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Screening in multifractal growth
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For any multifractal growth process we calculate how the probability of advance of a fixed site on

the boundary of the structure changes as the fractal increases in size. We are then able to find ex-

pressions for the dimension of the active zone of the fractal and the distribution of ages of points

from which growth occurs in terms of the scaling function f (a}. For the case of diff'usion-limited

aggregation (DLA) and the screened-growth model, we offer a geometrical interpretation of the re-

sults. For DLA in arbitrary space dimensions we find a relation between the third moment of the

probability distribution and the Hausdorff dimension D, which generalizes a result by Halsey [Phys.
Rev. Lett. 59, 2067 (1987)].

I. INTRODUCTION

Recently a large number of experimental and numeri-
cal studies have investigated the growth of structures
whose surface is fractal ~

' The fractal can be considered
to be composed of X discrete sites of unit size. If the
overall extent of the structure is R, then N scales as R
where, by definition, D is the fractal or Hausdor6' dimen-
sion. We can assign a probability p; that growth will next
occur from a given site i. The moments of the distribu-
tion of probabilities (the growth-site probability distribu-
tion, GSPD) are defined by

Z(q)= g p,

and may scale with the system size as R ''iI, where r(q)
is a spectrum of moments describing the growth. The
GSPD can be interpreted in terms of a multifractal for-
malism: the number N of sites with a growth probabili-
ty p, -R for some small range of a from e to a+6o.
will scale as R f' '5n. Then it is easy to show that

r(q)=qa —f (a),

and analytically for a Laplacian field near an adsorbing
random polymer coil, ' for viscous fingerIng and
DLA, for random resistor networks, ' and for models
of turbulence. ' ' Reference 28 is a review of the physi-
cal systems which can be described by a multifractal for-
malism and mentions examples in turbulence, chaos, tem-

poral intermittency in disordered systems and percola-
tion, as well as fractal growth processes.

A generic plot of the scaling function is shown in Fig.
1. All but an infinitesimal fraction of the growing sites
have a growth singularity o:o. However, the majority of
the growth occurs on the ensemble of points whose con-
tribution to the first moment of the GSPD is dominant,
i.e., the sites with singularities a, . As r(l) is defined to
be zero for a normalized probability distribution, f(a)
has a slope of unity where a and f(a) are equal (ai =f i ).
For all other points, f(a) is less than a.

We might wish to know how the growth probability at
a fixed site changes as the cluster evolves, i.e., the total
number of sites X increases. %'e shall present here two
derivations of the rate of change of the growth-site singu-

larity, da/dX. We are then able to deduce a series of

where the subscripts refer to the value of c)f /Ba at which

f and a are evaluated. The scaling function f (a) pro-
vides a statistical description of the evolution of fractal
growth processes. Objects with a nontrivial f(a) are
termed multifractals. The concept was first introduced
by Mandelbrot to describe turbulence. Multifractal be-
havior has been observed, and f(a) measured, in many
cases: numerically for dNusion-limited aggregation
(DLA), for viscous fingering at finite viscosity ratios,
for the dielectric breakdown model, ' for the screened-
growth model, for Meakin's multifractal Eden model, '
in the electrical current and flicker noise distributions
through percolating structures, "' in hydrodynamic
force distributions on fractal aggregates in solution, ' '
and in the stress around fractals in an elastic medium, '

as well as experimentally for turbulent flows, ' ' viscous
fingering at large viscosity ratios, ' ' diA'usion controlled
crystallization and heterogeneous reaction kinetics, '

oP u fp

FIG. 1. A schematic plot of the scaling function.
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powerful, general, relations between exponents describing
the evolution of fractal structures.

In all that follows we shall assume that the fractal
structure under investigation is all growing surface. Of
the growth models mentioned previously, the only excep-
tion is viscous fingering at a finite viscosity ratio, which
produces a compact displacement with a fractal bound-
ary. ' The derivations below are also general to any
space dimension d.

