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Nucleation in the presence of long-range interactions
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We present a theory for nucleation at a first-order phase transition where the mediating forces are
long range. We find that the long-range force induces cooperative nucleation and growth processes,
and that this feedback mechanism produces a well-defined delay time with a sharp onset in the
transformation to the stable phase. Closed-form expressions for the characteristic onset time and
width of the transition are developed, in good agreement with numerical and existing experimental
results.

I. INTRODUCTION

Unlike droplet nucleation near a liquid-gas critical
point, the decay of metastable phases in crystalline ma-
terials is strongly affected by the presence of long-range
forces. ' The motivating experiments for our present
study are field quenches performed on the ferroelectric
barium titanate (BaTi03) that indicate that nucleation in
this material is markedly different from that observed in
liquids. BaTi03 is a classic ferroelectric with a high-
temperature phase diagram as shown in Fig. 1(a). The
solid line marks a line of first-order cubic (paraelectric) to
tetragonal (ferroelectric) transitions, and we note that the
phase boundary may be crossed by varying the field or
the temperature. In the experiments of McWhan et al. a
pulsed field brought the system across the phase bound-
ary and let it rest in the spinodal region. The subsequent
relaxation was then observed via time-resolved x-ray
diffraction.

In the conventional nucleation picture after the field
quench the system is viewed as sitting in a free-energy
well [Fig. 1(b)]. Initially the system would be in the
metastable paraelectric state, but one expects it to decay
to the lower ferroelectric state roughly within times on
the order of nanoseconds. There would be a smooth
transformation to the ordered state with no delay [Fig.
1(c)]. Specifically, as shown in Sec. II C, the conventional
Kolmogorov equation predicts a transformation time ~
such that
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that the time dependence of the order parameter (polar-
ization) had a step like shape with a very well-defined de-
lay time that was six orders of magnitude greater than
the expected characteristic time scale of the system [Fig.
1(d)]. In a previous paper, Littlewood and I' proposed
that long-range strain forces, known to be important in
BaTi03 but neglected in the standard droplet model of
nucleation, ' ' lead to a time-dependent nucleation rate
and a sharp onset in the transformation to the stable
phase. In the present study we formulate a more general
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where Io is a Maxwell-Boltzmann factor e (all
quantities are defined in Sec. II), so=(I ovo) ', and I o
and vo are microscopic nucleation and growth rates, re-
spectively. For the temperature and field quench of in-
terest realistic values of E (R * )/kit T- 10,
I o-co/g =10' sec '/(300 A) (coo is the soft phonon
frequency and g is the correlation length) and
vo —10' A sec ' yields ~o =4 X 10 ' sec and
z= 5 X 10 sec.

However, when McWhan et al. performed their ex-
periments their results were quite surprising; they found
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FICx. 1. Schematic views of (a) the high-temperature phase
diagram of BaTiO3', the arrow indicates the field quench of
McWhan et aI. (Ref. 2). (b) The system after the field quench.
(c) The expected time evolution of P, the system's order parame-
ter, after the field quench. (d) Pit) vs t found by McWhan et al.
(Ref. 2) ~
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theory of nucleation and growth that embodies these
ideas. In particular, we can now achieve good quantita-
tive agreement with the observed delay time in BaTiO3
and can make a number of predictions for future experi-
ments.

The static properties of the ferroelectric transitions in
BaTi03 are well described by a Landau theory of the cou-
pled order parameters polarization (P) and strain (s).
Here we consider only the high-temperature cubic
(paraelectric) to tetragonal (ferroelectric) transition in a
finite electric field E, and thus take both P and s to be sca-
lars, with s the uniaxial strain (there is negligible volume
change at the transition). The free energy per unit
volume is written as

F(P,s)= —,'a (T —To)P + ,'bP +—~cP

—EP +—,'c, s —qsP (1.2)

Here T0 is the Curie temperature, E is the electric field,

c, =. —,
' (c» —c,2) is the shear elastic modulus, and

q =c,Q33 where Q33 is the electrostrictive coefficient.
The coefficient b is positive; in the absence of coupling to
strain a second-order transition at temperature T0 would
be expected.

