
PHYSICAL REVIEW A VOLUME 39, NUMBER 7 APRIL 1, 1989

Attractor size in intermittent turbulence
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We estimate the number of degrees of freedom in intermittent fully developed turbulence using
the multifractal formalism. We find that for any reasonable distribution f(a), the number of de-

grees of freedom is decreased by intermittency for space dimensionality D & 4, and increased for
D & 4. This is in agreement with a result of Kraichnan [Phys. Fluids 28, 10 (1985)l obtained for
the special case of fractally homogeneous turbulence. We calculate the reduction in attractor size
in three dimensions and find it to be very small. The possible dynamical significance of our result
is briefly discussed.

In the multifractal formalism, ' the dissipation e„aver-
aged over a D-dimensional volume of size r, varies as

e„-&e&(r IL)

where &e& is the global average of the rate of dissipation, L
is the external length scale of the flow, and a is a locally
defined random variable. The usual Kolmogorov micro-
scale is defined by

j-(v'/&e&) '~'

where v is the kinematic viscosity of the Quid. In the 1941
Kolmogorov theory, j is the eddy size at which the cas-
cade terminates, but in the presence of intermittency this
smallest eddy size will fluctuate spatially due to fluctua-
tions in t. . A reasonable estimate of the local value of g is
given by

where

q - t)f(a)/|)a,

(q —1 )Dq =qa —f(a) .

(7a)

(7b)

Carrying out the steepest-descent evaluation, we obtain

Nioi —(L/ j) ~,

where Q is the solution of

~- —4f(a)/(4+ a —D) .

As usual, we evaluate the integral of Eq. (6a) in the limit
of small j/L by steepest descent. It is convenient to write
the results in terms of the moment exponents D~, which
corresponds to the Legendre transform of f(a) according
to

3/ ) 1/4 (3) Q(4 —D) =(1 —Q)D~,

where e„ is obtained by setting r t) in Eq. (1). Substitut-
ing this result into Eq. (3) and solving for ri in terms of j,
gives

or

Q Dg/(Dg+4 —D) . (10)

with

qlL -(FAIL) r (4a)

y 4/(4+ a D) . — (4b)

Nioi —„N„(a)da—„(j/L) da, (6a)

Therefore, for any given value of a, we know the size at
which an eddy will become stable.

To estimate the number of degrees of freedom in the
flow, we assume that once an eddy has reached a size
equal to tl, it will not decay any further and can be count-
ed approximately as a single degree of freedom. We thus
need to know only how many such eddies of size g are
present in the Aow. In the multifractal formalism, the
number of eddies of a given size g can be written as

N„( )-(~/L) "'.
The total number of degrees of freedom Nt, t will then be
given by the sum over all possible values of a.'

In the absence of intermittency Dq =D for all q, and

Q D/4. Equation (8) then reduces to the usual Landau
estimate of the number of degrees of freedom. For frac-
tally homogeneous turbulence, where one assumes that all
turbulent activity is concentrated on a single fractal of di-

mension D(p) (the p model ), Dq =D(p) for all q, so that

Q-D(p)/fD(p)+4 Dl . —

Equation (11) has the property that Q & D/4 for D & 4,
and Q & D/4 for D & 4, in agreement with Kraichnan's
result for this model of fractally homogeneous tur-
bulence.

Our new result is that this crossover generalizes to an
arbitrary physically reasonable f(a) curve. For intermit-
tent turbulence, Dq & D for all positive q. From Eq. (10)
it thus follows that Q & D/4 for D & 4, and Q & D/4 for
D & 4. Thus intermittency reduces the number of degrees
of freedom when D &4, and increases it when D & 4,
whatever the precise multifractal distribution of the dissi-
pation.
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To estimate this reduction for D 3, we rewrite Eq.
(iO) as

For values of q near 4, the Dq curve can be approximated
quite we11 by the log-normal result

Dq -D —(p/2)q,

where p is the intermittency exponent. Experimentally,
for D 3, p =0.25, and Dg —D in the denominator of Eq.
(12) is very small compared to 4. Equation (12) thus
gives

d,Q = 3p/128 =0.0059 . (IS)

The reduction in number of degrees of freedom due to in-
termittency is thus quite small.

It is interesting to speculate whether D 4 is a transi-
tion dimensionality for turbulence in a deeper sense.
There is no known theoretical reason why intermittency
cannot exist for D & 4 even if it increases the attractor
size compared to the 1941 Kolmogorov theory. It is

AQ D/4 —
Q (4 —D)(D —Dg)/[4(Dg+4 —D)], (12)

and Eq. (8) as

(13)

perhaps worth reviving an older argument which suggest-
ed that D 4 might be a transition dimensionality. It was
suggested there that the basic small scale dynamical vari-
able is the cube of a velocity derivative. This has some
plausibility since the skewness of the velocity derivative
plays an important dynamical role as the rate of produc-
tion of mean-square vorticity. The natural scaling behav-
ior of this quantity in the 1941 Kolmogorov theory is r
Its square will then scale as r, and its volume integral
will diverge for D & 4. In some loose sense, fluctuations of
this dynamically relevant quantity will be dangerous only
for D & 4. Thus it is possible that intermittency vanishes
for D & 4, and that this could be a guide to a deeper
dynamical theory.

Although this conjecture remains highly speculative,
the result that attractor size is decreased by intermittency
for D & 4, and increased for D & 4, appears to be quite
robust. It does not depend on the model used to describe
intermittency, but only on the assumption that the
minimum eddy size varies as the ——,

'
power of the aver-

age dissipation rate.
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