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Modified-moment method for the Fokker-Planck equation and some aspects
of the thermodynamics of irreversible processes
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The modified-moment method is applied to solve the Fokker-Planck equation in such a way that
the solution is consistent with the requirements of the thermodynamic laws. The formal solution
has an attendant mathematical structure for the entropy which is similar to that obtained from the
Boltzmann equation. A generalized Gibbs relation is obtained for such a thermodynamic branch of
solution. The formalism therefore may be used to study thermodynamic aspects of stochastic pro-
cesses underlying the Fokker-Planck equation. The method is shown to yield the same analytical
results as other methods in the case of linear processes, and in the case of nonlinear processes the
moment series converges suSciently fast to justify a lower-order truncation of the moment series for
the distribution function, if the diffusion constant (D) is less than a critical value. In this case the
solution of the Fokker-Planck equation tends to the steady-state distribution function. It is shown

that the second variation of the nonequilibrium part of the entropy may be used as a Lyapunov
function, which provides local criteria of evolution only.

I. INTRODUCTION

Description of macroscopic irreversible processes is
often based on the theory of stochastic processes for vari-
ables we wish to describe in space-time. Under the Mar-
kovian assumption on the processes the description is ba-
sically reduced to solving the Fokker-Planck equation'
or a master equation. Especially, the Fokker-Planck
equation determines the probability distribution of the
stochastic variables as a function of time in the space of
the random variables chosen. If the stochastic variables
are denoted by a, , a2, . . . , a, the Fokker-Planck equa-
tion for probability distribution or transition probability

P(a~a;t)=P(a„a2, . . . , a ~a„az, . . . , a;t)
may be written asa, ~ aP(a a;t) =——g G, (a)P
Bt ',

1
BO.,

where G, is the "velocity" of process n; and D; are
diffusion tensors; both G; and D; are generally functions
of a1,e2, . . . , o. . If the processes are linear, the velocity
G, is a linear combination of the stochastic variables.
The Fokker-Planck equation is analytically solvable for
arbitrary p if the processes are linear and the diffusion
tensors are independent of o, o.2, . . . , o. . For nonlinear
processes an analytic solution is generally not possible.
There have been a number of formal theories ' proposed
to express the distribution function, and the path-integral
method and the WKB-type approximation method ' are
two typical examples for such theories. They make it
possible to express the distribution function in terms of
the Onsager-Machlup function, which is the stochastic

theory analog of the Lagrangian in classical mechanics.
But such methods present formidable computational
problems except for linear processes for which there is no
need for such theories since the Fokker-Planck equation
can be directly and explicitly solved. In any event, if the
Fokker-Planck equation is a correct approach to the
description of macroscopic irreversible processes it is ex-
pected to yield a mathematical structure that would re-
veal its connection with the thermodynamics of the sys-
tem under consideration. The reason for such an expec-
tation is that all natural processes must conform to the
thermodynamic laws, and the Fokker-Planck equation
would not be an exception if it was impeccable as an evo-
lution equation for the distribution function for a realistic
physical system. In this paper we present an alternative
method of solution for the Fokker-Planck equation which
carries with it a concomitant mathematical structure of
(irreversible) thermodynamics. We will call such a solu-
tion the thermodynamic branch of solution. The method
employed in the present investigation is similar in spirit
to the modified-moment method used for obtaining the
thermodynamic branch of solution for the Boltzmann
equation.

In this method the solution of the Fokker-Planck equa-
tion is looked for as a functional of the correlation func-
tions or moments of stochastic variables which may be
determined by their evolution equations. These evolution
equations are macroscopic equations. Since the distribu-
tion function is a functional of such macroscopic observ-
ables or moments the temporal evolution of the latter
determines the evolution of the former, and the thermo-
dynamic laws are brought in to control the evolution of
the moments. This approach is advantageous on two
sides: for one, inevitable approximations for the distribu-
tion function are made such that they would yield macro-
scopic quantities conforming fully to the thermodynamic
laws; and for the other, the resulting mathematical struc-
ture becomes easily amenable to interpretation in terms
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of the observables measured in the laboratory and it even
presents a possibility for formulating a semiempirical
theory in which the laboratory information is used for
constructing the distribution function that may be em-
ployed for some other purposes in connection with the
stochastic variables in question. When applied to the
Boltzmann equation, the modified-moment method
yields the solution (i.e., the distribution function) which
reduces to the Chapman-Enskog first-order solution hold-
ing near equilibrium. Therefore one is tempted to imag-
ine that the modified-moment method solution would
yield a first-order solution for the Fokker-Planck equa-
tion which is equivalent to the Chapman-Enskog-type
solution. In fact, there is some validity in this expecta-
tion since the Fokker-Planck equation may be regarded
as being equivalent to a homogeneous Boltzmann equa-
tion in which the collision term is replaced by the
Fokker-Planck operator R [P]: see (2.1) for the defin-
ition.

In this paper the actual analysis is made under the as-
sumption of the potential condition being satisfied by the
Fokker-Planck operator. This condition is imposed since
we wish to obtain the steady-state solution in terms of a
potential. Even if this condition were not met, the
modified-moment method would be applicable, but the
steady-state solution would not be as simple as the case of
the potential condition being satisfied.