Equation (1.2) implies that the onset of polarization
will be accompanied by spontaneous strain. If a fer-
roelectric nucleus is formed inside a paraelectric crystal,
there will be an extra cost in energy due to the strain
mismatch between the two regions. However, owing to
the long-range nature of strain-field interactions, the
stress cannot be relieved only at the boundary of the two
regions, and the energy cost will grow as the volume of
the transformed phase. This volume dependence suggests
that it is appropriate to approximate the long-range in-
teractions by an infinite model and we write for the total
energy

F = Vo+F (P, ,s; )+ —,'K (s; —s ) (1.3)

qP
3Ce

We substitute (1.4) into (1.2)

(1.4)

The subscript refers to the individual "nuclei" of volume
Vo (Vo will be discussed below) and s =(1/N)g, s, is the.
average strain. The last term in Eq. (1.3) couples the in-
dividual strain fields to the average strain in the system;
consequently K -c, although specific details depend on
the geometry of the individual nucleus.

If we assume that the local strain and polarization are,
strongly coupled, we may solve for s by setting BF/Bs =0
to obtain

P; =P; /Po(P, = b—/c) we express the coarse-grained
Helmholtz free energy as

(1.6a)

where

H(y, ) = ,'ay' —,'y', —+—6y', -e4,— (1.6b)

denotes the free energy for the spatially uniform state.
Because the correlation length g remains finite at the
transition, the system must have a characteristic length
scale 8*, determined by competition between volume
and surface energies. We have modeled the latter by the
gradient term 2x(P, —P, +, ) that corresponds to short-
range attractive interactions between nucleating droplets;
the scaled coupling constant

1
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for the parameters appropriate to BaTi03. ' The energy
scale is set by a =a(T —To)/cPo and fo= VocPo', here
the coarse-graining volume Vo-g, ensuring both that
the free energy (1.6a) converges rapidly (and is thus
meaningful), and that phase separation cannot occur
within a single cell (otherwise the details of the nu-
cleation will be lost). In order to get a quantitative feel-
ing for the relevant energy scales involved we note that
the local free energy (1.6b) and the gradient term in (1.6a)
yield a relation e, =(2/x)g where e, is the static dielec-
tric constant [e, =B G/Bp;~& =o where G($;)=H(P;)
+ 2~(P; —

P, +, ) ]; close to To (To —3~ T~ To+3) the
static dielectric constant e, reaches values as high as 10
leading to an estimate of g/ao —50—100 in this tempera-
ture region (ao is the lattice spacing). Because of this
large correlation length, the energy scale is in the range
fo/k~T-3X10 —2X10 close to the transition. For
finite y, the free-energy barrier height is proportional to
yfo (T- To), which is large in comparison with thermal
energies; a nucleation treatment is therefore appropriate.

Because we are treating the paraelectric-ferroelectric
transition in a finite electric field at fixed temperature, we
may simplify the free energy (1.6) before studying its as-
sociated dynamics. In particular, the bias field will al-
ways select a particular polarization state; the other po-
larization minimum will play a negligible role in the
system's dynamics and can be safely neglected. The ap-
propriate free energy is then

2F=—'a(T —T )P + —' b ——' P + 'cP EP——
2 0 3 6

Ce

and note that the coupling to strain renormalizes the
fourth-order coefficient in F (b =b ——,'q /c, ); in the par-
ticular case of BaTiO3 the transition is driven first order
even within Landau theory. Using the rescaled variable

(1.7a)

(1.7b)

where /=1/Ng, P; and P; has been ap. propriately scaled
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so that P(t~ —ae )= —1 and P(t~+ ao )=+1;
specifically, we have shifted the variable P, from its value
in Eqs. (1.6). The constant a has no temperature depen-
dence; the mapping of (1.6a) to (1.7a) is only valid at finite
field and constant temperature. We note that in (1.6a)
the coupling term —,

' y(P, —
P ) shifts the system's

effective temperature (it renormalizes the P; coefficient),
thereby changing the relative heights of the paraelectric
and ferroelectric minima; the term —,'y(P, —P) in (1.7)
leads to an identical effect.