II. A CONSERVATION EQUATION

Imagine that we have a flow v of conserved material
with a density p and source density s, then the familiar
conservation equation gives us

V.(pv)= — +s .Bp
Bt

(3)

Ba dN BN
(4)

Since Bf /'dN is zero at fixed a and, by definition, N scales
as R, we obtain

We shall now develop an analogy. Growth will typi-
cally occur on unscreened sites of a cluster where the
growth singularity a is small. The particle which has just
been added will tend to screen the substrate from which
it grew, as well as the neighboring sites. This will lower
the probability of subsequent growth and thus the value
of a for a fixed site will have increased. Similarly, the
growth probability at a given fixed site i will decrease as
growth occurs throughout the structure, but located pref-
erentially at the extremities; the "active zone" of rapidly
advancing points will, on average, eventually move away
from point i. Initially exposed points become screened as
the fractal develops. The deposition of new particles
occurs primarily at e„but the dominant fraction of all
sites has a singularity aQ. We need to explain, therefore,
how the majority of particles grown at o. equal to a&
eventually form a set of singularity aQ.

N can be treated as a "time" variable, o. a "space" vari-
able, determining the position of a given particle on the
f(a) curve as the cluster grows. Thus the "flow" is
da/dN. If we add one particle, then the probability of
landing on a site of singularity o. is R and there are
R ' ' such sites. Thus the source density is R . The
total density or quantity of material is R ' ' and so the
"flux" is R ' 'da/dN. The total number of sites is con-
served. Hence we find, from (3),

(ii) When a lies between a, and ao, the integrand is
largest and of order 1 where a' equals a, , because, as we
mentioned previously, f(u) —a is zero when a is a, .
Thus da/dN scales as R

(iii) For a greater than ao, the integral is easiest to per-
form between o. and a. Then the exponent in the
second term is larger. The exponent f(a') D —is largest
when a' equals a (8f /Ba is negative) and we find d a/dN
scaling as R

In summary we find

R, a~a, (6a)

uT--R f' ', a& a aQ (6b)

R, cx exp (6c)
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where da/dN is called uT. This is the averaged total
flow da/dN derived from the conservation equation.

We might also like to know the typical, or most likely,
value of da/dX experienced by most of the sites with a
given a. This will be called uL. Consider the events
which are likely to cause a considerable change in the
growth probability at a site a (that is, events which make
a contribution of order 1 to a). Firstly, these will arise
from growth at or very near to the site in question [Fig.
2(a)]. The probability for this scales as R . Secondly,

Rf' ' — [Rf' ' —[f(a')/D]Rf' ' ]du' .
dN a' I

I I I

Ll

I

LL

For large R the integral is evaluated carefully by
steepest descents.

(i) When a is less than ao, we take upper and lower lim-
its on the integral to be a and a, respectively. The in-
tegrand is dominated by the first term where f(a') —a' is
largest. This is simply when n' is equal to cz, for a less
than e&. We find that da/dN scales as R

FIG. 2. Typical processes causing screening in multifractal
growth. (a) Growth occurs at or near the site i. This event de-
creases the probability of further growth at i. (For mass frac-
tals, it is unlikely that any site will ever be completely surround-
ed by neighbors. ) (b) An exposed site with a large probability of
growth no longer remains at the extremities of the cluster, once
the cluster has grown appreciably in size.



39 SCREENING IN MULTIFRACTAL GROWTH 3593

R, a~D
a &D.

(7a)

(7b)

This somewhat simple calculation does not reveal the in-
termediate regime found for u T.

A physical interpretation of these results requires a
more sophisticated treatment of the effects of growth at
all distances throughout the fractal.

III. SCREENING C)N INTERMEDIATE SCALES

any site will eventually become more screened, as it will
become surrounded by sites throughout the cluster once
the overall size R has increased considerably [Fig. 2(b)].
This will take of order R events, contributing a factor of
R for each new particle added. Hence we derive

convex, f,s. will always lie below f(a). Consequently the
number of sites for which a„„and ab,„are not equal is
only an infinitesimal fraction of the total number of
points with singularity cz. We recover the "typical" set,
where f,s equals f(a) only when a equals either a„„or
nb, „and b is equal to R or 1, respectively; or when a„„
and ab, „are both equal to a, and f,~ is f(a) regardless of
b; these are sites whose growth singularity is the same
measured over all scales.

We shall now use this geometrical picture to derive the
contribution to da/dN from the deposition of particles
distances b away. The probability of growth at any site
a' in any box of size b is given by

i box box

P g f(a') —a'
(12)1

So far we have only discussed growth singularities
which are measured for the whole cluster. Imagine that
we were to cover the fractal with boxes or blobs of size b.
At the resolution of the boxes, we shall see a fractal of
eff'ective size R /b, with a multifractal GSPD; (R/b)/'
sites with probabilities (R /b ),with the same function
f(a) as before. Within each box, we also see the same
GSPD. For unit incident Aux there are b ' ' points with
probabilities b . This is simply a statement of the scale
invariance of a fractal structure.

