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The isotropic-symmetry-breaking bifurcations occurring in a class of liquid-crystal models
describing particles with the symmetry of rectangular slabs are studied. The model free-energy
functional employed is appropriate to both the mean-field treatment of anisotropic dispersion forces
and the Onsager approximation for hard anisometric particles. The symmetry of the bifurcating
solutions to the stationary-phase equations is classified in terms of the eigenvalues of the effective
pair interaction. Explicit conditions are derived for systems exhibiting crossover behavior between
rodlike and platelike ordering. The results are applied to the question of the existence of biaxial
phases in systems of uniaxial particles, and to two models for nonaxially symmetric particles: the

hard spheroplatelet fluid and the Straley model.

I. INTRODUCTION

The notions of bifurcation theory were introduced to
the study of orientational order-disorder transitions in
liquid crystals by Kayser and Raveché.! They showed
how Onsager’s model for a fluid of elongated hard rods?
can be analyzed in terms of a nonlinear eigenvalue equa-
tion. This equation is then shown to possess an
isotropic-symmetry-breaking bifurcation. The solution
branching off from the isotropic phase at the bifurcation
point, albeit metastable, eventually connects to the stable
branch of ordered solutions describing the nematic phase
of the model. The qualitative properties of the model,
i.e., its first-order phase transition, can already be in-
ferred from the behavior of the solution close to the bi-
furcation point, since the direction of branching indicates
the existence of a van der Waals type of loop in the equa-
tion of state. In their introduction Kayser and Raveché
mention that their analysis, although elaborated for the
Onsager model, is applicable to all other models of liquid
crystals having the same formal structure as the Onsager
model, e.g., mean-field theories of anisotropic long-
ranged interactions. Since, then, however, no new appli-
cations seem to have been considered. The aim of this
interest in the method as applied to orientation-
dependent interactions by using it to study the symmetry
properties of the bifurcating solutions of a class of liquid
crystal models. We thus consider questions regarding the
relation between the symmetry of the particles involved
(or the symmetry of the defining interparticle interaction)
and the symmetry of phases that develop from the isotro-
pic phase.

The class of models we choose to study is that of the
effective orientation-dependent pair interaction models
appropriate to rigid particles possessing three mutually
orthogonal planes of mirror symmetry, e.g., rectangular
slabs, ellipsoids with three different major axes. This
class of models encompasses most of the models for non-
chiral, inversion-symmetric particles considered so far.?
Note that the uniaxially symmetric particles form a sub-
class of the one considered here, so that the classical
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Maier-Saupe* and Onsager models are included.

Our main result will be the classification of the sym-
metries of the bifurcating solutions to the equations
describing the stationary phases of our model free-energy
functional in terms of eigenvalues of the effective pair in-
teraction. The majority of systems will form either a uni-
axially symmetric rodlike nematic phase N, or a plate-
like nematic phase N _,. These two classes are divided
by the systems in which the tendencies towards rodlike
and platelike behavior balance, resulting in a continuous
transition to a phase with lower than uniaxial symmetry:
the biaxial nematic phase B.

The rest of the paper is organized as follows. In Sec. II
we introduce the free-energy functional that defines our
models (IT A), describe the properties of the effective pair
interaction for the class of particles considered (II B), and
discuss the solution space to which we restrict ourselves,
thereby defining the order parameters appearing in the
description (II C). Section III deals with the bifurcation
analysis of the stationary-phase equations of the free-
energy functional, starting with a definition of the
relevant equations (III A), followed by a discussion of
their solutions (III B) and closing with an interpretative
comparison with Landau theory (III C). Applications of
our results are presented in Sec. IV, where the question of
the existence of biaxial phases in systems with uniaxial
particles is discussed (IV A) and two models for nonaxial-
ly symmetric particles are analyzed: the hard sphero-
platelet fluid (IV B) and the Straley model (IVC). Some
comments on the theory and suggests for further research
are gathered together in the concluding section V. An
appendix discusses the details of the computation of the
interaction coefficients of the hard spheroplatelet fluid.

II. FORMULATION OF THE MODEL

A. Free-energy functional

The starting point of our study is the free-energy func-
tional defining our class of models. For details of the
derivation of the functional as an approximation arising
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in either the mean-field treatment of anisotropic disper-
sion forces or the Onsager treatment of hard interactions
we refer the reader to Ref. 3,

Bf [¥]= [dQp()n(Q)

+i fd0 [dDp @ H(Q,D)+BF () .
2.1

Here f denotes the free energy per particle, considered as
a functional of the one-particle orientational distribution
function (ODF) ¢, which has unit norm with respect to
the invariant measure d ). The orientation of the parti-
cles, here denoted by (), will, when necessary, be
parametrized by the standard Euler angles («,(,7)
defining the active rotation carrying a fixed reference
frame {X,¥,Z} into a particle-fixed frame {4,V,W}, in
which case the invariant measure 1is given by
dQ=dasin(B)dBdy. We further introduce the control
parameter A and the effective pair-interaction kernel
#(Q,Q). In the mean-field case the control parameter
will be B=(kzT)~! and the interaction kernel equal to
the effective pair potential obtained from an averaging
over the spatial degrees of freedom. In the Onsager case
the control parameter will be the number density p and
the interaction kernel equal to the pair-excluded volume
at fixed relative orientation of the two particles. In either
case the control parameter functions as a coupling pa-
rameter with A =0 defining the noninteracting, ideal-gas
system and A— o« the strong-coupling limit. Likewise,
the properties of the specific model are completely
defined by the interaction kernel # regardless of its ori-
gin. Finally we have the contributions to the free energy
that do not depend on the ODF, but possibly on the con-
trol parameter, e.g., kinetic energy; they are denoted by
F (&), but do not figure in the further developments.

