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Ergodic behavior in liquids, supercooled liquids, and glasses is examined with a focus on the time
scale needed to obtain ergodicity. A measure, d (), which is based on the time-averaged energies of
the individual particles and which is referred to as the “energy metric,” is introduced to probe the
approach to ergodic behavior. We suggest that d(#) obeys a dynamical scaling law for long but
finite times and that it can be used to characterize the degree of stochasticity in measure preserving
systems with large numbers of degrees of freedom. Examination of d(?) indicates that the
configuration space is explored by a “diffusive” process in the space of the dynamical energy vari-
ables used in constructing the energy metric. The characteristic diffusion constant associated with
this process is argued to be analogous to the well-known maximal Lyapunov exponent which is
often used to characterize stochasticity in systems with few degrees of freedom. Based on the long-
time behavior of d (?) it is shown that ergodicity is effectively broken in the glassy state. In addition
to broken ergodicity, the possibility that a subtle symmetry is broken as the liquid-to-glass transi-
tion takes place is examined. It is suggested that a “discrete” symmetry, to be referred to as the sta-
tistical symmetry, is broken in the glassy phase. This is illustrated by analyzing the distribution of
the energy of the particles. Based on this, we expect long-time dynamics and structural relaxation
in glasses to be dominated by fluctuations in domains of finite length within which the particles are
highly correlated. This is in accord with the ideas of Adams and Gibbs. All of the above arguments
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are illustrated with the aid of molecular-dynamics simulations of soft-sphere mixtures.

I. INTRODUCTION

The assumption that classical many-body systems are
ergodic is a central concept in equilibrium statistical
mechanics."? The applicability of statistical-mechanical
developments to nonergodic systems such as glasses is a
topic of current interest.>* In this paper we examine the
approach to ergodicity in liquids and glasses and show
that ergodicity is broken in the glassy phase. Our obser-
vations are based in part on molecular-dynamics simula-
tions® of glassy states and a novel measure of broken er-
godicity for such states. Consider a classical N-particle
system confined in a box and let the phase space of the
system be ). Any observable F is then defined as a func-
tion on the phase space (). The phase-space average of
the observable is calculated with respect to an invariant
measure, du(w), as

F)=| du(ow)F(w), (1.1)
(F) f LA @F (@)

where o is a point in Q. If one prescribes a dynamics
such that fw is the position of the phase point w at time
t, the ergodic theorem states that the time average of F is
equal to the phase-space average,
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1 l r ! =
lim — [ dt F(f'o)=(F), (1.2)

T—w 1
for almost all initial conditions @ with respect to the
specified measure du(w).® The fundamental results of
equilibrium statistical mechanics follow from the ergodic
hypothesis.
Since we are interested in dynamical systems with a
specified Hamiltonian, the ergodic theorem is explicitly
written in the following form:

— oy L Toe o
(F)= lim TfOF[f R(0)]ds
= [ FE)S(E —Eo)dﬂ/fQS(E —EydQ, (1.3)

where R(0) is a set of Cartesian coordinates describing
the phase point of N particles at ¢t =0 and the allowed
phase space  is determined by constraining the energy
to be a constant. Thus, given infinite time, the system
will visit every allowed point in the phase space 2. The
second set of integrals in Eq. (1.3) is the phase-space aver-
age evaluated in the microcanonical ensemble with ener-
gy E =E,. Ergodic behavior is obtained if t =7, the
averaging time or experimental observation time is
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sufficiently long that the surface in phase space with con-
stant energy is adequately sampled. In practice, this does
not mean that the surface is “densely” covered by the tra-
jectory but that effectively all regions of that surface are
sampled and effective ergodicity is obtained.

In the event of broken ergodicity, the measure in Eq.
(1.1) can be uniquely decomposed into a union of several
independent ergodic measures. The phase space € is
then decomposable into a union of disjoint subsets (};.
The barrier between the various subsets becomes infinite
and, consequently, if at ¢=0 the system is in a
configuration ; belonging to the subset Q;, then on any
relevant time scale the system will be unable to sample
the configurations of other subsets ; with i=j. Phase
transitions are a well-known example of broken ergodici-
ty.3 Even in this case, the results of statistical mechanics
are applicable because well-defined measures dy;(®) can
be constructed using the set of configurations belonging
to (2; and these measures can be used in Eq. (1.1) to cal-
culate appropriate averages of observables. It should be
noted that the above discussion of ergodicity is valid only
when the averaging time goes to infinity. In this article
we are concerned with the behavior of systems on long
but finite time scales 7,,,. Consequently we examine only
effective ergodicity of the system, i.e., the equivalence of
phase-space averages and time averages with the averag-
ing time being equal to 7. The notion of effective ergo-
dicity is the physically relevant concept in analyzing ex-
periments as well. Henceforth, we will use effective ergo-
dicity synonymously with ergodicity.