We can regroup terms in the free energy (1.7) and
rewrite it as follows:
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F= Vog —,'~(P, —$;~&) +G(P, )
—e 1+

- 0.5—

(1.8a)

where

G(P, )= —
—,'(a —y)P,'+ —,'aP, . (1.8b)

II. SELF-CONSISTENT
TIME EVOLUTION EQUATIONS

Physically we consider the system to be "trapped" global-
ly in a state P; just after the quench P= —1 and locally
we see that if y ) e there will exist not effective bias field
and hence no nucleation. Similarly, there will be no
transformation for y & a; the coefficient of P, in (1.8b) will
now be positive and the system will only have one possi-
ble state. This region of infinite metastability (y & e, a) is
an artifact of an infinite-range model; in finite-range mod-
els, the decay time of a metastable state will diverge ex-
ponentially with the range of interaction in this region.

The key physics emerging from (1.8) is that the
system's effective strain field will depend on the fraction
of material transformed. Therefore the critical droplet
radius R ', determined by considering competition be-
tween long- and short-range forces, will be a decreasing
function of time and will result in time-dependent nu-
cleation and growth rates. The presence of the long-
range strain force thus induces a cooperative nucleation
and growth process, and we shall see that this feedback
mechanism leads to a well-defined delay time and sharp
onset in the transformation to the stable phase. Though
our study of (1.8) was motivated by experiments on Ba-
Ti03, we believe that this model has more general appli-
cation in that similar results will be obtained for any
double-well model with a long-range coupling term.

The layout of this paper is as follows. In Sec. II we dis-
cuss the three self-consistent equations for nucleation,
growth, and fraction of the material transformed that will
determine the time evolution of the system. Analytic
solutions to these equations are then presented in Sec. III,
and in particular, we find expressions for the characteris-
tic time and width of the onset curve (see Fig. 2) that are
in good agreement with numerical results and with exist-
ing experiment. We end with a discussion, and also make
suggestions for future work.
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FICx. 2. P(t) curves for g=0 and q=0 6. Here .P(t
= T, ) = 1 —2e ', and W/T, is shown for the Kolmogorov
(g=O) case.

A. Growth rate

The free energy (1.8) leads to the following evolution
equation for a spherical droplet of radius r in d ) 1 di-
mensions:

—K
I Bt

a'y (d —1) ay aG
c}r2 r r)r BP e

(2.1)

where I is a microscopic fluctuation constant. We as-
sume that the droplet retains its shape as it expands, i.e.,

P(r, t) =P(r —Ut): P(r'), —

(2.1) and (2.2) together yield

dR 21 ae(1+y/e) (d —1)icI
dt u R

where o is a surface energy
'2

(2.2)

(2.3)

(2.4)

Now we may determine the size of the critical radius
R*

0(d —1)odR
p

dt
(2.5)

free energy such as (1.8) are well documented; in this
section we present the salient features of each derivation
but refer the reader to the literature for further details.

The methods for obtaining expressions for the growth,
nucleation, and fraction of the system transformed from a

Ze 1+
e

1+
e
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The crux of the preceding velocity calculation is the use
of the traveling wave solution; here we are assuming that
the nucleating droplets are spherical. Strictly speaking,
the "droplets" in crystalline materials are often cubic or
tetragonal (e.g., BaTi03} but the important macroscopic
physics of the system does not lie in the details of this
geometry. From (2.5) we see that R* will depend in-
versely on the fraction of material transformed
[F(t);P(t):—2F(t) —1] and this will be a decreasing func-
tion of time; initially P = —1 so that
R*(t~—oo ))Ro (t~+ ~ ) [see Eq. (2.5)].