If the box has a growth singularity o.b,„and a site
within the box has singularity a„„,then the value of a
for that site, measured on the whole cluster, is given by

R
R

b

box

b site (8)

' fb,„
feff R

b fsi

b
(10)

where f„„and fb,„are f(a„„)and f(ab,„), respectively.
We find

fb..(a —a.;t.)+f.,t, (ab..—a)
~box site

The exponent f,s is a weighted linear combination of
the exponents f,;„and fb „. Since the scalin. g function is

as the total probability of growth at the site, R, is the
product of the probability of growth somewhere in the
box, and the probability specifically at the point a„„in-
side it. This is a very important equation as it assumes
that the probability subdivides in a self-similar manner
throughout the growing surface. This is implied by a
growth process on a fractal boundary, and is also valid
for many other multifractal systems, but is not implicit in
the scaling function f(a). Equation (8) can be rewritten
to find b in terms of a, a„„,and ab, „. If b scales as R,
then y is

y =(ab,„—a)/(ab, „—a„„).

Moreover, we can define an exponent f,s., for the sub-
set of points with singularities n„„and eb„such that the
total number of these sites is

A. Calculation for DLA

We now wish to estimate the change in the total Aux,
d/dN(R/ ), induced at a site a„„due to growth at a
point with singularity a, all within the same box. For
this we use a propagator approach. This is only valid for
a Laplacian field with an adsorbing boundary condition;
that is, DLA-like processes, but not other types of fractal
growth model. The change in the local field is equal to
the probability that growth occurs at o.', then another
walker arrives at the same site which could then have
wandered to a„„;it is only via such events that the conse-
quence of growth at o,' can be felt at a„„.To reach e„t„,
the particle must escape the singularity a'.

When a particle which enters a box of size b is cap-
tured by the singularity, it will typically perform a ran-
dom walk of length of order b within the box. Hence it
visits of order b sites of a total b" outside the cluster be-
fore sticking, where d is the dimension of space. To es-
cape the walker may first reach any of b" sites —on entry
it only sampled b . The probability to escape the singu-
larity, without returning, along any given path is the
same for entry along the same path. Thus as the proba-
bility for entry is b, the probability for exit is
b +" . We find that the total probability to land at
n', escape, and then land at any site with singularity cx„„
is (see Fig. 3)

RP—2 b

box —2a'+d —2+f —a,
b site site (13)

(14)

where

Hence d(R )IdN, which scales as R daldN+R, is the contribution P, P2 integrated over all
combinations of a', a„„,and eb, „with the box of size b
which is given by Eq. (9).

All the integrals are performed by steepest descents.
The a' integral is dominated by the maximum value of
f(a') —3a'. From (2), the largest value of this exponent
is —~(3). The growth most affecting the local field
occurs at points whose growth singularity, within the box
b, determines the third moment of the GSPD.

After eliminating b, and using Eq. (8), we are left with

(R/ )-f fR" da„„dab,„,
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I (fb,„—ob,„)(a—a„„)+[f„„—w(3)+d —2](ab,„—a) I
X =

(ab.„—a„„)

First, however, we can calculate the contributions to
da/dN from the typical sets, with b either 1 or R. This
should give us uL.

We find that when b is 1, and a equals ab, „, ul -R
and when b equals R, and a is o.„„,uL-R
Comparison of this last result with Eq. (7b) demonstrates
the result

D =r(3)—4+2 . (16)

For the case d =2, this result has already been derived,
in a different manner, by Halsey, with an extension to
embrace the dielectric breakdown model. The best nu-
merical value for r(3) for DLA in two dimensions is
1.71+0.01, while D is approximately 1.70.

We now return to evaluating the integral over all possi-
ble box sizes. This is done by finding the maximum value
of x: i.e., when Bx /Ba„„and Bx /ab, „are both zero. We
find consistent solutions for x equal to zero, when a lies
between a, and ao. ab,„=a,, a,;„=ao and fo=D
=~(3 )

—d +2. We find, as before, that u T scales as
R ' ' [Eq. 6(b)]. For values of a outside these limits, we
again find expressions for uT as in Eqs. (6a) and (6c).

