. 10. In Figs. 1 and
2, the time step ht and the space step a used in the numer-
ical calculation are taken as the unit of time and length.
From the von Neumann stability analysis, ' we select
D &&1 and A. (&D. Numerical methods always convert the
partial differential equations to difference equations. To
simulate a continuum system, the size of the system must
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be much bigger than the space step a. ' In addition, it is
extremely important in this problem to make the system
big enough to avoid the boundary effect. Typically, since
systems in numerical simulations are finite, periodic
boundary conditions are introduced to compensate some
finite-size effect. But the present problem is so different
that the periodic boundary conditions do not compensate
any boundary effect. In order to illustrate our point, let us
consider one-dimensional diffusion. Equation (1) is about
diffusion in an infinite space, but in the numerical simula-
tion one-dimensional diffusion on a finite system with the
periodic boundary conditions is equivalent to diffusion on
a finite ring. Then, if the size of the system I. is small,
there is strong "feed back" from the bounds through the
periodic boundary conditions. It can be further shown
that in the long-time limit, this boundary effect makes
diffusion on a small ring fundamentally different from
diffusion on an infinite system. As VDt ~ L, the popula-
tion distribution on a small ring eventually becomes
smooth. Then we can denote fP(x, t)dx LP(t) where
P(t) is the space-average value of the population. From
Eq. (i),

„P(x,t)dx & J V(x)P(x, t)dx, (i7)
which can be written as

LP(t) -7 P(t)J"V(x)dx.
The property of (saussian random potential V in Eq. (2)
enables us easily to evaluate the sample average on a
small ring (P(t) &,

ln((P(t)&) - —,
' a't '/L .

The above argument applies to diffusion in high dimen-
sions, too. Therefore, in order to extend the results from a
numerical simulation on a small system to diffusion on an

infinite system, we must have the simulation free of any
significant boundary effect. The required size of the sys-
tem can be estimated as follows. As the time equals to
tAt, the front of the tails has moved to x,y, . . . = ~ ta in
the numerical simulation. If ta is much bigger than the
size of the system, the tail has already run around the sys-
tem several tirades, accelerating the exponential growth.
Even the population at the boundary then becomes siz-
able. To avoid this artificial "feedback" from the bounds,
it is better to have the size of the system of the order of ta
in calculating diffusion up to time th, t. That the size of
the system is made only bigger than VDt is found to be
insufficient.

In this problem, averaging over the whole sample space
is beyond the ability of our computer. To ensure a reliable
result, we first perform a numerical simulation of Eq. (1)
with D 0 and determine the number of samples neces-
sary to produce a result which is consistent with the
theoretical one, i.e., ln(P& —t . Then we use the same
number of samples in the simulation of Eq. (1) with D&0.
Figure 1 presents a one-dimensional simulation. As
shown from the figure, In((P&)/(A, t t /JD) tends to a
constant —Jx/4, which confirms the analytical result in
Eqs. (4) and (5). At D 0.1, as t varies from 0 to 2000,
for example, (P(O, t) & increases from 1 to the order of 10,
but In[&P(O, t)&l/l(X /v%)t i

1 tends to a constant
Jrr/—4 The .number of samples in a simulation increases

with t from several hundred to more than one thousand.
We have carried out simulations with different parame-
ters. All of them give the same behavior as our analytical
solution. Fluctuations do not cause any problem in the
verification of our result.

Figure 2 is a simulation in two dimensions with the
same numerical method as in one dimension. But now
ln((P&)/(k t/D) tends to a constant in the limit t
which confirms the result in Eq. (5).
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