A necessary condition for an equilibrium ODF of a sys-
tem described by a free-energy functional like (2.1) is that
it satisfies the stationarity condition

swlv] _ 6
SyY(Q) — SyY(Q)

Fw1-afdana =0, @2

the chemical-potential-like multiplier fi being adjusted to
ensure the normalization of the ODF. For a solution of
(2.2) to describe a thermodynamically stable phase an ad-
ditional minimum criterion will have to be satisfied, the
appropriate criterion depending on whether we are con-
sidering a mean-field model or an Onsager model. In the
mean-field case the free energy itself is the relevant poten-
tial, hence the mean-field equilibrium ODF yM" satisfies
the following inequality for all normed ¢:

F 1< Y], (2.3)
while in the Onsager case the chemical potential plays
this role and the equilibrium ODF 11;2{“ satisfies

u[w&Nlﬁu[tlf]zf[t!pr%f[w] . 2.4)

B. Properties of the effective pair interaction

We now turn to the properties of the effective pair in-
teractions, as specified by the kernel #, that follow from
our choice of particle symmetry. We first note some gen-
eral properties that have to be satisfied by #: (i) reality,
(i) global rotational invariance, i.e., for an arbitrary rota-
tion R we have #(RQ,RQ)=#(Q,Q), and (ii) symmetry
under particle interchange, i.e., #(Q,Q)=%(Q,Q).
These three requirements constrain % to be fully deter-
mined by an inversion-symmetric, real function of the rel-
ative orientational Q=0 ~'Q alone, which we will
denote by K:

H(Q,Q=K(Q)=K(Q ). (2.5)

The symmetry of the individual particles is implemented
by requiring that

H(Q,oQ)=H(Q,Q), (2.6)

where o is any element of the symmetry group of the par-
ticles. In our case the symmetry group of the particles is
generated by the reflections in the three mutually orthog-
onal mirror planes that characterize our class of particles.
The particle-fixed frame is defined by the intersection of
the mirror planes (see Fig. 1). Labeling the axes by
{u,v,w}, the generators of the symmetry group are
{0 (w0 (uw) T (nw)}>, Where o,y is the reflection in
the (u,v) plane, etc. The action of these operations on
the standard’ rotation matrix elements D'/’ is given by

i)jvrltj,n(a(u,v)ﬂ):(—)[+":D(nlt),n(n) s
D i (0 ey D) =(=)"D,))_,(Q),

m,n m, —n

D)) (U(L;,uOQ):‘@[rrIz?fn(Q) .

Combining (2.7) with (2.5) shows that K can be expanded
in the following set of symmetry-adapted functions:

n,0 2

g,0'={—1,1}

2.7

2+8m,0+5

A(nll),n(ﬁ):(%‘/i) i)ifl:n,a’n(ﬂ) H

I, even; 0<m,n<I, even. (2.8)

The prefactor in (2.8) is chosen such that the A‘,,I,f,,’s satis-
fy the following orthogonality relations:

FIG. 1. Definition of the particle fixed frame {4,V,W} using
the intersections of the mirror-symmetry planes that define the
particle symmetry.
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fy the following orthogonality relations:

. g’

AL ()= T8, 18, B,y e 2.
fdQAm”(Q) m,n( ) (21+1)61,16m,m nn ( 9)
The expansion of K can then be given as

k=3 HED g a0 @), (2.10)
L, m,n

where the sum is taken over all allowed values of /, m,
and n. Due to the particle interchange symmetry the
coefficients K| ,,,, are symmetric in the indices m and n.

At this point it will be convenient to introduce a more
compact notation. Following Kayser and Raveche we
therefore define an inner-product structure on the space
of integrable, real functions of orientation .L through
the definition

(f.g)=[daf(Qg@), fg€L,

and henceforth drop the function arguments for elements
of L unless clarity demands otherwise. Furthermore
each element of L, is also interpreted as a linear opera-
tor on L, by defining

flgl)= [das@

Note that with these definitions K becomes a Hermitian
operator on L g, i.e.,

(2.11)

Q-'0)g Q). (2.12)

(f,KlgD=(K[f1g) . (2.13)
The free energy (2.1) is now compactly rewritten as
Bf [¥]1= ¢, In¢¥) + LA{¢, K [¥]) +Bf(X) (2.14)

C. Solution space and order parameters

In principle the solution space appropriate to finding
the stationary distributions of the free-energy functional
(2.1) is the space of all real positive functions of orienta-
tion of unit norm. Intuition, however, suggests that it is
sufficient to look at the subspace of distributions that pos-
sess the same symmetry as the particles in question.
Most liquid-crystalline-state physicists would either take
this point of view for granted or quote a statement like
“you cannot get a homogeneous (i.e., nonspatially or-
dered) liquid crystalline phase that has a symmetry lower
than that of the constituent particles” without supplying
a reference. To our knowledge this question has not been
studied in any generality. We nevertheless proceed on
the assumption that the above-mentioned statement
holds, and profit from the reduction of degrees of free-
dom that it entails. Later on, in Sec. IV A, we will bring
some of the results of our work to bear on the question of
the existence of biaxial phases in uniaxial-particle sys-
tems. Since in Sec. II B we have already derived a set of
symmetry-adapted basis functions, our assumption
translates into the statement that the ODF is completely
specified by its expansion in this same set of functions

=3 (21+1)

(2.15)
Lm,n 8m 2

1I/lmn m n

The normalization of ¢ fixes the first coefficient
Yo,00= <Aoo,¢>—<1 Y)=1.