~F=FIA —F I ([)o] (2.13}

0,0 is a statistical volume term that accounts for addition-
al droplet configurational entropy. For the free energy
(1.8) the nucleation rate is

or, specifically, AF is the free energy of a critical droplet
of size R*. Q is a factor that depends on the dynamical
properties of the system; in particular, a droplet of size
R =R* will grow like e~' where

(2.14)

B. Nucleation rate

We return to the free energy (1.8) and now discuss the
nucleation rate, following closely the treatment of
Langer. In order to describe thermally activated pro-
cesses we must couple the system to a heat bath that
drives thermal fluctuations in the system. Then, using
well-established statistical methods, an equation of
motion, the Fokker-Planck equation, for a distribution-
functional pI P] may be derived:

—F[P(R )]/k~ T

or
1

I(r)=rp"+ '~"
with

—F[P(R )jjk T
e

(2.15)

(2.16a)

(2.16b)
ap[((I „, SJ(r)

dt 5$(r)
where the probability current J(r) is given by

(2.6)
since

FIP(R')] -R'—
2 (2.16c)

J(r}= DV — p+k Te5 r) 5 (r
(2.7)

and D is proportional to the bias field (kz is Boltzman's
constant). The equilibrium solution of (2.6) and (2.7) is

where we have set QAo-I o (I o is a microscopic fluctua-
tion rate) since the term in the exponential of (2.15) will
dominate I(t) for Io (1.

p„I4 I
-exp( —I'I 0 I «s T } (2.8)

C. Kolmogorov-Avrami transformation equation
Stable and metastable states of the free energy satisfy

(2.9)

We can safely assume that local dynamics will be on a
time scale significantly faster than that of P; then we can
have a metastable state at P=([)o if

dG

dPo e

d G

d4o

(2.10)

(2.11)

(2.12)I(t)=QQoe

where AF is the excess free energy of the droplet

A phase transition will occur when the system starts near
a metastable state (i.e., P=Po) and passes through a sad-
dle point of F [also a solution of (2.9)] to a minimum of
lower free energy. This saddle point state F I Po I

represents the free energy of a single localized fluctua-
tion, the critical droplet of the stable phase.

Equations (2.6) and (2.7) may be solved for a steady-
state probability current (J&0, V J=O) flowing across
the saddle point. The nucleation rate is then the integrat-
ed probability current; such an analysis yields

—AF/k~ T

and

dP= + + (1 I I d rdr)—
0 t+ T 0+r Uo(T —t)

Uo(T —t)
P(T)=exp — IoI oI dt'f 4~r' dr'

(2.17)

(2.18)

which yields

P(T)=expr —[(m/3)IorouoT ]I . (2.19)

For time-dependent nucleation and growth rates I(t) and
u (t), respectively, (2.18) can be easily generahzed to

Now that we can calculate u(t) and I(t), we will use
Kolmogorov's approach to determine P(T), the proba-
bility that the system remains untransformed at time T.
An identical expression for P(T) was independently de-
rived by Avrami, ' though he used a more complicated
approach which we will not pursue here. For illustrative
purposes let us begin with the simplest case, namely,
where both I and u are constant (I =IoI o, R = uot). Fol-
lowing Kolmogorov's arguments let us assume that nu-
cleation occurs at time t such that 0& t & T; then all nu-
cleation occurring within a volume of radius
R =uo(T t) will lead to the tr—ansformation at r=O at
time T. Therefore we write
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P(T)=exp — 4m f I(t)dt f r' dr'
0 0

leading to the simple expression

(2.20)

P ( T) =exp — f I(t)R (T t)d—t
3 0

(2.21)

It is important to note that the Kolmogorov treatment
neglects the presence of domain walls between coexisting
phases; in the absence of such interfacial energies the
critical radius is zero. Here we are only interested in nu-
cleated droplets of radius R )R*; strictly speaking, the
lower bound of the radial integral in (2.20) should be
R *)0. The inclusion of such a finite R * leads to no new
physics in this model, but only to additional constants
and to a rather complicated expression for P(T); we
therefore take R * to be zero in (2.21). In order to main-
tain consistency, it is important to consider only droplet
growth (i.e. , not shrinkage) in the expression for v (t), Eq.
(2.3).