In Sec. II the H theorem and the entropy are con-
sidered. In Sec. III the modified-moment method is
developed for the Fokker-Planck equation and the con-
nection with the thermodynamics of the resulting formal-
ism is discussed. The formalism is illustrated with some
examples. The examples with linear processes show that
the method yields exactly the same distribution functions
as by the usual method of solution in the case of Gaussian
random processes. In the case of a nonlinear process
considered as an example it is numerically shown that the
moment series converges sufficiently fast to justify a
lower-order truncation of the series. This test indicates
that the method can be practical and useful for studying
Fokker-Planck equations for nonlinear processes. In Sec.
IV a theory of stability is developed based on the entropy
calculated from the Fokker-Planck equation. The second
variation of the nonequilibrium part of the entropy is
found to have the properties required of a Lyapunov
function. Section V is for concluding remarks.

II. THE H THEOREM AND THE ENTROPY

may depend on the stochastic variables as well. Whenev-
er convenient, the p-dimensional gradient operator will be
abbreviated with V'. The present study will be confined to
the class of processes which satisfies the potential
condition:" that is, there exists a function V(a) such
that

PV(a)= —2 I da. D 'G(a) . (2.2)

R [Po]=0 . (2.3)

With the potential condition (2.2) this equation implies

PO=C exp[ —PV(a)],
where p is a parameter as yet undetermined and C is the
normalization factor

C =
& P & I& exp[ —PV(a)] & .

The angular brackets denote the integration over the sto-
chastic variables Lx= Ia, ] from —~ to + ~. If the dis-
tribution function is normalized to unity

(2.4)

Although special and restrictive, this class still covers a
sufficiently wide range of processes of interest and also al-
lows a more definitive study of the thermodynamic basis
of stochastic processes than those not satisfying the po-
tential condition. In fact, finding the steady-state solu-
tion in the case of the potential condition not satisfied is
equivalent to solving Pfaff's problem in the theory of
differential forms. ' In this case it is not possible to find
V(a) as easily, and it just might be that the Fokker-
Planck equation approach is impractical for all intents
and purposes. It must be stressed that the modified-
moment method and the thermodynamic theory
developed here are equally valid and applicable even if
the potential condition is removed, as long as there exists
a function V(a) such that the steady-state solution of the
Fokker-Planck equation is represented by the exponential
form as in (2.5a) below. If not, it is necessary to develop
a theory for V. As mentioned earlier, this is not a trivial
problem.

The Fokker-Planck equation is irreversible in the sense
that the time-reversal invariance is broken and it admits
the H functional as a statistical model for entropy. Be-
fore introducing the H functional we define the steady-
state solution Po of (2.1) by the equation

Let the distribution function or the transition probabil-
ity be described by the following Fokker-Planck equa-
tion:

then

Po =exp[ —P V(a ) ]/Q,
Q=&exp[ —PV(a)]& .

(2.5a)

(2.5b)

—P(a~a;t)= —g G;(a)PBt,-
I Bcz;

The meaning of p will be fixed when the entropy of the
system is identified as will be done shortly.

We now introduce the H functional:
+ —,

' g g D;, (a) P(a~a;t)
, Bcz, " Bn, S(t)= —k~ &P(a~a;t)lnP(a~a;t) &, (2.6)

—:R [P], (2.1)

where G;(a) may be a nonlinear function of a and D,

where kz is the Boltzmann constant. This is the statisti-
cal formula for the entropy of the system. It is con-
venient to split S (t) into two parts as follows:
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S(r)=S,+S„,
where

(2.7)

S, = —k~ (P lnPO(a) ),
S„=—k~ ( P ln(P/Po ) ) .

(2.8)

(2.9)

The significance of these two factors will become clear in
what follows.

If (2.5a) is inserted into (2.8), there follows a more ex-
plicit formula for S, :

S, =k~13E+k~lng,

where

(2.10)

E =( V(a) P) . (2.11)

If S, S„and S„are to have the attributes of entropy, it is
necessary to choose the parameter P such that

P= 1/k~T, (2.12)

where T must be identified with temperature. The reason
for this identification will become obvious when the
Gibbs relation is derived later. Then by identifying the
"work function"

A = —k&T 1nQ,

we obtain

(2.13)

S, =(E —A )/T (2.14)

1

2
—pk& T—:(g ':A.a aP ) . (2.12')

in analogy to the relation for equilibrium entropy in the
canonical-ensemble theory. " We caution the reader that
despite the symbol, E is not the internal energy in the
conventional statistical thermodynamics unless the sto-
chastic variable happens to be the velocity of the particle.
Nevertheless, since there must be thermodynamic princi-
ples obeyed on the average by the stochastic processes un-
der consideration, the analogy taken advantage of above
appears inevitable. In this connection it is insightful to
note that in the case of a linear process for which
G = —ka, there holds

PV=D ':Aa a,
where k is the phenomenological coe%cient for the linear
process, and the steady-state value E for E is indeed like
the energy since

E = ( V(a)PO ) =pks T/2,
which is simply the result of the equipartition law. It
must be noted that the quadratic form for V(a) taken
above is not the form generally assumed in the subse-
quent development of the theory presented here. For
nonlinear processes the steady-state energy is expected to
be a complicated function of T as is the average potential
energy in the conventional canonical-ensemble theory of
statistical thermodynamics. To make the parameter T
appearing in this theory fully determined, we now define
T in the case of nonequilibrium by the relation

Just like the temperature in the Boltzmann kinetic theory
this definition together with the attendant thermodynam-
ics makes it possible to determine thermodynamic vari-
ables in the units of kz T, and there now is no undefined
parameter in this theory.