As primary order parameters we will take the
coefficients with angular momentum index /=2, corre-
sponding to the most large-scale features of the distribu-
tion. They are the distribution averages of the following
four functions:

(2.16)

AZNQ)=1(3 cos’B—1) (2.17a)
A(Q)=1V3sin’Bcos2y , (2.17b)
AP (Q)=1V3sin’Bcos2a , (2.17¢)
APQ)=1(14cos’B)cos2a cos2y

—cosfBsin2a sin2y . (2.17d)

Note that the functions with m =0 do not depend on the
azimuthal angle a and are thus invariant under rotations
around the reference z axis, in contrast to the set with
m=2. The orderparameters v, o, and ¥, o, are thus asso-
ciated with uniaxial order around the z axis, while
nonzero values of v, ,, and 1, ,, signal biaxiality of the
distribution around this axis.

Having defined our solution space &, i.e., all positive
functions satisfying an expansion of the type (2.15) with
the constraint (2.16), we now inquire into the action of K
onto the basis vectors of &,. An explicit calculation
shows that

All)

[ A0 1= mn s (2.18)

(21+1)6” m,n

whence

K[AY, 1= 3 K,,,A, . (2.19)
P

Thus K induces a natural splitting of & into invariant
subspaces labeled by the angular momentum index / and
the subindex m

So=S o). (2.20)
Lm

Moreover, for fixed /, K is represented by the same ma-
trix in each m subspace &'/

III. BIFURCATION ANALYSIS

A. Bifurcation equations

In order to study the solutions of the equation (2.2)
that describes the stationary distributions of the free en-
ergy (2.1) we explicitly perform the functional derivative
yielding

Iny+AK [¢]-BE=0,
or upon eliminating fi, using the condition 1,¢) =1

b= exp(—AK[¢])
(1,exp(—AK [¢¥])
a form clearly displaying the role of K[y¥] as a self-

3.1

(3.2)
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consistent “mean field.” A starting point for our analysis
is the fact that the isotropic distribution
Yo=1/87>=Af} /87 is a solution to (3.2) at all values of
A. This is a consequence of the global rotational invari-
ance of K, whence K [Y,]=const. Bifurcation analysis
now proceeds to look for solutions that branch off from
the isotropic solution. To this end we construct a one-
parameter family of solutions that connect to ¥, by in-
serting the following expansions in the arbitrary parame-
ter € into (3.2):

p=vot+ed+€Y+ -,
A=Aot+er +eRr,+ -0,

(3.3)

where due to the normalization of ¥, we have (1,¥, ) =0

for k > 1. Equating terms of equal order in € left and
right of (3.2) we find, to second order,
Ao
Yy =— . ZK[ll’l] (3.4)
and
1
U= ) AoK [¥r ]+ A K [¥]

152
“7}‘0

le]z—ﬁu,mwm)” .

(3.5)

The first equation (3.4) is commonly referred to as the bi-
furcation equation. It is a linear eigenvalue equation that
determines the bifurcation point(s), i.e., the value(s) of the
control parameter A where a nonisotropic solution with
infinitesimal amplitude coexists with the isotropic one.
Since the isotropic phase is stable in the absence of in-
teraction (A=0) we will be interested in the bifurcation
point with the smallest value of A, this being the point
where the isotropic solution loses its property of being a
local minimum of the free energy, the system thus becom-
ing unstable with respect to nonisotropic perturbations.

B. Solutions and their symmetry

It is clear that an arbitrary eigenvector X of K, with ei-
genvalue «, solves the bifurcation equation (3.4) with the
bifurcation point given by

2
A= _ 87 (3.6)

Ky
To obtain the “physical” bifurcation, as defined in Sec.
IIT A, we have to determine the eigenvector with the ab-
solutely largest, negative (N.B. A > 0) eigenvalue, which
we assume to exist and denote by «,. Given the splitting
induced by K on the solution space & (2.20) the eigen-
values can be labeled by /, m, and g where ¢ =0,2,...,1,

this last index chosen so that

Kimo<Kim2< """ SKimi - (3.7

The label m is, in fact, redundant given the identical ac-
tion of K in each subspace &'. In order to proceed we
now make the following assumption:

Ky =K3,00=K2,2,0 - (3.8)

The “physical” eigenvector is thus located in the /=2
subspace. This is, of course, an assumption on the form
of the effective pair interaction. It is certainly satisfied by
the reasonable class of effective interactions that have a
single broad absolute minimum for total alignment of the
two particles and no other local minima. Moreover, this
choice is the only one consistent with our choice of the
set (2.17) as our primary order parameters. We therefore
incorporate it into the definition of the class of models
considered.

Using (2.19), «, can be explicitly determined in terms
of the expansion coefficients of K,

Ke=75(K;y00+K32)

—(Ky00—K, )2 +4K3 1'%, (3.9)
with the corresponding eigenvectors
Xo=Ag0eo+Ages
(3.10)
X, =A%+ AY5e; ,
where the coefficients e, and e, are given by
on —K30 o — T
° (K30 +7}'7% ’ (Kio+7)'2 7
(3.11)

T:i(Kz,oo‘Kz.n)

2
+3 (K5 00— K222 ) +4K3,1'7?>0.

