PHYSICAL REVIEW A

VOLUME 39, NUMBER 7

APRIL 1, 1989

Measures of dissipation

Karl Heinz Hoffmann
Institut fiir Theoretische Physik, Universitdt Heidelberg, D-6900 Heidelberg, Federal Republic of Germany

Bjarne Andresen
Physics Laboratory, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Peter Salamon*
Institut fiir Theoretische Physik, Universitdt Heidelberg, D-6900 Heidelberg, Federal Republic of Germany
(Received 26 January 1988; revised manuscript received 28 November 1988)

The availability loss —A 4" in a process is equal to the flow of the extensive thermodynamic
quantities multiplied by the respective intensity differences only if the degraded work, the “uncom-
pensated heat” of Clausius, is disposed of into the environment. We define work deficiency as the
above product in all situations and relate it to the dissipation bound based on thermodynamic

length.

I. INTRODUCTION

While long recognized as important,' the problem of
choosing appropriate measures for counting dissipation
has gained new significance with the rise of interest in
finite-time thermodynamics.’ % There is a range of in-
teresting optima which present themselves once the con-
straint of finite time is imposed on a thermodynamic pro-
cess. Minimizing dissipation is the conservationist’s end
of this range; maximizing power is the other.

Measuring dissipation amounts to measuring foregone
work. Accordingly, different measures of dissipation may
be appropriate provided that they are related to how
much work was lost in a process. The two most common
measures of dissipation are the total loss of available
work —A A" and the entropy production AS“. The past
decade has brought forward extensions and new relations
for these measures. As one example, we cite finite-time
availability” which counts only the work which could
have been harvested in a finite time 7. Another example
is the relation between the loss of availability and the
thermodynamic length. Weinhold introduced a metric in
the space of thermodynamic equilibrium states using the
second derivatives of the internal energy with respect to
the extensive variables entropy, volume, mole number,
etc. This metric can be used to calculate a distance be-
tween two states or the length of a path in this space.
Salamon and Berry® called this length “‘thermodynamic
length” and they showed that this length can be used to
construct a bound for the loss of availability. This bound
applies to a class of thermodynamic processes in which
all the dissipated energy is taken out of the system. The
aim of this paper is to extend these studies to the case of
thermodynamic processes in which part of the dissipated
energy remains as heat in the system. As this is generally
the case for real thermodynamic processes, this consti-
tutes a considerable improvement over the previous stud-
ies. We investigate the relation between loss of availabili-
ty, entropy production, and the bound given by thermo-
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dynamic length. The results of our study show that the
bound provided by the thermodynamic length no longer
exactly bounds the loss of availability but a new quantity
which we term ““work deficiency.” On the other hand,
total loss of availability and entropy production are pro-
portional to each other with the constant of proportional-
ity equal to the temperature of the reservoir that defines
the scale of availability.

II. DEFINITIONS

As discussed by Tisza,’ the work of Carnot set out to
establish a temperature scale 7 and a quantity AS such
that, in close analogy with a water wheel, the maximum
work which may be produced when the entropy AS
moves from T, to T, is W™*=(T,—T,)AS. In con-
structing the chemical potentials u, Gibbs used this same
criterion to again define them in such a way that W™
corresponding to a flow of An moles from u, to u, be
given by (i, —pu,)An. In other words, the thermodynam-
ic intensities Y*=93U /3Xx* corresponding to the extensi-
ties X* in the energy picture are defined to make the
available work from a flow of dX* from Y to Y% equal to

dWm =3 (Y| —Y5)dxk. (1
k

In vector notation, a combined flow from system 1 to
system 2 of the quantities dX=(dS,dV,dN,...,)
across intensity differences Y,—Y,=(T,—T,,p,—p;,
4y —My, . .., ) is associated with the available work

dwm*=(Y,—Y,)-dX . (2)

If none of that work is captured as a result of the process,
it is reasonable to take this sum as one measure of dissi-
pation, representing the loss of available work associated
with the flows dX.>%

While some of the work terms in the sum of Eq. (1)
may be negative, and hence the corresponding flows are
driven by the positive ones, a spontaneous process can
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only occur, if the sum is positive. This point of view
amounts to considering the work d W™ produced (rever-
sibly) by the system and made available for use or dispo-
sal somewhere else. Whereas conceptually this is a con-
venient separation, in a spontaneous process some or all
of this work must be degraded into heat: the so-called
“uncompensated heat” of Clausius dQ“,

dwmaxde+dQCl , 3)