We next consider S„. Differentiation of S„with t and
use of (2.1) and (2.2) yield the well-known inequality

dS„
dt

=
—,
' kz ( P V ln( P /Po ) .D .V ln( P /P o ) ) ~ 0, (2.15)

which embodies the content of the 0 theorem for the
Fokker-Planck equation. We may therefore identify
(dS„/dt) with the entropy production due to the stochas-

tic process represented by the Fokker-Planck equation.
We regard S(t) as the entropy of the system. Then it is

possible to look upon

dS Idt =dS, Idt +dS„ /dt (2.16)

as the entropy balance equation for the system especially
in view of the inequality (2.15). The first term on the
right in (2.16) does not have a definite sign that can be at-
tached to it. It is related to the rate of change in "ener-
gy" as will be shown later; see (3.4) below. Since there
are no notions of configuration space and volume in the
present Fokker-Planck equation approach, the dS, /dt
term cannot be cast in divergence form as is the case with
the entropy balance equation appearing in the Boltzmann
kinetic theory where the dS, /dt term should be replaced
by the divergence of entropy Aux: —V„.J, where V, is
the spatial gradient operator and J, is the entropy flux.
As will be seen later, this absence of configuration space
and the concept of volume in the Fokker-Planck equation
approach results in the absence of the pressure-volume
work term in the nonequilibrium Gibbs equation (3.10b)
below.

h' '=(a —a)(a —a) . (a —a)

(3.1)

where

a=(aP) .

Therefore h'" is a p-dimensional vector and h' ', h' ',
etc. are tensors of rank 2, 3, etc. It is possible to use an
orthogonal set of tensor polynomials such as tensor Her-
mite polynomials instead of (3.1), but the advantage of
such an orthogonal set is minor in the present case of

III. MODIFIED-MOMENT METHOD
FOR THE FOKKKR-PLANCK EQUATION

We now look for P (a ~a; t) in terms of moments by fol-
lowing the spirit of the modified-moment method. For
this purpose it is convenient to introduce the following
abbreviations for moments:

h'"=a
7

h' '=(a —a)(a —a)
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nonlinear processes since the steady-state distribution
function is no longer Gaussian. The distribution function
is sought in the form

Gjs„" =T '-+X(-)OA™
dt

(3.8)

P =Po(a)exp —P g X( )C)h ( ' —p„ (3.2)
and by eliminating the dissipative term A' ' with the evo-
lution equation for A ™,we obtain

where X' ' are the unknowns to be determined such that
P satisfies the Fokker-Planck equation and p„ is defined
by

ds (m) (1)
T —) yX(m)O dA ~(m) (dA

dt dt dt
(3.9)

exp( P)x„)=—exp PgX' —'eel' '
pe(Lx)) .

m

(3.3) When this result is combined with (3.4), there follows the
relation for entropy:

The symbol 0 stands for the scalar product of the tensors
involved. The steady-state distribution function Po is
given by (2.5a). We will shortly present a method for
determining X'

Before doing so, it is useful to perform the following
formal calculation in order to see the significance of Eq.
(2.16) in a better light. The following relation is useful
for the purpose:

dE ap
dt at

GIS (m)dE ~
—

(, ) dA
dt dt dt

where

X()) X(1) y X( m) Cg)( m) (

&Pl 3

for

Cast in ditferential form, the relation (3.10a) reads

(3.10a)

=P ' [ln( I/Q) —lnPO]
at TdS=dE+ g X( )OdA'

m~]
(3.10b)

=T(dS, /dt) . (3.4)

This relation is rather suggestive for the meaning of the
parameter T appearing in this theory; see (2.12'). With
the definitions T ' = (as /aE ) (3.1 1)

This is a Gibbs relation and an important formal result of
this paper which puts the stochastic process in contact
with the thermodynamic laws. With the help of this
equation we obtain a thermodynamic interpretation of T:

A (m) —( p (m)p )

A(m) —( g (m)R [p] )

g(m) —( (ah (m)/a&)p ) (g() ) —g (2) —0)

we find the evolution equations for moments A '

(3.5a)

(3.5b)

(3.5c)

which is the thermodynamic temperature if S is interpret-
ed as the entropy. This is the basis of the assertion made
previously regarding T. We remark that the concept of
absolute temperature T is inseparable from the concept of
entropy. In other approaches ' " to the Fokker-Planck
equations the temperature is introduced through the
Auctuation-dissipation theorem, but the latter is some
steps removed from the primordial concept of entropy.

Similarly to (3.11), there holds the relation

dA(-' ".g"'+A' ' for all m .
dt

(3.6)

Gjs„ = —k~ (ln(P/P )Ro[P]), (3.7)

we find

Here the superscript t means the transpose. This set
represents an open hierarchy of coupled ordinary
differential equations for A ' ' which is equivalent to the
Fokker-Planck equation (2.1).

If (3.2) is substituted into the equation

T-'x'- =(as/aA - ), , (3.12)

which is a natural consequence of (3.10b). As in thermo-
dynamics, if the Gibbs relation is used as a phenorneno-
logical equation which determines the entropy, then X '

must be empirically supplied as a function of E and A '

These empirical relations are constitutive equations
characterizing the system in hand. In the present theory
X ' ' are determined from the consistency condition
(3.14) below.