The general solution to the bifurcation equation is there-
fore

8 2
A= — o

Koy

¢1:C0X0+C2X2, (3.12)
The as yet undetermined coefficients ¢, and ¢, can be ob-
tained from the second-order bifurcation equation (3.5)
using a consistency condition. We first note the identity

<x0,¢2>:%<xo,¢z>
>— <X0,K[¢2]> (3.13)
and likewise
<)(2,¢2)w <x2,1<[¢2]> (3.14)

Taking the inner product of (3.5) with X, and X,, respec-
tively, and using (3.13) and (3.14) to eliminate the terms
involving the unknown function ¢,, we find

2

Eg“kl"*co—%}‘(z)“iic(z)o(o’x%)+2C0"2<X(2J’Xz>
+e3 X X3) ) =

8 (3.15)

“Sﬂ;)\l“*cz Mg Led (X, XE) +2¢0¢, (X3, X0)

+c3{X,X3) ) =
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The inner products involving three X’s can be computed
from (3.10) and the following triplet integrals of A’s:

h (") ("
<Am,n?A 'Am”,n">

m',n

(3.16)

where the round brackets denote 3-j symbols and
o',o",7',7" are freely chosen from { —1,1} to satisfy, if
possible, the relations m 4+o'm'+o"m”"=n+7'n"
+7"'n""=0. The relevant nonzero 3-j symbols are

222
00O

22 2
02 —2

|

=— =—{&}'2. (3.17)

w

S

Using these facts and simplifying we arrive at

hico— 03k, V(K)fed —c3} =0,

(3.18)
Aicy + 208k VK ) {coe, | =0,
where
v(K)=eyf{et—3e3] . (3.19)

Here we have stressed the dependence of v(K) on the in-
teraction K through the formulas (3.11) for e, and e,.
There are now two separate cases to consider.

(1) v(K)5£0. In this case A, can be consistently elim-
inated among the equations (3.18) yielding

cy{3cd—c3}=0. (3.20)

Without loss of generality we can take ¢3+c3=1 (this
just defines the normalization of ¢,) and therefore arrive
at the following three solutions, up to sign

(z)
‘,blz =Xy,

w(ly):_%)(o.__}\/g)(z , (3.21)

U= — o+ 1V3X,

The solution ¢} is built up from the functions Ag) and
Aéfz), which, as we remarked in Sec. II C, are functions in-
variant under rotations about the reference-frame z axis.
It is now straightforward to check that the other two
solutions ¥’ and ¥\*’ actually describe the same solution,
but with the symmetry axis in the y and x directions, re-
spectively. All solutions in this case thus have uniaxial
symmetry, the only freedom left in our restricted solution
space being the choice of the symmetry axis. (ii) v(K)=0.
This case allows consistent solutions only if A, is equal to
zero. This leaves ¢ and ¢, to be determined by the next-
order equation in the hierarchy of the bifurcation equa-
tions. The symmetry of the solution will however be
lower than uniaxial, as we will show that this case marks
the crossover between two different kinds of uniaxial or-
der.

We therefore take a closer look at the quantity A, that
determines the direction of bifurcation. Solving (3.18) for
A, we find

A=1AgKk M K)cofed —3c3) . (3.22)
For the uniaxial solutions, in the case v(K)+0, we expect
the branch of stable nematic solutions to be connected to
the bifurcating solutions with negative direction of bifur-
cation, as these give rise to the van der Waals looplike
character of the equation of state, i.e., a range of A for
which there exist three (meta)stable phases. The overall
sign of the bifurcating eigenvector i, now becomes im-
portant.

When v(K) >0 we have to choose the ‘““positive” solu-
tions as given in (3.21) in order to obtain A, <O
(remember that k, <0). These solutions describe the on-
set of ordering of the particle w axis fowards the symme-
try axis, associated with a positive value of the order pa-
rameter S = ( P,(W-8)), where § is a unit vector along the
symmetry axis. (In the case of solution #\” we have
S =1, 99-) This type of order is commonly called rodlike
nematic N ,. Indeed, for elongated uniaxial particles,
with the w axis chosen along the particle symmetry axis,
the only nonzero matrix element of K for /=2 will be
K, oo leading to ey =1 and v(K)=1.

When v(K) <0, the solutions for which A, <O are the
ones is (3.21) but with negative overall sign. These
represent ordering of the particle w axis away from the
symmetry axis (S <0). This is the type of order expected
for platelike particles with the w axis in the plane of the
plate, the so-called platelike nematic order N _,.

The case v(K)=0 clearly marks the separation between
these two forms of uniaxial order. The vanishing of A, in
this case is also indicative for the occurrence of a phase
transition of higher order towards the lower symmetry
phase, which perforce is biaxial. Explicitly solving
v(K)=0 yields the following expressions characterizing
these systems of crossover type:

.

eg=0=K, =0, Kj00~K32>0 (3.23)
and
— 1Ky |
2 2 2,
—3e5=0—K;, g0—K;, 3= = 3.24
ep—3e; 2,00 2,22 3 (3.24)

The situation described above is illustrated in the
schematic branching diagram (Fig. 2). A more physical

i !

f ! ,

1 1

5 | 1

[a] I 1

Dé | |

| |

(=) 1 |

& i M=0 i

Jl d |

- .

x }\o‘\\ ———: Ao —_—

& S~ | !

o | i

@ l !

3 l |

a ] \
| VIK) >0 ! VIK)=0 I v(K)>0

| |

FIG. 2. Schematic branching diagram of the stationary-
phase equation (3.2) showing the dependence on the sign of
v(K).
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interpretation of the crossover phenomenon is deferred to
the applications, where we will relate this behavior to ac-
tual particle parameters. In Sec. III C we look at this be-
havior from another point of view by studying the con-
nection with Landau theory.