B. The screened-growth model

+exp( r, —')
J

g g exp( —r,, ') (17)

where r;- is the distance between two sites i and j on the
cluster and the sum and products run over all sites on the
cluster. Different structures are generated for different
values of the exponent e. Ignoring the normalization, the
logarithm of p; can be written as a sum of terms. It is
then easy to see that the change in p,- at a point with
singularity n„„due to growth at a' a distance b away is
simply p, b . Thus P& in Eq. (13) [using Eq. (8)] is given
by

RP—2 b

box

g Isite site (18)

Our analysis can also be performed for the screened-
growth model. ' The model generates clusters by the
algorithm that the probability of growth from a site i is

0(site

site

b Site R

~site

box box t' - 3a'f -a
b b

b

FIG. 3. A diagrammatic calculation of the effect of screen-
ing. The effect on the fiux of particles at a„„due to growth at
a, within a box of size b is given by the probability that a parti-
cle deposits at a multiplied by the probability that a walker
again lands at a' and then wanders to the site at a„„:it is only
via such events that the effect of the growth at a' can be detect-
ed.

We now perform the same analysis as before. The o,
"

integral gives us ~(1), which is defined to be zero for a
probability distribution. We then calculate uL and com-
pare with Eq. (7). This yields D = e: e replaces
r(3) —d+2 in Eqs. (13)—(16). This result has already
been derived, in a different manner, by Meakin et al.

This analysis gives us a powerful picture of the mecha-
nism of growth in DLA-type processes and the screened-
growth model. As has been mentioned earlier, the most
exposed sites, with a less than a, , become screened via
growth events on the site or its near neighbors. When o.
reaches a&, the points belong to the set which receives the
dominant contribution to the flux, R . Typically,
most sites of a strength a when measured over the whole
cluster, have the same singularity within boxes of all
sizes, from 1 to R [f,s equals f(a ) ]. For such sites
screening proceeds as above until a reaches D. However,
it is now an atypical subset which dominates the screen-
ing and leads to the intermediate regime found for uT.
These points lie in a box of singularity a, and size b, and
have a singularity ao within it. Screening occurs when
particles land in such boxes, which capture all but a
negligible fraction of the Aux, and affects sites of singular-
ity ao within them, which represent all but a negligible
fraction of the total sites. The box gets bigger as a in-
creases. Its size is unity when a is a& and R when a
reaches ao. Then appreciable screening occurs only as
the cluster increases in overall extent.

We are now able to glean further information. The
derivations below are general to any fractal growth pro-
cess, and not just DLA or the screened-growth model.



39 SCREENING IN MULTIFRACTAL GROWTH 3595

IV. THE DIMENSION OF THE ACTIVE ZONE

If a cluster grows from a size R (the "old" cluster) to
R +5R, where 5 is a small, but finite fraction, then those
sites on the old cluster from which growth has occurred
are defined as the active zone. ' If the number of such

D
sites scales as R ', then the exponent D, describes the
number of points on which growth will ever occur in a
finite length of time. This quantity is easily measured
both experimentally and numerically by comparing the
difference between two pictures of the fractal taken a
short interval apart. Consider, firstly, that there is no
screening and so the value of a for every site is fixed
throughout the growth. For a finite fractional increase in
radius, of order 5R new sites have been added. Conse-
quently growth is likely to have occurred from all sites
with growth singularity a (growth probability R ) less
than D. The number of such points is described by the
maximum value of f(a) for a less than or equal to D.
This is simply f (D). There is also the possibility that an
infinitesimal fraction of sites with larger f and a might
affect the value of D, . For a greater than D, a fraction of
order R + sites will have grown of a total R . Note
that as 5 is small, the effect of the change in R during the
small interval to R+5R can be neglected. Both regimes
are dominated by a equal to D and thus

D, =f(D) . (19)

The effect of screening can only be to decrease D„
since growth at any given site always becomes less likely
as the fractal evolves. We need to consider the slowest
mechanism of screening experienced by the largest num-
ber of sites; i.e., uL.