With the new interpretation of T and X ' ' as given in
(3.11) and (3.12) we can express the distribution function
in a more insightful form in terms of the entropy deriva-
tives:
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P =exp —k '(BSIBE)[V(a)—p] —k ' g (OSIRIS( )C)h' ' —g (OSIRIS ™)C)B('.h" (3.2')

where

To find the equation determining X' ' explicitly in terms of moments 3 ' ', we now return to the entropy production
(2.15) which may be calculated with (3.2) in the form

(dS„Idt)=(k 13 l2)g gX' '$(PVh™.D.Vh" )C)X'"
m I

(3.13)

Since the entropy production can also be given by the form (3.8), comparison of (3.13) with (3.8) yields a set of algebraic
equations for X'

2 'P(PVh' .D V'h ")C)X'"=A' ([ A™)) (3.14)

for all m. This is a linear set for tensors X'" which, when solved, yields X'" so far undetermined. This set may be
solved by the following device. First define a tensor of rank (m + I) by the formula

C(m+() (PVh(m) D Vh(()) (3.15a)

If the sequence of moments is truncated at q, a vector L can be constructed with the independent elements of vector
X'" and tensors X' ', . . . , X' '.

(1) (1) (1) (2) (3) (q)[X( &X2»Xp «X)), . . . , X)))». . . X)1 ). . . I (3.15b)

The dimension of this vector is

[( (m+I)I C (3.15c)

Similarly, the tensors A™induce a corresponding vector
A of dimension d. Therefore the set (3.14) may be cast
into the following linear set:

C L=2kqTA . (3.16)

If the matrix C is nonsingular, this set can be easily
solved:

X=2k~ TC 'A, (3.17)

which expresses X' ' in terms of [ A ™)since A and C
are generally dependent on [ 2 ' ' I. This represents the
qth moment approximant for X' ' and thus for the distri-
bution function P. The truncation of the sequence of mo-
ments must be made such that the following two condi-
tions are first of all satisfied: (1) the boundary condition
on P is satisfied: (2) the entropy production calculated
with X' ' determined with (3.17) must remain positive.
There is another criterion that must be met. It is the con-
vergence of the moment expansion. In this manner the
solution procedure for the Fokker-Planck equation is re-
duced to the solution of algebraic equations (3.14), or
equivalently (3.16), and the solution of ordinary
differential equations for 3' ', i.e., the evolution equa-

d=gd
m =1

where d is the number of independent elements of L'
We remark here that, for example, the second-rank ten-
sor X' ' is symmetric and therefore there are only six in-
dependent elements. A similar remark applies to other
tensors. Then a matrix C of dimension d may be con-
structed with the set of tensors [ C'

tions for moments, subject to suitable initial conditions.
Therefore, as q ~ ~, (3.17) provides X'"') for all the mo-
ments (correlation functions) and the solution of the
Fokker-Planck equation is obtained in principle. In prac-
tice, however, it will be necessary to resort to further ap-
proximations to (3.17) or (3.14) in order to make the
equation more manageable.

To summarize the solution procedure, the distribution
function is first written in an exponential form as in (3.2)
and then the algebraic set of equations (3.14) or (3.16) is
solved for X' ' appearing in the distribution function.
The terms X' ) will be functions of moments (correlation
functions). To find the moments as a function of time,
their evolution equations are derived from the Fokker-
Planck equation and then solved subject to suitable initial
conditions on the moments. When the solutions of the
moment evolution equations are substituted into
X '( [ 3 '"

I ), the distribution function is found as a func-
tion of o, and t for the Fokker-Planck equation under
consideration. Note that 3 '" are functions of time.

The solution (3.17) provides an alternative interpreta-
tion of P. Since A=O if dA' '/dt =0 for all I which
defines the steady state of moment evolution, we see that
the steady state of the Fokker-Planck equation coincides
with the steady state of macroscopic processes defined by

(dA ' 'Idt) =0

or

B(m)( A(l)+A(m)(
[ g (l)I ) 0

This proposition is true, provided the steady state of the
moment evolution equations is stable, and will find an ap-
plication when we consider the question of stability of
macroscopic processes in Sec. IV.

As an illustration of the method presented, we consider
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a few simple cases. In the calculations presented below,
we assume D is constant.

A. Linear one-dimensional process

P (r) = [A, /AD (1 —e ')]'~2

Xexp[ —2(a —aoe ') /D(1 —e ~')], (3.24)

We consider the case of a linear process characterized
by

(3.18)

When this is integrated over t and the initial condition
A ' '(0) =0 is taken for all m ~ 3, then we find

A -(r)=0
for all m 3. The initial conditions taken here mean that
the random variable is not initially correlated at all or-
ders of m ~ 3. In fact, we take also A ' '(0) =0 as we will
see shortly. This means that there are only two moments
A"'(t) and A' (t) necessary for the solution and the
random process is Gaussian. In this case (3.14) consists
of two algebraic equations,

PDXI"= —2X A "I,
28D A ' 'X' '=D —2k A ' '

We find X' "and X' ' trivially:

X'"=—2k/ TA. A "'/D,
X' '=kg T(D —2/A ' ')/2DA "'

(3.19)

(3.20)

The evolution equations for A'" and A' ' are calculated
similarly to those for A ' ', m ~ 3:

dA"'
dt

dt
=D —2XA ' '

(3.21)

which may be solved easily:

A "'(t)=exp( —
A, t) A 0

' —=aoexp( —kt),
A ' I(t) =(D/2A, )[1—exp( —2At)],

(3.22)

if A' '(0)=0. Substituting (3.22) into (3.20) yields XI''
and X' ' in terms of time:

where A. is a positive number. The evolution equations
for A ' ' can be easily constructed with (3.5b), (3.5c), and
(3.6). For this purpose we first calculate A' ' and B™
from (3.5b) and (3.5c) by using integration by parts and
the definition of A ' '. For m ~ 3 the evolution equations
are linear,

d A'-' = —mA. A' ' (m ~3) .
dt

which is exactly the distribution function for a one-
dimensional Gaussian random process obtained by other
methods. '