C. Connection with the Landau theory

A connection between the microscopic framework sup-
plied by the density functional (2.1) and the more macro-
scopic, symmetry-oriented approach of the Landau
theory of phase transitions,® can be made through our
identification of the set (2.17) as primary order parame-
ters. Inserting the expansion (2.15) for the ODF into the
free-energy functional (2.1) and expanding in terms of the
order parameters ¢, ,,, we find the following structure:

Bf[ { ¢1,mn ] ]:¢(O)(A)+ 2 q)(nzr)t,m’n’(}"’K)d/Z,mn¢’2,m'n'

nn’

+ 3 o
mn,m'n’,m"n
mm'm"
nn'n"

x ¢2,mn lr’)Z,m'n"(ZJZ,m”n”

+ DK, (Y e }) - (3.25)

The summations all run over the appropriate ranges.
Note that the interaction enters in the quadratic term but
not in the cubic term which is due solely to the {,Iny)
term in the free energy. The rest term ®™" contains all
higher-order invariant polynomials in the primary order
parameters as well as the terms involving the secondary
order parameters with / 2 4. The relevant order parame-
ters are those that develop a zero prefactor after diago-
nalization of the quadratic term in (3.25). These are ex-
actly the amplitudes ¢, and c, of the eigenvectors of K
with eigenvalue k., which have been determined in Sec.
IIT B, now interpreted as variational parameters. Per-
forming the diagonalization and collectively denoting all
nonrelevant order parameters by ¢ the free energy (3.25)
is transformed into

Ak,

BF[{corcy e} 1= (R)+ > .
8

2

1+ (c3+c2)

[

Sv(K)eoled —3¢3)

g

!

+ P TSUALK, f{eg,c4,8) (3.26)

We recognize the bifurcation condition (3.12) in the pre-
factor of the quadratic term. The role of v(K) in deter-
mining the presence of the cubic term in the Landau ex-
pansion is evident, supporting our interpretation of the
crossover systems with v(K)=0 as the boundary between
two classes exhibiting first-order transitions to nematic
phases, they themselves exhibiting a second-order transi-
tion. In fact, we can directly compare our results with
the Landau theory for the isotropic-nematic transition as
developed by Gramsbergen, Longa, and de Jeu,’ by not-
ing that we can construct a second-rank tensor order pa-
rameter (1 is the unit tensor)

Q=co{1(3282—1)} +c,{1V3I(RSX—J2Y)} 3.27)

v(K)>0

viK)=0 F----

J1d0y10S|

v(K)<0

FIG. 3. Topology of the phase diagram in the neighborhood
of the crossover points v(K)=0. Solid lines: first-order transi-
tions. Dashed lines: second-order transitions.

that is equivalent to their macroscopic order parameter.
The general expansion of the free energy in terms of this
order parameter is given, up to sixth order, by

F[Q]=F,+a Tr(Q*)+b Tr(Q?)+c Tr(Q?*)?
+d Tr(Q)Tr(Q%) +e Tr(Q?)’ 4¢'Tr(Q%)?
(3.28)

where, by comparing with (3.26), we can identify
a < (Ay—A) and b < v(K). Note that the presence and po-
sitivity of the even-order invariants is guaranteed in our
case since they are generated by the noninteracting
(#,Iny) term in the free energy, for which the isotropic
phase must be absolutely stable. We can therefore use
their results and identify the cases v(K)=0 as Landau
points in the phase diagram with v(K) and A as variables,
i.e., the bicritical point in which the isotropic, rodlike
nematic N 4,, platelike nematic N _, and biaxial B
phases meet. The topology of this phase diagram in the
neighborhood of the Landau point is sketched in Fig. 3.
This feature of the phase diagram of nonuniaxially sym-
metry particles was first discussed by Alben.®

IV. APPLICATIONS

A. Uniaxially symmetric particles

As mentioned in the Introduction, the uniaxially sym-
metric particles from a subclass of the systems considered
in this paper. The effective interaction between such par-
ticles depends only on the angle between their symmetry
axes. Hence the only nonzero coefficients in the expan-
sion of K (2.13) can be chosen to be the K, o’s. The
minimal eigenvalue will be k, =K, o4, with the two asso-
ciated eigenvectors Xo,=A{} and y,=AY). The order pa-
rameter 1, o0=S =(4,P,(cosB)) is the well-known
Maier-Saupe order parameter. The second relevant
one—1), ,o—that signals biaxial order around the refer-
ence z axis, is commonly neglected on the grounds that
‘“‘you cannot get biaxial phases from uniaxial particles”
(see the discussion in Sec. II C). It does, however, appear
naturally in the description of uniaxial particles. Consid-
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er the second-rank tensor order parameter S,

s=< s %[3®,®@i-‘1}> ,

i=1

(4.1)

where the sum runs over the particles in the system and
the angular brackets denote equilibrium averaging. Since
S is a real, symmetric tensor there exists a reference
frame in which it is diagonal. Using our definition of the
ODF (2.15) we can explicitly express this reference s"in
terms of our order parameters

s'=diag(— 15 00T 1V 3¢, 50
- %d’z,oo - %‘/31/’2,20: 1/’2,00) .

The analysis of Sec. III B shows that for these systems the
bifurcating solutions will be of uniaxial symmetry.
Indeed one checks that the infinitesimal solutions (3.21)
all yield the same s' up to interchange of the axis labels.
Viewed from the Landau viewpoint, our analysis gives a
microscopic justification of the argument given by
Prokrovskii and Kats’ for the absence of biaxial ordering
in nematics when a nonzero third-order invariant is
present in the free-energy expansion. The only invariant
polynomials (with respect to the symmetry operations of
our solution space &) that we can construct from the or-
der parameters ¥, oy and ¥, o are

1, =13 oo+ ¥3 5o = Tr (s,
Ii=1, ol ‘/’%,00‘31115,20) o Trf (STH .