III. SOLUTION OF THE SELF-CONSISTENT
TIME EVOLUTION EQUATIONS

Combining our results from Sec. II, we find that the
system's time evolution is determined by the following
self-consistent equations:

$(T)=1—2exp — f I(T—t )R (t)dt
3 0

(3.1a)

dR =( I+i)P), (3.lb)

(3.1c)

(3.2)

where all of the above quantities are dimensionless,
t
—E(R *)/k~ T]il—:y/e, Io «1 (Io —=e ) and I, R, and t have

been appropriately scaled by Uo and I 0, the microscopic
growth and fluctuation rate, respectively. For conveni-
ence we will drop all tildas from this point onwards, but
will continue to assume all quantities to be dimensionless.
The final form for P(T) that emerges from this set of
equations will be characterized by an onset time T, and
width W (see Fig. 2); here we develop closed-form analyt-
ic expressions for both of these quantities and then com-
pare them with numerical results and experiment.

Physically, the presence of a rare thermal fluctuation of
length scale R* [see (2.5) and (2. 16)] is required before
the system can begin to transform from the metastable to
the stable phases; if we assume local equilibrium in the
metastable state then the system's characteristic time T,
(see Fig. 2) will be essentially determined by a function of
the inverse Maxwell-Boltzmann probability e~ ' '. Ini-
tially the strain energy cost of nucleating a stable region
will be high, and from (2.5) (in dimensionless units) the
critical radius R *

will be large. Because T, depends exponentially on R *, it
is clear that the characteristic time for the system cou-
pled to the long-range field (finite i)) wil be substantially
longer than that for the standard Kolmogorov model
(i) =0).

Once one critical droplet has transformed to the stable
phase there will be a reduction in the effective strain field,
and it will become easier for further transformation to
occur; specifically, R* in (3.2) depends inversely on the
fraction of material transformed and thus will decrease as
a function of time. Therefore at time T= T, two simul-
taneous phenomena occur: first, the system's free energy
barrier is reduced thereby changing the nucleation rate,
and second, the growth rate of the droplet increases.
Roughly speaking, the width 8' is the time interval be-
tween the transformation of one droplet and that of the
whole system; therefore in order to determine 8' we must
look at the relative changes in I(t) and u (t)
[u (t) —=dR /dt j at T = T, . From (3.1b) and (3.1c),

= —2(lnIO ) R *
I(t) dt 0 dt

1 du d(t R,
u (t) dt dt

(3.3a)

(3.3b)

P(T = T, ) =const, (3.4a)

where we will arbitrarily set P(T =T, )=0 so that the
determining equation for T, is

ln2= f I(T —t)R (t)dt .
3 0

We define the width as

(3.4b)

dP
dt T=T,

(3.5a)

which leads to the expression

~c 2dR2~f I(T, t)R' dt—
8 0 dt

(3.5b)

In order to develop a feeling for the quantities 8 and
T, we go back to Eqs. (3.1) and iterate them numerically
(convergence occurs after five steps); the resulting in-
tegrands of (3.4b) and (3.5b) are shown in Fig. 4 for both
the rt =0 and the ran =0. 55 cases (ID=0.01). Let us begin

[ —E(R )/kB T]
so that for Io & 1 (Io = e so that this is physi-
cally reasonable ) and finite 71 the relative increase in I (t)
at the transition will be greater than that in v(t) and we
expect the nucleation rate to dominate the width JK In-
tuitively this is not surprising; since I(t)-f(e ) and
u(t)-g(R *) it is reasonable that I(t) would be the more
affected by changes in the characteristic length scale R *.
We note that for g~0 or I0~1, dI/dt =0 and 8'wi11 be
determined by the growth rate; we expect this latter
width to be greater than that due to nucleation (finite il,
Io & 1) in agreement with numerical results shown in Fig.
3.