B. Linear multidimensional process

We next consider a linear process involving more than
one random variable. Thus we now have

G = —M.g, (3.25)

where M is a positive matrix. For the brevity of presenta-
tion we assume that dimension p =2. The third and
higher moments (triple- and higher-order correlation
functions) vanish for the same reason as for the one-
dimensional case already discussed. Therefore the entro-
py production will be positive and P satisfies the bound-
ary condition. Since X2, ' =X',2' owing to the symmetry
of the correlation matrix A ' ', there are three indepen-
dent elements for the 2X2 second-rank tensor X' '. We
therefore construct five-dimensional vectors X and A:

X=~X"' X"' X"' X"' X"'~
1 & 2 & ll & 12 & 22

1 ~ 2 ~ ll ~ 12 ~ 22 J

(3.26a)

(3.26b)

and a 5X5 matrix

D 0
0 R

[DA' 'I

[DA' '122i&

2[DA ' I,2,2 [DA

2[DA' 'I22i2 [DA' 'l222z

(3.26c)

(3.26d)

where

[DA' '[kI~„=Dk~ AI'„'+D~„AI'~'+Dr~ Ak„+Di„Ak~,
W"'= —M-A"',
A' '=D —(M A' '+ A' 'M) .

Therefore we find

X"'= —2k/ TD 'M A "',
3

X i, ' =2k' T g ( R ' ),q IIk =—k 8 TK. . .
I& =1

(3.27)

3

XI2' —2k' T g (R ')2k II„=kii TKi2 —ks TK2, , (3.28)
I& =1

X" (t) = —2kii TAaoexp( A t)/D, —

X' '(t) =Eke T/D [exp( —2A, t) —1] .
(3.23)

3
X' '=2k T g (R ') kII„:—k TK

l& =1

By substituting these results into (3.2) and calculating Po
with (2.5) and (3.18), we find the distribution function in
the form

where AI, I' are the elements of AI~' given in (3.27). In this
particular case the evolution equations for moments are
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dA'"
dt

dA' '

dt
=D —(M. A' '+ A' 'M)

(3.29)

agrees exactly with the solution of the Fokker-Planck
equation for the linear process in question which can be
obtained by other methods. '

C. Schloegl model

which can be easily solved:

A'"(t)=exp( —Mt)AO ',
A '(t)=H 'B(t)H .

Here H is a matrix such that

A, =HMH
0

0

(3.30)

Schloegl' proposed to consider the model

A +2X~3X,
X~B,

where the mole number of A and the total mole number
of all components are held fixed by a suitable device of
feeding A into, and drawing B out of, the system. Then
the mole number x of component X is the only indepen-
dent variable whose evolution is given by the equation

and B is a matrix whose elements are given by

B, (t)=exp[ —(A, , +i(, )t]B; +(HD H '); (A,;+A, )

X I 1 —exp[ —(A.;+A, )t]),
with B;~ denoting the initial value of B, , i.e.,

B = [HA ' '(t =0)H '],,
If A,', '(0) =0 for all i and j, then

B,, (t) =(H D H '),- (A,;+I,, ) 'I l —exp[ —(k, +AJ )t]I

(3.31)

and

~'j g g H ik (H D H '}kiexp[ (~k +~i )t]LI ij
k I

(3.32)

With these results the distribution function can be ob-
tained in terms of a and t. The a dependence of the dis-
tribution function for an arbitrary p is as follows:

P(t)=(m det~L+K~) ' exp[ —(L+E):(a—a)(a —a)]
(3.24')

where

dx = —(x —x, }(x—x2)(x —x3), (3.33)

where x, , x2, x3 may be three different values of x at the
steady state. If x is regarded as a stochastic variable and
a noise term is added to (3.33), there follows a Langevin
equation from which we obtain a one-dimensional
Fokker-Planck equation with

G = —(a —a, )(a —a2)(a —a3)

(a,. =x;, i =1,2, 3) . (3.34)

It is important to note here that in obtaining the Fokker-
Poanck equation we have not taken the master-equation
approach ' ' in which a master equation is constructed
from (3.33), but the Langevin equation approach in
which a Langevin equation with a white-noise source is
constructed. The master-equation approach has a
different interpretation for diffusion tensor D which we
do not adopt here. In this particular calculation we as-
surne D is constant for the sake of simplicity of calcula-
tion. This assumption is not mandatory and easy to re-
move. We stress that the aim in this section is not in
studying the Schloegl model itself, but in illustrating and
examining the modified-moment method for solving the
Fokker-Planck equation with the nonlinear flow term
provided by the Schloegl model.