with dW being that part of the work which is not degrad-
ed. If the subsystem in which this heat dQ ' appears is at
a temperature 7 different from the temperature T, of the
heat reservoir (the environment) which is used to define
availability, then such heat carries a residual availability
which represents the work that would result from run-
ning a heat engine while letting the heat dQ ' move to
the environment. By this device we can in fact have par-
tial compensation for this ‘“uncompensated” heat. To
determine the extent to which such heat is compensated
through the residual availability which such heat
represents, it becomes important to specify which frac-
tion of dW™** moves to which subsystem at which tem-
perature. We introduce a vector a=(agy,qy,...,a,,a,),
3.:a;=1, as a convenient method for indicating which
fraction of the available work dW™* is added to each of
the subsystems participating in the process. For instance,
for an actual finite time-thermodynamics optimization of
a car engine it is necessary to know which fraction of the
energy dissipated by friction at the cylinder rings goes
into the working fluid and which fraction goes into the
cylinderwalls and thus into the cooling system. Also, a is
similar to the heat addition function A (T) used in ration-
al thermodynamics.!® Of course not all of the available
work dW™* needs to be degraded to heat, some may be
captured as work. This is accommodated within the for-
malism by an a, which is the undegraded fraction of
dW™*_ Since this energy has no associated transfer of
entropy, we take (for convenience in the formula below!!)
the corresponding T_, to be infinite, making
ds ., =a dWwWm™/T_ =0.

From this new perspective not all of the availability
dW™ is (necessarily) lost, and we will modify previous
praxis™® in calling the right-hand side (rhs) of Eq. (2) the
work deficiency dW as opposed to calling it the availabil-
ity loss. This work deficiency dW¥ is the total loss of
availability which would have resulted if all the available
work were lost to the environment. The remaining part
includes the latent availability of storing a,-de at
T,i=1,...,n,0. Thus the actual loss of availability
—dA“isonly TodW?°S, a,/T,.

This approach counts availability loss by focusing on
the flows. While it has the advantage of allowing the sep-
aration of the interesting terms in the dissipation, it re-
quires the additional postulate of endoreversibility,'? i.e.,
that the thermodynamic systems participating in a pro-
cess are in internal equilibrium during the process and
thus that they have well-defined intensities. While it does
not allow focusing on the dissipation from the flows, the
more general approach due to Gibbs is to define a state
function for availability 4. Changes in this function,
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summed over subsystems, give AA4* We remind the
reader that

A=U—=T,S +pyV—poN, ..., 4)

where the subscript zero indicates intensities associated
with the environment.

In the simple systems primarily discussed in the litera-
ture so far it has been advantageous to consider the
universe composed of a “system” in which the process
proceeds and a “reservoir’ or ‘“‘environment” with fixed
intensities with reference to which availability is defined
according to Eq. (4). For composite systems, like the
ones discussed below and in Ref. 13, summations become
more natural if the environment is considered part of the
system so that ‘“‘universe” and ‘system’” become
synonymous. Different parts of the system are then
termed “subsystems” and serve the same conceptual
function as system in the simpler examples. In order to
emphasize that environments are fully controllable'® and
at no cost to the process, we will generally call them
“baths.” Note that this definition includes the traditional
notion of an environment having constant intensities.
We will reserve the term environment exclusively for the
subsystem, whose (constant) intensities define the availa-
bility scale.

III. AN EXAMPLE

Consider a system (see Fig. 1) consisting of two sub-
systems 1 and 2 and an environment 0, each having inter-
nal energy U,(S;,V;) with corresponding intensities
p;=0U;/dV,, T;=aU, /3S,, in addition to a work reser-
voir . The intensities of the environment T, and p, are
not affected by any process taking place, and we assume
P1>Ps-

We now want to calculate the work deficiency, the loss
of availability, and the entropy production resulting from
an infinitesimal flow of volume dV from subsystem 2 to 1.
This process becomes uniquely defined only after decid-
ing what happens to the work (p, —p,)dV gained. In this
simple example (p, —p,)dV is the entire work deficiency
dW?, and we have to specify which fraction a_ of dW?
goes to the work reservoir and which fractions are de-
graded and go as heat to each of the other three subsys-
tems.

P Ty P2 T,

[ [2]

PoTo [ environment o]

FIG. 1. This figure shows the example system used in Sec.
ITI. It consists of an environment 0, two subsystems 1 and 2,
and a work reservoir o, depicted as a weight.
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For clarity we view the process as consisting of two
distinct steps. Step 1 describes the gain of work which in
step 2 is partially dissipated into heat at the temperatures
of the three subsystems.

Step 1. This reversible step contains no heat flows,

dS;=0, but a small volume change dV,=dV,
dV,=—dV. Recalling

dU;=T,dS;—p,dV; , (5)

dA;=dU;—TydS; +pydV;

=(T;—Ty)dS; —(p; —py)dV; (6)

the availability changes then are

dA,=0,

dA,=—pdV+pydV ,

dA,=+p,dV—pydV , v

dA_ =0,
and the work deficiency is

dWe=(p,—p,)dV . (8)

Step 2. Some of this work d W is now degraded into
heat such that fractions «; are put into each of the four
subsystems resulting in the entropy changes

daw?
dS,=a ,
0 0 T,
dw?
dsS,=aq, T,
J 9)
dw
dS,=a ,
2 2 T,
ds,.=0.

