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Analytical solution of the mean-spherical approximation for a system
of hard spheres with a surface adhesion
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The solution of a model for adhesive hard spheres is obtained within the mean-spherical approxi-
mation. The adhesive part of the potential is modeled as the limit of a Yukawa tail when both the

amplitude and the inverse range tend to infinity. Use is then made of the analytical solution of the
Ornstein-Zernike equation with a Yukawa closure, developed by Waisman, Hoye, Stell, and Blum.
The system presents a liquid-gas phase transition, and the critical exponents y and 6 are those of the

spherical model.

The study of systems that present phase transitions is
one of the most fascinating fields of statistical physics. A
great deal of analytic results has been obtained involving
properties of phase transitions in lattice magnetic systems
and in lattice gases. For continuum systems, there is not
such a large number of analytic results. The enormous
majority of the existent results for these systems has been
gained by using considerable amounts of computing time.

One continuum model, on which there are analytic re-
sults, is the adhesive hard-sphere fluid (AHSF) proposed
by Baxter. ' He considered a system of particles with an
interaction given by

oo, r(o
Pu(r)= ln[12r(R —o. )/R], cr &r &R

0, R(r
in the limit when o ~R. In Eq. (1),P= 1 /kz T, where kz
is Boltmann's constant and T is the absolute temperature.
The dependence upon temperature on the right-hand side
(rhs) of Eq. (1) comes from the parameter r. Baxter' was
able to solve the Percus-Yevick approximation for this
system. He found a critical point (t)„r, ) and for r & r, a
liquid-gas phase transition. Baxter found r, =(2—&2)/6
and a critical density given by ri, =(3&2—4)/2, where
g=(~/6)pR and p is the number of spheres per unit
volume. The critical exponents coincided with the classi-
cal ones.

Perram and Smith extended the analysis of Baxter to
an m-component mixture, and later on, Cummings et al.
considered in detail the correlation functions for the
Baxter model.

Adhesive hard-sphere models are interesting in their
own right, because they are among the few models that
can by analytically solved, therefore giving more insight
into the difFerent critical behavior obtained from the
Ornstein-Zernike equation, where difFerent closures are

used. Their importance also rests on the applicability
that can be made to model real systems. For example, it
is well known that spherical colloidal particles have a
van der Waals (or dispersion) force of attraction that, at
very short distances, closely resembles that of adhesive
spheres.

In this article we wish to consider another mode1 for
adhesive spheres that can be solved analytically within
the mean-spherical approximation (MSA). We use the
analytic solution of the Ornstein-Zernike equation in this
approximation for a system of hard spheres interacting
with a potential of a Yukawa form, developed subse-
quently by Waisman, Hoye, Stell, and Blum in several ar-
ticles.

The system of particles we want to consider, interacts
through the following pair potential function:

r (1
—Je '" '/r, r&l (2)

in the limit J~+ ~, z~+ ~, such that J/z =~=const.
In the MSA we therefore have a Yukawa closure. This is

h (r)= —1, r & 1

c (r)=PJe '" 'I/r, r & 1

(3)

where h (r) and c(r) are the total and direct correlation
functions, respectively.

The limit now becomes PJ ~ ~, z-~ ~, such that
Pa =0 is constant. Observe that in (2) and (3) we have al-
ready renormalized the distances by the hard-sphere di-
ameter.

We can now use the results given in Refs. 6—10. For
our purposes, it will be easier to use the equations of
Hoye and Blum, ' developed originally for an arbitrary
number of Yukawas, but specialized here to a single Yu-
kawa. We rewrite their four equations [Eqs. (20a—20c)
and Eq. (28) of Ref. 10] defining the unknowns a, b, c

39 371 1989 The American Physical Society



372 L MIER y TERAN, E. CORVERA, AND A. E. GONZALEZ 39

.11and d, in the following fashion:
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Assuming that a and b remainain finite, one can see that
int eaov-h b ve-mentioned limit d grow s as Oe' and c+

~ ~ ~

tain thevanishes as g z.6 0 / Hence in the limit, we obta'
following set of equations for a and b: —0.5
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This system has the solution

(9)

(10)

A lot of a, Eq. (10), as a function of g for differentFIG. 1. A plot o a, q.
values o e ef the temperature. The isotherms isp aye

, ' curve D,A, T = 1.6T, curve B, T = 1.20T„' curve C, T = T„' curveC&

T =0.95T, ; and curve E, T =0.91T,.

of the critical neighborhood reveaveals that
the isothermal compressibility diverges, a ong e c
isochore g =g, from T )T„as

12 9 38q 2g+ 1+1+2' 2 2(1 —g) 8(1—&)

Using the last two equations and Eqs. (s. (24), (25), (33),
and 36) of Ref. 10, we can write the direct correlation
function of a AHSF in the MSA as

—
$/

3(7—4v 3) c

4 T.
Bp

XT
Qp

=2. The compressibility pressure can be ob-where y= . e c
m ressibility withtained by integrating the inverse compres

'

y
respect to q:

—rc r)=aor+bor +(q 2/) aro+12g8, r (1 (12) P—P =(12&) (q —1)—840+4(360'+ 300+ 1)/(1 —q)6
where

ao=a 2 (13a)

—6(60+1)/(1 —g) +3/(1 —g)'

+249(60+ 1)ln( 1 —g )
—1 . (16)

ho= —12gt —,'(a +b) —a 0] . (13b)

120') + 2( 1 —60)g+ 1 =0 . (14)

Th t on has two real solutions for T &T andT is equa ion
r T )T, where T, =~/k&0„two complex solutions for

in criticaland 0, =, =(2+&3)/6=0.6220. The corresponding critica
density is q, =(&3—1)/2=0. 3660.

~ ~

ith the inverse compressibi ity,We now identify ao wi
' '

al oint andwhich is everyw ereh re finite except at the critical point an
of a hase transition, where it become

infinite. The spinodal line is therefore de ne y e
=0. A lot of Eq. (10) as a function of g is
F' 1 F om Eqs. (10) and (13a), this cuis curve isshown in Fig. . rom

given by

(p —p, ) =2'( —",, +&3)(g—g)',
6~

(17)

wit 6=5.
E . (14) we can determineAdditionally, with the use of Eq. w

associated with the shape of t e

spinodal line in the vicinity of the critical point. We o-
tain

Ij g Ic T.—T Ps
1/4=3

T
L

C

T(T, , (18)

The last formula allows us to determrmine the shape of the
equation o s a ef t t along the critical isotherm, 0=0, . The
result is
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with P, =
—,'. In Eq. (18) gi represents the liquid and gas

spinodal densities. This equation shows symmetrical
asymptotic behavior of the top of the spinodal curve. If
we assume, as usually happens, that the exponent P of the
coexistence curve, obtained from the compressibility
equation equation of state, coincides with f3, , the ex-
ponents obtained thus far agree with those of the spheri-
cal model, ' as it should happen for a short-ranged po-

tential in the MSA. '

The analytic solution for the AHSF in the MSA can be
extended straight to the case in which a sum of Yukawa
tails is added to the adhesive hard-sphere potential. This
extended solution and a comparison between the Percus-
Yevick ' and MSA solutions for the AHSF will be
presented in a forthcoming longer publication.
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