In fact it is easy to see that screening is irrelevant to
the dimension of the active zone. The important contri-
bution to D, comes from sites with singularity a equal to
D. Here da/dN scales as R . If we add a number of
order R~ sites to a cluster, then a has altered by only an
infinitesimal amount, R +, as p approaches D from
zero. Therefore, in the limit of infinite clusters, we still
expect to find the result of Eq. (19). Notice, however,
that D, is dominated by those sites that are just about to
become screened. f(D) is approximately 1.36+0.02 for
DLA in two dimensions, while numerical estimates
suggest a value close to 1.0. It is possible that in this
case, an exponent f for those sites which received the
most fiux, f&, was measured. This is, indeed, known
theoretically to be exactly 1 for DLA in two dimen-
sions.

the fractal.
We can now define a history distribution using a scal-

ing hypothesis that there is a probability R ~ s'~'5p that
growth will next occur from a site with an age in the
range R ~ to R ~+ ~, where R is the present radius of the
cluster. The number of such sites is R~5PlnR. We shall
now derive the relationship between g(P) and f(a).
Clearly, g(P) is only defined for P less than or equal to D.
For P less than D, the fractional difference between the
present radius and the radius when the selected site was
added is of order R~ ', which is infinitesimally small
for asymptotically large clusters. Thus we shall use the
two radii interchangeably.

Consider that the site, which now has a singularity a,
was first added with singularity u'. In any one increment
in the growth there was a probability R of growth on
a site of singularity a, and then a probability R of
subsequent growth from the same site. We allow the first
growth to have occurred at any time in the age range R ~

to R ~+ ~. This is approximately R ~5&lnR growth events.
Then R~ s'~'5p is the product of the probabilities of
growth at both occasions integrated over all possible
singularity strengths, a:

R~-"&'5P- fR 'Rf" -.R~5&lnR-da, (20)

where

a=a'+ f dN=a'+ f R +~lnR dP'
o dN o

(21)

and a", the growth singularity after the addition of N
new points, is n' when N equals zero, and a when N is
R~. Since g(P) is dominated principally by the sites
which screen least quickly, uL is substituted for de/dN.
For small values of P, a and a' are approximately equal
and g(P) is given by the minimum of 2a f(a). This is-
r(2). Screening is unimportant, therefore, until a equals
a2, beyond which a and a' are not necessarily the same.
Without screening, g(P) would equal r('2) for all values of
P. The integral in (21) should yield a contribution of or-
der 1. To within logarithmic factors this is achieved
when the integrand maintains P' equal to a" throughout
any finite increment of P'. Thus a equals P and hence
g(P) is the minimum value of a' f(/3)+P fo—r P greater
than a2, and a' less than or equal to f3. This is simply
2P —f(P). As for the calculation of D„g(P) is dominat-
ed by those sites for which screening is just about to be-
come significant. We obtain (ignoring logarithmic fac-
tors)

V. THE HISTORY DISTRIBtJTION
r(2), P~ a2

2p f(p), D ~ p~ a—2.

(22a)

(22b)

While the scaling function, measured at a fixed time
during growth, and derived from the GSPD, is a power-
ful statistical characterization, for many discrete, particu-
late models, it is neither the most natural nor the most
easily measured description of the evolution of the clus-
ter. It is more straightforward to look at the order in
which sites on a cluster are added. The age of a site can
then be considered to be the number of new particles
which have been added since the site first became part of

g(P) and its first derivative are continuous at az.
The portion of the scaling function f(a) between a2

and D should be recoverable from the history distribu-
tion. This can easily be tested numerically, and possibly
experimentally for a variety of multifractal structures.
The verification of the relation would justify the use of uL
in (21), rather than the result of a more detailed analysis
of the screening of atypical subsets.
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VI. CONCLUDING REMARKS

We have introduced a quantitative scaling description
of screening, which is general to a large variety of previ-
ously studied systems. In particular, the derivation of the
rate of change of growth singularity led us to determine
several other exponents describing the growth. We found
an expression for the dimension of the active zone and in-
troduced a new family of exponents via the history distri-
bution, which should yield a natural and accurate statisti-
cal analysis of fractal growth: Moreover, for DLA we
found a relation between the third moment of the GSPD
and D, which generalized the result derived by Halsey.
This leads to a variety of suggestions for further experi-
mental, numerical, and theoretical studies. Firstly, the

new scaling relations proposed here need to be tested
against experiment and computer simulation. Secondly,
the physical insight into the evolution of fixed sites on an
advancing cluster should, we hope, prompt further
theoretical developments. In particular, the effect of
screening from growth on sites sitting in a hierarchy of
boxes of different sizes and singularity strengths can now
be calculated.
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