(4.2)

(4.3)

The Landau free energy, neglecting secondary order pa-
rameters, will be a function of these two invariants:

F(1,,1,). The stationary states are then selected by the
criteria
9F 9F 5F
2o 3 2 2 )=0,
93 00 oI, Y200+ al, (¥ 00— ¥3,20)
(4.4)
oF oF 3F
ad)Z,ogzzaTd’z'm 6 al, (15,00¢2,20) =0

The reader will recognize the analogs of the equations
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FIG. 4. Spheroplatelet.

(3.18) leading the conclusions that the solutions will
posses uniaxial symmetry in the case that 0F/dI,540.
Out theory predicts that close to bifurcation, where the
order parameters are small, this is indeed the case given
that v(K)-£0, the latter condition being automatically
satisfied by the uniaxial systems. Let us stress again that
this is a local argument. The question of the global sta-
bility of uniaxial solutions remains as yet unsettled.

B. Hard spheroplatelet fluid

The spheroplatelet as depicted in Fig. 4 is a natural
generalization of the spherocylinder. It can be described
as a rectangular block with dimensions 2a X b X ¢, capped
with quarter spheres of radius @ and half-cylinders with
radius a and lengths b and ¢ such as to produce a piece-
wise smooth convex body. It is at present the only non-
axially symmetric convex body for which the pair-
excluded volume at fixed relative orientation is known in
closed form.'® The explicit form of this excluded volume,
which will play the role of effective interaction in our ap-
plication, is given by

3
K(QI,QQ):izl;L"~+8ﬂa2b +8ma’c +8abc +4abc | | V)XW, | + | W, XV, | | +4ab? |V, XV, | +4ac?| W, X W, |
+b%c{ | 8;9, | 4+ | 9,0, | | +be? (O, | 4 [ W0, ], (4.5)

where we refer to the figure for the assignment of the
molecular frames {1,,V;,W;} and the cross X denotes the
exterior product, and the bars | - - - | length or absolute
value of the contained expression. This pair-excluded
volume has a broad minimum for parallel orientation of
the two particles and we will assume that criterion (3.8)
holds and that the smallest eigenvalue of K is found in
the /=2 subspace. In order to apply the theory
developed in Sec. III, we need to determine the
coefficients K, ,,,, as defined in (2.13). This can be accom-
plished by exploiting various symmetry relationships

[

among the orientation-dependent terms in (4.5); the de-
tails of these calculations are given in the Appendix. The
results are

K, 00 =3m{b’c —2bc?+2mabe —2mwac?— twab?} ,
K, 00 =K, 0="2V 37 bc? +mabe —Ltmab?} ,  (4.6)
K, =—3m{b% +1imab?} .

For convenience we now choose a as our unit of length.
The bifurcation density is found from (3.6) and (3.9)



39 ISOTROPIC-SYMMETRY-BREAKING BIFURCATIONSIN A . .. 367

po '=L[{(b% +mbc —%‘n'cz)2+(bcz+1rbc —17p?)?
— (b 4 mbe —Lmc?)(be? 4 mbe —Lmb?)}!/?

—(mbec —7b? —7c?—b%c —bc?)] . 4.7)

Solving the crossover conditions (3.23) and (3.24) we find
the following relationships for the dimensions of the par-
ticles intermediate between rods and plates:

b2+mb —Ltme =0 or ¢*+mc —Lmwb=0. (4.8)

The symmetry with respect to the interchange of b and ¢
reflects the arbitrariness of the assignment of the ¥V and W
axes of the particles. The fact that there are two distinct
branches of crossover systems is easily understood by
considering a one-parameter family of related particles
with b fixed and ¢ variable. For ¢ >>b > 1 we have a rod-
like particle, for ¢ =b the particle is platelike, and finally
for ¢=1 the particle is rodlike again. Somewhere be-
tween these three regimes we must find the two crossover
shapes. Figure 5 shows how the relations (4.8) divide the
spheroplatelets in to subclasses with specific symmetry-
breaking behavior.

These results permit us to build a tentative picture of
the phase diagram of the hard spheroplatelet fluid in the
Onsager approximation. In order to compare systems
with different particle dimensions, we adopt the proper
volume of the particles vy =47+ wb + mc +2bc as unit of
volume and introduce the packing fraction n=pv,. Fig-
ure 6 presents a plausible constant particle volume sec-
tion of the phase diagram within our approximation. The
first-order transition lines to the nematic phases and the,
probably second-order, transition lines to the biaxial
phase are of course “artist’s impressions.” The overall
picture, however, agrees with the findings on other mod-
els. It is clear that the crossover (Landau) points play a
striking role in determining the global features of the
phase diagram. Whether the actual phase diagram of the
hard spheroplatelet fluid retains any of the features
present in this approximation is an open question. Cer-
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FIG. 5. Symmetry of bifurcating solutions as a function of
the breadth b and length c at fixed width a of the spheroplate-
lets. Dashed line: family of particles with equal volume v,.
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FIG. 6. Conjectured phase diagram of the hard spheroplate-
let fluid in the Onsager approximations for a family of particles
with constant volume v,. Along the x axis we mark the pro-
gress from left to right along the dashed line defined in Fig. 5,
along the y axis the packing fraction 5. Solid line: calculated
location of bifurcation. Closed circles: crossover points.
Dashed lines: conjectured location of transitions between the
phases.

tainly at higher packing fraction one will need to consid-
er the formation of more ordered phases, i.e., smectic,
crystalline, which are here neglected . Especially as re-
gards the existence of the biaxial liquid-crystalline state
in these systems, result from computer simulations seem
to be indispensable. Our results, however, give an indica-
tion of which systems to consider, namely, those of cross-
over type, since it is for these shapes that the biaxial
phase might be accessible from the low-density isotropic
regime. Of course, if existent at all, the actual crossover
dimensions will probably differ from the ones predicted
here. Nevertheless, we believe that for c¢ sufficiently
larger than unity the order of the relation predicted be-
tween b and ¢, i.e., b =c /% is correct.