Defining

I.=D ' M ba;=a —a;=A"' —a; (i =1,2, 3), (3.35}

and we obtain

+11 +12
I~ =[2m-'. A"'I= Z 21 22

3

(GP) = —A' ' —g ba, A' ' —ha, ba2ba3 . (3.36)

where K," are defined in (3.28). The matrix L depends on

t, a, and A ' '. Therefore, the time dependence of P is de-
scribed by (3.29) or (3.31) and (3.32). The result above

This gives the right-hand side of the evolution equation
for A '". The rest of the evolution equations may be cal-
culated from (3.5b) and (3.5c). We list them below:



3604 BYUNG CHAN EU AND D. K. BHATTACHARYA 39

dW'"
dt

3'+ g &a;A' '+b,a, b,a2ba3 (3.37a)

3 3= —2 A +gba A '++baba A +D, (3.37b)

ds(3)
dt

3 3= —3 (A"' —A"'A"')+ g b.a (A" —A '")+ ~ b,I l J
i =1 i &j

(3.37c)

and for m &4,

dW(-)
dt

3 3
(A(m+2) A(3)A(m —1))+ ~ b (A(m+1) A(2)A(m —1))+ ~ b b A(m)

1 I J

m (m —1)DA (3.37d)

In the following calculation we choose x)=1, x2=2, and x3=3. Then the steady states x)=1 and x3=3 of (3.33) are
stable, whereas the steady state x2 =2 is unstable. With this choice for x; we find

3

g ba, =3A'" —6,

ba)ba2ba3=( A "'—1)( A"' —2)( A'" —3),
3

g ba, ba =(A''' —1)(A''' —2)+(A''' —2)(A'" —3)+(A''' —1)(A''' —3) .

The stationary solution to the Fokker-Planck equation is then given by the formula

PO=N 'exp[ —2D '(a l4 —2a + 1 la l2 —6a)], (3.38)

where

N= f daexp[ 2D '(a"/4——2a + lla l2 —6a)] .
0

As is shown in Fig. 1, P0 has a symmetric bimodal distribution with peaks at e = 1 and 3.
Since the set of evolution equations in (3.37) is open, it must be suitably closed. The simplest way of closing it is to

truncate the set at a suitable point and check the convergence of the moment series. We find, for this particular model,
the following closure condition most attractive:

A(m+2) A(3)A(m —1)
( ) 3) (3.39)

In addition to this condition, we truncate the moment series at m =4 inclusive. This yields the following four coupled
nonlinear equations:

dt

3= —A ' ' —g ba, A ' ' —b,a, b, a2b, a3, (3.40a)

dx(2)
dt

3 3= —2 A' '+ g ba;A' '+ g ba;ba A' ' +D, (3.40b)

dW"
dt

3 3= —3 g ba, (A' ' —A' ' )+g ba, ba, A (3.40c)

dW("
dt

=6DA '2' —4 g 5a.ba A (4)
J (3.40d)

A more mathematically sensible closure condition which we can have but have not used in what follows is the cluster
expansion in which the connected clusters (i.e. , correlation functions ) of order (m +2) or higher are neglected (m 3).
More specifically, we can decompose A ' + ' (m ~ 3) into clusters:

g (m +2) g (1)g (m +1}+g (2) g (m)+. . . + g (1)2g (m)+. . . + g (m +2)
connected
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0.8-

0.6—

0.4—

We solve (3.40) by a sixth-order Runge-Kutta method.
In this numerical investigation the diffusion constant is
varied. It in fact plays the role of order parameter on
which the dynamical behavior of the system is sensitively
dependent. Before we start the numerical solution, it is
useful to observe that the evolution equations (3.40)
remain invariant to the transformation

0.2-
4 —A'",

A (2)~ A (2)

A (3) A (3)

A( ) A( )

(3.41)

FIG. 1. Stationary distribution function vs x (concentration)
for D =0.16. It has a bimodal symmetry. It is easily verified that the fullest of evolution equations

(3.37) also has an analogous symmetry property

Diagrammatically speaking, if we consider (m +2)
points, the last term on the right-hand side represents a
connected diagram, while the rest represents disconnect-
ed diagrams. Thus, if the connected diagrams of (m +2)
points are neglected, the following closure relation holds:

A (&) 4 A (&)

A "~A" for i =even, i & 1,
A "~—A" for i =odd, i & 1 .

(3.42)

m +2 (k)IA' + '=(m +2)!g' g A "/lk!,
k k=1

Next, we calculate the steady states of the set (3.40) and
analyze their linear stability. For this purpose it is con-
venient to introduce

where the sum over k is subject to the condition
gk klk =m +2 and the prime on the summation sign
means the exclusion of the diagrams connecting all
(m+2) points where m ~3. This last condition m ~3
stems from the fact that the moment series is truncated at
m =4. If the set is truncated at m =5, then the condi-
tion is m ~ 4 and so on.

To test the accuracy of the truncation scheme (3.39) we
will also consider the cases of m =5 and 6 later on, in
which cases there are, respectively, five and six coupled
equations that are structurally similar to those in (3.40).

u =A'" —2=+ —2, y =A' ',
z=A"', m=A(4) .

z+3uy+u (u —l)=0,
D —2[w + 3uz + (3u —1)y]=0,
3u(w —y )+(3u —1)z=0,
3Dy —2(3u —1)w =0 .

(3.43)

Then the steady states of (3.40) are determined by the
algebraic equations

These equations lead to the following equations:

u [u' —5u' /3+( ', D/6)u —
( —,', —13D—/—18)u —( —,', +7D/27+2D /9)u +(—„', +11D/162+D /18)u

—( —„', +D/54+D /81 D /72)]=0, —

y = [ 18u —24u + ( 3D + 6 )u D] /[ 3D +2+ 6u—2 —36u ~],
z = —[3uy +u (u —1)],
w =3Dy/2(3u —1) .