From the above discussion one concludes that the sys-
tem is effectively ergodic if the trajectory adequately sam-
ples the allowed regions of phase space  within a time
equal to 7,,. A test of adequate sampling is that trajec-
tories starting from neighboring points on the energy sur-
face ‘““diverge” as time advances. The rate of divergence
is assessed by calculating the characteristic (or Lyapunov)
exponents.” In dynamical systems (either dissipative or
conservative) with only a few degrees of freedom, compu-
tationally managable algorithms have been devised to cal-
culate the characteristic exponents by following the time
evolution of two phase points that are infinitesimally
apart at ¢t =0.8371 The divergence or mixing property
which leads to the nonvanishing of the characteristic ex-
ponents automatically implies that the system is (at least)
ergodic. However, when considering dynamical system
consisting of several hundred particles, these algorithms
are computationally inefficient.!! The number of charac-
teristic exponents from such a calculation is 6N —6,
where N is the number of particles in the system. This is
typically a very large number making the analysis
difficult if not impossible. Thus a reduced description
which leads to a tractable measure characterizing ergodi-
city is required.

The main purpose of the present study is to propose a
useful way to characterize the ergodic behavior in super-
cooled liquids and in glasses. We introduce a quantity
which is zero for ergodic systems and becomes essentially
nonzero (decays extremely slowly) on a long-time scale
when ergodicity is broken. With the aid of this measure
we demonstrate that effective ergodicity is broken in the
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transition from supercooled liquids to glasses.

Another point we would like to address is the possibili-
ty of broken symmetry when the liquid-to-glass transition
takes place. Before proceeding we wish to emphasize
that notations pertaining to broken symmetry are only
applicable to systems that undergo equilibrium phase
transitions. In our discussions we assume that glass-
forming materials have well-defined equilibrium proper-
ties which are at least in principle calculable using the
laws of statistical mechanics. If there is a symmetry that
is broken, it must be a subtle one because it appears that
all equal-time correlation functions (like the structure
factor) are continuous at the glass-transition temperature
T,.'? In fact, it appears to be a characteristic of random
systems to undergo a transition from an ergodic to a
nonergodic phase in a discontinuous manner without any
apparent change in the structure.!> Thus the search for a
symmetry-breaking process in the structural glass prob-
lem seems to be difficult. The motive for suggesting that
some symmetry is broken is that the zero-frequency shear
modulus of the glassy state is nonzero and this suggests
broken symmetry.!* It must be emphasized that this does
not imply that glasses have long-range spatial order. A
well-known example where the system does not possess
long-range translational order but responds to external
stress is the Kosterlitz-Thouless transition in two-
dimensional (2D) systems.!* To distinguish between
liquids and glasses and to illustrate symmetry breaking in
the structural-glass problem we introduce a distribution
property based on the average energy of a particle over a
period of time. The dispersion of this distribution func-
tion serves in a sense as an order parameter. We suggest,
based on the behavior of this distribution, that statistical
symmetry is broken when the system makes a transition
from a supercooled liquid state to a glassy state. We ar-
gue that this is a (broken) discrete symmetry of the sys-
tem.

These ideas are expounded by the use of molecular-
dynamics (MD) simulations. It should be stressed that
MD simulations cannot be used to completely character-
ize the consequences of broken ergodicity. However, we
hope the simulations highlight the physically motivated
arguments.

The remainder of the paper is organized as follows. In
Sec. I the model is introduced along with a brief descrip-
tion of the computational details employed in the MD
simulations. The measure of ergodicity is introduced in
Sec. III and a few consequences of broken ergodicity are
also discussed. In this section we also point to the ex-
istence of a universal dynamical scaling law that may
prove useful in characterizing the approach to ergodic
behavior in Hamiltonian systems with large numbers of
degrees of freedom. Section IV is concerned with the dis-
tribution of energy of the individual particles and the
suggestion that statistical symmetry is broken in the
glassy phase. The analysis also points to the notion of
cooperatively rearranging regions in the glassy state as
envisioned by Adams and Gibbs.!® In fact, we argue that
dynamics and structural relaxation in the glassy state is
dominated by rare fluctuations in a compact region
within which the motion of particles is highly correlated.



The paper is concluded in Sec. V with several additional
remarks and some speculations.

II. MODEL AND SIMULATION DETAILS

The system chosen to illustrate our arguments is a
binary mixture of softly repelling spheres. It has been
shown that this system can be used to generate glassy
states if it is cooled sufficiently.'”'® This is to be con-
trasted with the one-component soft-sphere fluid which
readily forms a crystal phase when strongly super-
cooled.!® The mixture consists of N, soft spheres of type
1 with mass m | and diameter o,; and N, soft spheres of
type 2 with mass m,=2m, and diameter 0,,=1.10 ;.
The interaction between spheres of type AB ( A4,B =1,2),
separated by a distance r;;, is an inverse 12th-power
repulsion of the form

ij»

_)12 .