C. Straley model

As a last application of our results, we turn to the first
model to actually confront the full complexity of nonaxi-
ally symmetry orientational interactions.!' Earlier work
had either not incorporated a full set of order parame-
ters!? or had restricted itself to a lattice approximation
with discrete orientations. ' Straley was the first to intro-
duce the order parameters (2.17). The model he proposed
is of a hybrid type, being in the mean-field picture, but
with the coefficients of the effective interaction fitted to
the excluded volume of hard rectangular blocks with
discrete orientations. The resulting parametrization of
the effective interaction is complete in the sense that all
values of the K, ,,,’s can be generated, albeit when we al-
low for negative particle dimensions. For positive values
of his block parameters L (length), B (breadth), and W
(width) his model trivially satisfies our requirement (3.8),
since all higher-order eigenvalues are identically zero.
Given our definitions for the A‘,ﬁ‘)n’s and the expansion
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(2.10) his coefficients are

2
Kz,gf%[;{ —2B(W?*+L%)—2W(B*+L?)

+L(W?+B%)+6LBW]}], (4.9a)
K2‘02=K2,20:§757—2(§\/§)’1[—%(LZ—BW)

X(B—W)], (4.9b)

K2,22=87’T2[—L(W~B)2] ) (4.9¢)

Two corrections have been made in Egs. (4.9) with
respect to the ones found in the printed version original
paper. [In particular, the coefficients of the last term
(LBW) in Eq. (4.9a) should read ““6;” the prefactor 1 of
the quantity in square brackets in Eq. (4.9b) should carry
a negative sign.] These errors where detected by applying
our formulas for the crossover systems and finding
disagreement with Straley’s prediction that crossover
occurs when B =(LW)!/2, The discrepancy could be re-
moved by making the indicated changes, which were,
moreover, verified by recalculation of the original fitting
procedure. The upshot of this is that, although its result
is correct, as shown by his explicit numerical results,
Straley’s original argument for the location of crossover
cannot be correct. His argument is based on the observa-
tion that the transformation (L,B,W)—(L',B',W’)
=(W,LW/B,L), which maps a rodlike system with
L>B=W into a more platelike system with
B'=W'>>L’, induces the following transformation on
the coefficient K, ,,
Lw

KZ,mn ’

K’ =
2,mn
B’

(4.10)
which therefore represents a system with identical in-
teractions but at a different value of the control parame-
ter A'=B?/LWA. This immediately singles out the

Elf_——h

FIG. 7. Symmetry of bifurcation solutions as a function of
block parameters of the Straley model. Dashed lines: uniaxially
symmetry systems.

“self-dual” systems with dimensions [L,(L w)H'2 Wy,
which are fixed points of the transformation, leading
Straley to the conclusion that the dividing line between
rod and plate behavior is given by B =(LW)!/2. Taking a
closer look at the expressions (4.9) shows that they can all
be written as linear combinations of the terms LBW,
L(B*+W?), B(L*+W?), and W(L*+B?) each of
which independently satisfies the scaling (4.10). Thus all
models whose interaction coefficients are given by arbi-
trary linear combinations of these terms would have their
crossover predicted at B =(LW)""?, which, in view of our
explicit expressions (3.23) and (3.24), cannot be the case.
As remarked in Sec. IV B we expect this relation to be
valid asymptotically, i.e., L >>B = W for all hard block-
like particle models. The fact that in Straley’s model this
relation is exactly satisfied must be considered fortuitous.
We conclude by giving the shape symmetry-breaking dia-
gram for the model in Fig.7.

V. CONCLUDING REMARKS

The theory for the determination of the symmetries of
the bifurcating solutions of the effective orientation-
dependent pair interaction models presented here is clear-
ly an elegant and useful tool for the questions considered.
Care, however, has to be exercised in the interpretation
of the results. Since the theory only deals with solutions
(stable or metastable) that branch off from a known disor-
dered solution, possibly stable solutions that do not con-
nect to the reference solution are not taken into account.
Especially cases where, due to the direction of bifurca-
tion, the occurrence of a first-order transition is inferred
merit caution. A pertinent example is the well-known
observation by Alexander and McTague!* that in the case
of the liquid-solid transition symmetry considerations
analogous to the ones employed here predict metastable
crystalline solutions of bcc type, whereas the known
stable crystalline phase often has a different symmetry.
In these cases the bifurcating solution is thus pre-empted
by a solution of different symmetry that does not bifur-
cate from the disordered phase. For the class of models
considered here we were, of course, guided by more expli-
cit numerical and analytic results on specific systems. We
are thus confident of the interpretation given, but do not
claim to have established generally that a phase diagram
like the one presented in Fig. 6 exhausts the possibilities
for the class of systems considered.

An obvious extension of the work done here would be
to relax the symmetry imposed on the particles and con-
sider, for instance, chiral particles. Of course, the
relevant parameter space, i.e., the number of real num-
bers specifying the kernel K in the /=2 subspace, will
grow in size, increasing the complexity of the problem.
In the most general case of rigid particles with no as-
sumed symmetry the parameter space will be effectively
14 dimensional. (There are 15 independent real com-
ponents but an overall factor can always be absorbed into
the definition of the coupling parameter A.)