(3.44a)

(3.44b)

(3.44c)

(3.44d)

One obvious solution is

0 =0,
which yields

x =A'"=2, y =z =w =0, (3.45)

which is unstable and independent of D. There are an ad-
ditional 12 solutions to (3.44a). It turns out that for
D ~0. 17 there are six real roots satisfying the symmetry

(3.41). As D gets larger than 0.17, all but a pair of solu-
tions become complex, but the surviving real roots are
unstable. The trajectories of the solutions are indicated
in Fig. 2 which we find insightful, since the distribution
of roots gives a useful qualitative idea of how the solu-
tions of the evolution equations will behave. The linear
stability of the roots is indicated with letter u (unstable)
and s (stable) in Fig. 2. In this work we examine the con-
vergence of solutions when D (0.17. Since for D )0. 17
the behavior of the solutions is rather rich in variety and
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Pe' ~Q

S ~ C S U C

O. ..0

FIG. 2. Trajectories of steady states as the order parameter D
is increased. The abscissa is the real axis and the ordinate is the
imaginary axis. The letter s stands for a stable steady state,
while the letter u is for an unstable state. At point c two steady
states merge to a double root. A steady state is located at the
origin but it does not move as D is changed. There are 13 roots
in all, if the trivial root is included.

appears to warrant a more extensive treatment, we will
report the results elsewhere.

For dynamical solutions of (3.40) we thus examine in
detail only the subcritical case of D (D, =0. 17. In this
regime of D the solutions of (3.40) are sensitive to the ini-
tial conditions I

A' 'I which determine which one of
four stable states of (3.40) shown in Fig. 2 is approached
as time tends to infinity. Since A' '=—0 at the steady
states of the evolution equations and X' ' is directly pro-
portional to A' ' according to (3.17), the distribution
function should be approaching Po in long time in this
case. Therefore in the subcritical regime of D the dynam-
ics of Brownian motion becomes irrelevant to the long-
time distribution of stochastic variables. This is in agree-
ment with the well-known notion of a nonequilibrium
system approaching equilibrium. Nevertheless, the non-
equilibrium part of the distribution function should play
an important role for transient phenomena in the system,
and it can be obtained from (3.40), (3.2), (3.15a), and
(3.17). Since the main aim in this calculation is to ascer-
tain the validity of truncation in the moment sequence,
we check the convergence of the sequence by calculating
the moments in three different cases of truncation:
m, „=4, 5, and 6. There are four evolution equations,
i.e., (3.40), in the case of m, „=4, five evolution equa-
tions in the case of m „=5,and six evolution equations
in the case of m, „=6. The solutions to these three sets

of evolution equations are compared in Table I. The re-
sults show that the moment sequence converges fairly
rapidly and the truncation at m =4 is justifiably sufficient
for all practical ends in the case of the model considered.
It is verified that the moment sequence also converges in
the case of other initial conditions. In this manner the
distribution function P (t) is verified to approach the sta-
tionary (equilibrium) solution Po of the Fokker-Planck
equation which has a bimodal symmetry. It is found that
there exists an interval of D values in which the solution
of the evolution equations becomes a limit cycle. Howev-
er, it is not known at the present time whether or not this
kind of oscillatory solution is consistent with the exact
solution of the Fokker-Planck equation for the Schloegl
model. We hope to report on this aspect in the near fu-
ture.

IV. ON THE QUESTION OF STABILITY THEORY

The question of whether or not it is possible to deduce
a stability theory for dynamical systems is interesting
and, perhaps, even important. Glansdorff and Prigo-
gine' proposed a theory in connection with the question,
and there has been in the past a controversy' surround-
ing it. Our intention here is not to resolve the controver-
sy, but to examine the behavior of the entropy presented
in Sec. III, since the present theory supplies the tool for a
mathematically sensible way of discussing the question.

The nonequilibrium part S, of the entropy S is bound-
ed from above and especially there holds the inequality

S, ~O, (4.1)

which can be easily proven by writing

S„=—k~ ( P ln(P /Po ) P+ Po ), —

since ( P ) = ( Po ), and by using the inequality'

x ln(x/y) —x+y &0 .

Since by the H theorem

ds„ 0, (4.2)

it is tempting to regard S„as a Lyapunov function, ' but
since (4.2) holds even for the unstable steady state of pro-
cesses I A '

I for which dS„ /dt must be negative if it is a
Lyapunov function, S„cannot qualify as a Lyapunov
function. But the second variation of S„can be regarded
as a Lyapunov function, subject to a limitation, as will be
shown.

TABLE I. Convergence test for the moment sequence. D =0.1. A similarly convergent result is ob-
tained for the other steady state in the vicinity of 2 "'=1. Note that there are four stable steady states
as shown in Fig. 2 in the subcritical region.

g (5) g (6)

2.9518
2.9514
2.9448

0.0324
0.0327
0.0359

—0.0029
—0.0032
—0.0056

0.0028
0.0030
0.0051

—0.0002
—0.0016 0.0007
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Let us consider a variation of S„around the steady
state. Recall that the steady state of a macroscopic pro-
cess coincides with the steady state of the Fokker-Planck
equation according to the proposition presented in Sec.
III. Taking such a variation, we write

The matrix (S"t ) is negative definite according to the in-
equality (4.5). If the steady state is stable, then the ma-
trix (Lk ) must be negative definite and therefore the
composite matrix (Mtk ) is positive definite. In that case

S„=S"+6S„+5S„+ (4.3)
$2S )Q

dt
(4.10)

At the steady state

S"=0
n

On the other hand, if the steady state is unstable, the ma-
trix (Lt, ) is positive and hence the matrix (Mtk ) is nega-
tive. In this case there holds the inequality

and the first and the second variations are, respectively,
as follows: $2S (Q

dt
(4.11)

5s„=y(as„yaw( ')„$5'