From Eq. (3.1) we see that T, will be determined by the
condition
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by discussing the characteristic time. In both Figure 4(a)
and 4(c) (r/=0 and i)=0.55, respectively) we note that
the integrand (3.4b) has the majority of its weight close to
the transition; physically, as discussed above, this is be-
cause T, is determined by the characteristic length scale
of the system and thus by its growth. T, will then be
determined by the temporal region local to the transition
so that we may make the approximations

and

I( T, —t)-I(0)

R(t) —t

T-
C 3 ln2

in (3.4b) to find that
—1/4

(3.6)

(3.7)

(3.8)

1.5
(o)

Numerical interaction of Eqs. (3.1) yield results in good
agreement with (3.8), as shown in Fig. 5. Furthermore,
from (3.8) we conclude that for Ip « 1

I.O—
T I—1/4[ I /( 1 —g) —1 ]2

T 0 (3.9}
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0.0-
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- I.O

- I.5
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~ I

I

/

] il

0.0
t= T- Tc

Tc

q =0.6
I 0 =1.0

---
I = O. I0

——
I = 0.010
10= 0.001

0.5 I.O

where ~ is the characteristic time scale of the standard
Kolmogorov model (i) =0). For the specific case of
BaTi03, ' realistic values of E (R p ) Ik iTi= 10 and
g=0.6 yield

(3.10)

which is in quantitative agreement with the experimental
results of McWhan et al.

Let us now continue and find an expression for the
characteristic width W; As shown in Figs. 4(a) and 4(d)
the behavior of the appropriate integrand for finite and
zero values of g is quite different; as discussed above, for
g=0 8'will be dominated by the growth process whereas
the nucleation rate I (t) determines W when ii&0. There-
fore, in order to calculate the Kolmogorov g=O width,
we may make the same assumptions as above [namely,
(3.6) and (3.7)] and find that

8' 1

T, 8 ln2
(3.11)

I.O

0.0—

la=0 0
q=0 0

---q-0 2
——q= 0.4

q =0.6

and

dR
dt

-(1—i)) (3.12)

Physically, since both T, and 8' are determined by the
same process, it is not surprising that their ratio is a con-
stant.

The width calculation for the finite g case is slightly
more complicated; here, as shown in Fig. 4(d), the width
is determined by times t just before the onset (i.e., t
small). Therefore we may take

-0.5— R '(t) —(1 —i) )'t ' (3.13)

-1.0

in (3.5b). We also assume that I(T, t) is an expo—nen-
tially decaying function of ( T, —t)

I(T, —t)=I(T, )e (3.14)

-1.5
-1.0

l

-0.5 0.0
t=T Tc

TC

0.5

FICx. 3. P(t) vs t for (a) fixed i) and (b) fixed Io

I.O

[1+ Pi()T, )] W
(3.15}

where rp/W ((1;Fig. 4(b) indicates that this approxima-
tion is justified. Expanding p(T, —t) about T —T, and
keeping terms to linear order in t/W, we find that
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(3.16)

which is consistent with (3.14) for Io «1 and r1—«1. We
then obtain a simple expression for 8,

' &/4 ' '&/4

8'
3Ioln2 1 —g

(3.17)

For large g and small Io, 8'is a very slowly varying func-
tion, and is in fact almost a constant. Furthermore, now

so that roughly speaking IV/T, —1/T, . Results of nu-
merical iterations of (3) agree with (3.16) for Io «1, q
large as shown in Fig. 6. In Fig. 7 we show more nurneri-
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FICy. 4. (a) I(T, —t)R'(t) and I(T, —t)R'(t)dR/dt for the Kolmogorov (g=0) model; (b) I(T, —t); (c) I(T, —t)R'(t); and (d)
I ( T, —t)R dR /dt for g =0.55 determined by numerical iteratio~ of Eqs. (3.1).
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cal results on a log, o[
—log, o( W/T, )] versus log, o(l —rl)