Another interesting development would be to go
beyond the ‘‘mean-field” approximation for the free-
energy functional and see which of the results derived
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here remain valid. A possibility would be to study the
contribution of a general diagram in the cluster expan-
sion of the free energy to the symmetry properties at bi-
furcation.

Finally we remark that the theory developed here for
orientation-dependent interactions is easily generalized to
other types of interactions. Whenever the single-particle
degrees of freedom are described by the elements of a
(finite or compact) group G [in our case the rotation
group SO(3)] the ODF’s can be expanded in terms of the
finite-dimensional irreducible representation matrices of
this group and the effective interaction will be a Hermi-
tian operator on the space spanned by the irreducible in-
variant vector spaces belonging to these representations.
This reveals the essentially group-theoretical content of
the approach, which, of course, closely parallels that of
the Landau theory. The main difference is that it estab-
lishes an explicit link to interparticle interactions.

Note added in proof. Professor Straley has communi-
cated to us that he has only recently become aware of the
printing errors in his paper, as mentioned in Sec. IV C.
In his calculations he has of course used the correct ex-
pressions for the expansion coefficients K, ,.,., as given by
(4.9a)-(4.9c). Moreover, he points out that these expres-
sions are the only ones consistent with the physically ob-
vious requirements K, o, =K, ;, =0 when B = W (uniaxi-
al particles), K, oo =0 when L =B =W (spherical parti-
cles), and one more requirement implementing the sym-
metry LB at fixed W. This defuses the presented coun-
terargument against the scaling rule for locating the
crossover systems, since the proposed arbitrary linear
combinations of basic scaling terms are not physically
reasonable. What remains is complete agreement of the
two methods for locating the crossover in the case of the
model discussed. The power of the general method
developed in this paper is that it does not rely on special
properties of the interaction coefficients which are pecu-
liar to a specific model. We are indebted to Professor
Straley for his illuminating comments.

APPENDIX: DETERMINATION OF KX, ,,,
FOR HARD SPHEROPLATELETS
In order to determine the coefficients K, ,,, for the

hard spheroplatelet fluid we have to consider the in-
tegrals

Kypn= [ dQ,K(Q)AR, Q) (A1)

where K is the pair-excluded volume explicitly given in
(4.5). Consider two functions of relative orientation relat-
ed through

FQ)=f(Q

where R, and R, are two given rotations. Integrals of
the type (A1) over f can then be re-expressed into those
over g through

[dQuf (@Al (@)
= [dQ,g (R7'Q,R,IAZ,(Q))
= [d0g(Q,)AY

m,n

710, =g ((QR ) 'Q,R,) , (A2)

(R QR .

TABLE I. Values of the integrals used in the calculation of
the coefficients K, ,,, for the hard spheroplatelet expressed in
units of 87°. The integrand is the product of the factors labeling
the row and the column of the result.

ARy AGS AYy AP
A s
X - = 0 0 0
|W1 Wz‘ 32
9, X%, -T T __7 37
128 128 128 128
m m
VX, L 0 SUBVE 0
19, X%l 64 64
s m Y
V. XV — =V 0 0
1%, X% 64 64
RS - =V 0 0
[a,-%,] -+ 0 V3 0
19,0, % *%‘/ %‘/3 ‘%
16,9, L 13 —1Vv3 -2

o
"
e}
P
e}

Choosmg R,=0Q,=R(7/2,4;) (a quarter turn around
the 1, axis) and likewise R,=Q,=R(7/2,10,), all
orientation-dependent terms in the excluded volume can
be related to the three expressions |W,-U,|, |4, W,]|,
and |W,;XW,]|, eg., |9/ XW,|=]0,(W)XW,]|, etc
These quarter turns respect the symmetry of our solution
space &, and the basis functions A,,’,’,, form an invariant
set under their action

A(Z) Ql A(Z) ‘9’12 A(Z (Q
=A2 (A2 (0,)A2)(Q,,) ,

mn( Q191,05
(A4)

where summation over the appropriate ranges is implied.
The Euler parameters for the quarter turns are given by
Q=(—m/2,7/2,7/2). As matrices realized on the basis
[AGY, AL, AY), AP} they are given by

-1 o -3 o
0 -1 0 —1v3
T3 o 1 o |’
0o -3 o0 1
_ (AS5)
-1 -3 o0 0
-3 4 0 0
Q 0 0 —1 —1V3
0 o -3 1

The integrals left to be calculated are

fdﬂlz | %, X W, [ A, (Q)
A6)

(
fde RZRY A(n:’n le)zfdﬂlziﬁl‘wz | A'rrzr,)n(ﬂlz) ,

where we have used A}, (Q,)=A}) (Q,)) to obtain the
last identity. The only nonzero contributions come from

the following integrals:
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fdﬂuﬁ‘vlXWZIA&),(QIZ)=(21r)2f_lld§[l—§2]1/2P2(§)=8ﬂ'2{—7r/32} )

A 27 1
fdﬂ,zlwl-uzlA{f(’)(Qu)=21rfo dylcosylf_1d§[1—§2]1/2P2(§)

=8m{— L},

(A7)

A A A 27 1
fdﬂlzlwl-u2|A8%(Q.12)=%\/3(27r)fo dy|cosy|cos2y f_ld§[1—§2]3/2P2(§)

=8m{LV73} .

The relevant integrals can now all be calculated using the elements described above. We tabulate them in Table I.
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