~ X (m)Og g (m)
st (4.4a)

g'S =-'~ S"Ona("S~(m)
n p~ ml

m, l

(4.4b)

Since at the steady state

X'„'=0 for all m

by the proposition in Sec. III, the first variation 6S„van-
ishes at the steady state. However, the second variation
is not always equal to zero and hence it is the first non-
vanishing variation. Since the higher-order variation
then may be neglected, we find

6 S„~Q, (4.5)

owing to the inequality (4.1). Differentiating it with t, we
obtain

d s's =~ s"os~("sw(-)
dt n ~ ml

m, l

Since

(a5's ya5~'-))=ps" $5~'"
l

we may write (4.6) in the form

(4.6)

where the subscript or superscript "st" means the
steady-state value, and

sst (g2S gag (I)gg (m))

Therefore we see that 5 S„may be regarded as a
Lyapunov function and it is possible to tell from 5 S„
whether the macroscopic process in question is stable or
not. This conclusion is valid in the case of the Fokker-
Planck equation. The result above is in agreement with
that obtained by Keizer, ' ' who used his X function. If
the evolution equation for P is not the Fokker-Planck
equation the same conclusion cannot necessarily be
drawn as for the case with the Boltzmann equation for
spatially inhomogeneous systems. The conclusion con-
tained in (4.10) and (4.11), however, is about the local sta-
bility since the linearized equation (4.8) is valid locally.
Such a linearization gives a sensible idea of the evolution
of the system if the trajectories are monotonic and
confined in the neighborhood of the steady state in ques-
tion. However, it is often seen in macroscopic dynamics
that trajectories can wildly and chaotically oscillate when
there are homoclinic points at which stable and unsta-
ble lines intersect. Since such circumstances cannot be
described by linearized equations such as (4.8), the cri-
teria (4.10) and (4.11) cannot be counted on as even a
rough guide for predicting the evolution of a system. In
the case of the Schloegl model we have seen some numer-
ical counterexamples against criterion (4.11) which show
that the trajectories can return to the vicinity of unstable
steady states. (These examples are not presented here in
view of their preliminary nature and we will communi-
cate a full account of the study elsewhere. ) The con-
clusion implied by (4.11), however, is that the trajectories
cannot return to unstable steady states. From these con-
siderations we can infer that (4.10) and (4.11) are local
criteria.

"5's„=y(a5's„ya5~'-')$ "5~'-),
dt dt

(4.7) V. CONCLUDING REMARKS

d 5~(-)=yI. $5''"
dt lm

l

where Ll are constants, then

d
5 S„=gg gS" Lk $52(")5A'"

k I m

—=g Mk$5A '"'5A'"
k, l

(4.8)

(4.9)

which means that 6 S„has the Eulerian derivatives' as a
Lyapunov function should.

If in the vicinity of a steady state

We have presented a method of solving a Fokker-
Planck equation by applying the modified-moment
method. This method provides an attendant theory for
the entropy and entropy production for stochastic ir-
reversible processes. This thermodynamic forrnalisrn al-
lows us to calculate the entropy of stochastic processes
and its temporal evolution. This method reduces the
solution procedure for the Fokker-Planck equation —a
partial differential equation —to that of algebraic equa-
tions for the entropy derivatives

(asia~™)=x''/T
and of ordinary differential equations for the moments
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chosen, which include the evolution equation for the
average values of the stochastic variables themselves.
The ordinary differential equations for 2 ' ' are generally
nonlinear and therefore are seen to have the characteris-
tic features often seen in nonlinear ordinary differential
equations. Since the moments A'"' appear in the distri-
bution function in the present method, their temporal
evolutionary characteristics are directly transferred to
the distribution function. In this work we have shown
that the modified-moment method yields the same results
as other methods in the case of linear processes and that
in the case of the nonlinear model considered, the mo-
ment sequence converges sufficiently fast to justify the
truncation of the moment series at a lower order, if
D (D, for the model considered.

If the potential condition is not met, it will be a lot
more difficult to find the function V(a ). Nevertheless,
the formalism developed in this paper holds in its essence
if it is assumed that there exists a function V(bx) satisfy-
ing the steady-state Fokker-Planck equation in the
manner as in (2.5a). The question of whether there exists
such a function must be answered within the context of
thermodynamics, but the complete answer is not avail-
able as yet.

The structure of the theory of entropy presented is
similar to that we see in thermodynamics, and this simi-

larity stems from the common statistical formula for en-

tropy which the present stochastic theory shares with the
canonical-ensemble theory in statistical mechanics. "
The distinctive feature of the modified-moment method
lies in the role given to this statistical formula for entropy
to play in the solution procedure for the Fokker-Planck

equation. We must particularly emphasize the impor-
tance of the condition the entropy production imposes on
the acceptable approximation for X' '. This condition
assures that the approximate solution taken for X' ' will
satisfy the positivity of the entropy production, which is
generally taken as the second law of thermodynamics.
Since the average behavior of stochastic variables must
conform to the second law of thermodynamics, the for-
malism helps us develop inevitable approximate solutions
so as to satisfy such a law. The examples for linear pro-
cesses considered show that the method leads to correct
results.

Finally, it seems worthwhile to point out that the quan-
tity used in the stability theory presented is the second
variation of S„, but not the total entropy itself. There-
fore d5 S, /dt is a variational entropy production in
reference to the steady state. This quantity is different
from d5 S/dt, which does not quality as a Lyapunov
function. It must be stressed that the evolution criteria
(4.10) and (4.11) are local criteria, not global ones.
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