plot; the crossover between Kolmogorov (3.11) and gen-
eralized (3.18) behavior is clear as g~ 1, Io &&1. Strictly
speaking the quantity W/T, will have yet another cross-
over in our model; as g- 1, Io-0 both 8'and T, will be
determined by the nucleation rate, and W/T, may again
be a constant. However, this region of almost infinite me-
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tastability is an artifact of our somewhat artificial
infinite-range field; here R*~~ and a discussion ap-
propriate to phase coexistence at a first-order transition is
no longer relevant.
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merical iteration of Eqs. (3). In both cases the slopes show good
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FIG. 7. Numerical iterations of (3) plotted on a
log, o[ —log, o(W/T, )] vs log, o(l —g) graph; the crossover be-
tween Kolmogorov and generalized behavior is clear for g&0,
Io ( 1 and in each regime the slopes are in good agreement with
(3.17) and (3.11), respectively.
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IV. DISCUSSION

In conclusion we have presented a theory for nu-
cleation at a first-order phase transition in which the
mediating forces are long range. For simplicity we have
approximated these long-range interactions by an infinite
model, and find that the presence of this mean-field force
induces a cooperative nucleation and growth process. In
particular, because these infinite-range interactions act to
suppress the effect of a bias field, there is a large initial
energy cost for creating a stable phase nucleus in the
metastable region; however, once one critical droplet has
formed, the effective long-range bias field [e(1+rig)]
"seen" by the material is increased and further transfor-
mation becomes significantly easier. The system's
characteristic length scale R*, determined by competi-
tion between long- and short-range forces, will therefore
depend on the fraction of material transformed and will
be a decreasing function of time; this then leads to time-
dependent nucleation and growth rates I(t) and U(t), re-
spectively.

Initially the critical radius required for the survival of
a stable phase region is very large; this is because the
effective bias field seen by the sample is small due to pres-
ence of long-range interactions, and a nucleus must over-
come large surface energy costs in order to be stable. The
system must wait for a rare thermal Auctuation of length
scale R ' before it can begin to transform, and the expres-
sion for T„ the characteristic time of P( T), is therefore
determined by the growth rate. In Sec. III, following
this philosophy, we develop a closed form expression for
T, that agrees well with numerical results (Fig. 5) and
with the experiments of McWhan et al. for the appropri-
ate parameters. The width of the transition, however,
will be determined by the nucleation rate; once one criti-
cal droplet as formed the system's free energy barrier will
be lowered and the nucleation rate will increase. A
closed-form expression for 8' appears in Sec. III, and it
shows good agreement with numerical results. It is im-
portant to emphasize that for our generalized (finite 7l)

model W and T, are determined by different physical
processes; this is not the case for the standard Kolmo-
gorov picture (ri=O) where both are determined by the
growth.

Naturally there remain many open questions and pro-
jects for future work. Our closed-form expressions for T,
and 8 make specific predictions for experiment; unfor-
tunately there is a dearth of data available for compar-

ison. To our knowledge BaTiO3 is the only appropriate
experimental system where detailed nucleation studies
have been made, and even here only the time delay has
been carefully studied. It would be interesting to further
explore this phase diagram to explicitly check the cross-
over behavior of 8'/T, . Of course, we would also wel-
come nucleation experiments on other ferroelectric and
magnetoelastic materials, where long-range forces are
known to be important.

On the more theoretical side, it might be interesting to
study a more sophisticated model where the interactions
between nucleating droplets have finite range; specifically
one would expect no artificial region of infinite metasta-
bility and a probability distribution in the resulting delay
times. We should emphasize that the model presented
here contains a scalar order parameter and it is only valid
in a finite bias field away from the critical point where a
particular stable state will be selected. It would also be
interesting to generalize this approach to a model with a
continuous order parameter coupled to an infinite-range
field; here screening effects will be important and it is not
clear whether the resulting long but finite range forces
will induce cooperative effects. Such a model may be
highly relevant for the inflationary universe scenario, "
where nucleation theory is used to explain the evolution
of the early universe and long-range Higgs forces are
thought to be important. In short, though our present
study was originally motivated by the simple ferroelectric
BaTi03, we believe that the cooperative nucleation pro-
cess described here is a far more general phenomena, in
that it will be applicable for any double-well model cou-
pled to a long-range field.
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