The corresponding availability changes are

dAoz(To_To)dSOZO ’

As the changes in the intensities during steps 1 and 2
are infinitesimally small and were separated only for clar-
ity, we can now combine these steps and calculate the net
result of this process. The change of availability of the
universe is
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T,
dA*=3YdA,=(p,—p)dV+ [1—— |a,dW*?
i 1
T
+ ll——i a,dWita dwH
T,
TO TO
:—de ao‘f‘alTl—Faz“ﬁ
Ay | O 2
=—dW| —+—+—1|T,, (1
r, 1, o, e Y
while the change in entropy is
ag, a, a,
dS'=dWw? | —+ —+— 12
r, T, T, 12

Equation (11) shows clearly the difference between the
work deficiency and the loss of availability for this simple
example.

An additional result, which can be easily gained from
Egs. (11) and (12) is

dA"=—T,dS" . (13)

As this is true for every instant during a process, by in-
tegrating we find

AA“=—T,AS" . (14)

A similar relation between A4 * or AS* and AW on
the other hand cannot exist in general, as the «; as well as
the T; of the different subsystem will change in time.

IV. THE GENERAL RELATION BETWEEN A 4
AND AS*

Equation (14) has been proved previously for thermal
subsystems.!* We now proceed to prove it in general for
an arbitrary number of subsystems interacting with one
another, with an environment whose intensities are fixed,
and with a work reservoir. We remind the reader that
availability is defined with respect to the environment.
Each of the subsystems / has an internal energy U,(X;)
with X; being the extensive variables of subsystem / and
Y;=0aU, /dX; being the corresponding intensities. Note
that X; may contain variables such as surface area which
are not truly extensive.

For processes in an isolated system, i.e., those which
have the property that the changes of all extensities, in-
cluding U but excluding S, summed over the subsystems,
balance,

>dX;=0, (15)
we have
dAY=—T,dS" . (16)

Proof. We sum the loss of availability of all subsystems
[cf. Eq. (6)],
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dA4“=3 dU,—3 Y,dX;
ZO_TO 2 dSl

= —T,dS" . 17

We note the following consequences of Eq. (16).

(i) Equation (16) is independent of the fate of the work
lost, i.e., a.

(i) As Eq. (16) is true for every instant of a process, we
find by integration,

AA“=—TyAS" . (18)

(iii) Equation (18) remains true even for time-dependent
a(t), that is the distribution of the lost work into the
different heat baths may change.

(iv) The actual values of A 4* and AS* for a given pro-
cess do depend on a(t).

V. WORK DEFICIENCY

For processes in which flows of extensities dX; occur
from subsystem j to i,

awi=1 (Y, —Y;)dX, . (19)
ij
As a generalization of Eq. (2) this has been referred to in
the literature as loss of availability.5 However, this
concurs with the definition of availability as given in Eq.
(4) only in the case where this quantity of energy is de-
graded to heat and put into the environment with respect
to which availability is defined. Only for a,=1 and
a,; =0, i >0 do they coincide. In order to avoid any am-
biguity we term Eq. (19) the work deficiency, as it is the
work which in principle could have been extracted from
the process.
This distinction becomes particularly important when
we realize that the bound on dissipation derived from
thermodynamic length’

we>eLl /7 (20)

was derived on the basis of Eq. (2) and thus properly is a
bound on work deficiency rather than availability loss.

The bound in Eq. (20) is a statement about losses neces-
sarily incurred in bringing the thermodynamic system
along the path having the thermodynamic length L. The
associated argument begins with Eq. (2) for one subsys-
tem and one bath and uses as flows the vector dX of
changes in extensities required by the condition that the
given path be followed. As such, any uncompensated
heat can only appear in the bath or in the environment,
ie., ap+a;=1, a,=0. In many applications W is the
quantity of interest since there is no (reasonable) possibili-
ty of recovering the availability «; W4 associated with ex-
tra heat content of our bath. One example is the cooling
water of a car engine, which by its high temperature
possesses some availability which, however, is not used.
Thus W9> —A A" The analogous expression to Eq.
(20),

AS“>eLi/T, 2

for entropy production needs no such qualifications and
gives a general bound for the entropy produced in using a
bath to cause a system to traverse a given sequence of
states.

One property of the work deficiency is that it does not
in all cases bound the loss of availability. Consider for
example the somewhat unusual situation of a system
which degrades its work deficiency to heat in a subsystem
with a temperature lower than that of the environment.
If in Eq. (11) there would be a T; with T; <T and a; =1,
a;,;=0, then the loss of availability —A A" would be
greater than W9 This comes about by the fact that one
has forgone a possible work gain from transporting that
energy from T, to the lower T.
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