¢AB(r[j)=5(UAB/r[] (2.1)

The cross-interaction diameter is additive so that
o13=3(01F0y). The total number of particles
N =N,+N,=500. The composition variable X =N, /N
specifies the fraction of type-1 particles in the mixture;
X =1 for the results reported in this paper. We use o,
as the unit of length, m, as the unit of mass, and ¢ as the
unit of energy, so that time is quoted in units of
7=(m,0%,/¢)!”2. The number density is n*=No3,/V,
where V is the volume of the system. Finally, the temper-
ature T is taken to be 2 the mean kinetic energy per par-
ticle and is expressed as T*=kzT /e, where kp is
Boltzmann’s constant. The state of the system can be
specified using an effective reduced density or coupling
constant which is defined as

Cg=n*(0.q/0)/(T*)* . 2.2)

The quantity o. is the one-fluid van der Waals
equivalent diameter and is defined by*°

ol=X%0},+2X (1-X)o},+(1—X) 03, . 2.3)

The equilibrium liquid has values of I' ;¢ =1.15 and the
glass transition occurs at I';g=1.5. The reader is re-
ferred to Refs. 17 and 18 for further details on this sys-
tem.

The simulations were performed for constant energy,
constant volume conditions. Periodic boundary condi-
tions were enforced to minimize surface effects. The clas-
sical equations of motion were integrated using the Bee-
man algorithm with a time step of 0.017. The initial con-
ditions for each simulation were well-stabilized
configurations generated during our earlier work on this
system.

III. BROKEN ERGODICITY

The 6N-dimensional phase-space trajectory for the sys-
tem described in Sec. II is obtained by solving Hamilton’s
equations of motion. Since we are dealing with conserva-
tive systems, Liouville’s theorem guarantees us that the
volume in phase space is a constant. For a given thermo-
dynamic state, the rate of exploration of phase space and
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hence the time required for ergodic behavior to obtain is
unknown. Rigorous results are contained in the
theorems due to Kol’'mogorov, Arnol’d, and Moser
(KAM)?! and due to Sinai.”? The KAM theorem deals
with the effect of a small perturbation on an integrable
system while Sinai’s theorem proves that a gas of hard
spheres is ergodic. However, the approach to ergodicity
in systems containing a large number of degrees of free-
dom is still an open problem.

As stressed in the Introduction, one of the questions of
interest in the context of the structural-glass problem is,
what is the time scale required for ergodicity to be ob-
tained? Alternatively, given an 6N-dimensional trajecto-
ry x(¢;) for i =1,2,...,n, can one determine the degree
of stochasticity and possibly assess if the system is ergod-
ic on the time scale 7, =¢,? One possible way to do this
is to calculate the Lyapunov exponents using certain
standard techniques.®”!® These exponents not only de-
scribe the degree of stochasticity but they can be used to
calculate the so-called KS entropy.””® However, for the
problem that we consider, the standard methods of com-
puting Lyapunov exponents, which involve either obtain-
ing the eigenvalues of the Jacobian matrix associated
with the time evolution of two trajectories that are
infinitesimally apart at ¢ =0, or utilizing the algorithm
of Benettin et al.,® become very cumbersome. Further-
more, for liquids and glasses, the number of Lyapunov
exponents that result from such calculations is 6N —6
which in our case is 2994. Thus any practical informa-
tion that can be gleaned in this way seems limited.

Since the characterization of ergodic behavior in
liquids and in glasses in terms of Lyapunov exponents ap-
pears to be of limited utility, the question of practical in-
terest is, can one devise a simplified description of phase
space in terms of which the questions raised above can be
answered? To address this question we propose a mea-
sure, to be called the energy metric, which is based on the
energy of individual particles and which can be used to
discuss the absence of ergodicity in glasses. Furthermore,
one can postulate a universal dynamical scaling law for
liquids and supercooled liquids based on the energy
metric. This dynamical scaling law may prove useful in
investigating the approach to ergodicity in Hamiltonian
systems (or more generally, measure-preserving systems)
with a large number of degrees of freedom. This treat-
ment of the problem is clearly not rigorous but the com-
putations are easily done, and the results suggest that er-
godic behavior in liquids and glasses can be characterized
by essentially a single parameter.

A. Energy metric, d (t)

Our discussion of the concept of broken ergodicity
makes use of a measure constructed from a set of quanti-
ties, the time-averaged energy of individual particles,
which are unconventional in classical statistical mechan-
ics but which are well suited to examine ergodic behav-
ior.

To define the quantities, let

L
ei(== [ ds Ei(s) (3.1)
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be the average, over a time interval ¢, of the energy of the
ith particle in a fluid. E;(s) is the value of the energy of
the ith particle at time s and is the sum of the kinetic en-
ergy and one half the sum of the potential energy terms
involving particle i. This is a quantity which can readily
be generated in a molecular-dynamics simulation. It
proves to be useful to consider the distribution of the
g;(t) as well, so we define P(¢;t) to be the distribution of
the energies €;(¢) of the entire set of particles of the fluid.
The properties of this distribution is the subject of Sec.
Iv.

A well-characterized measure can be constructed based
on the g;(¢) to show that ergodicity is broken in the tran-
sition from supercooled liquids to glasses. Before
presenting the calculations, we sketch some essential
ideas needed to interpret the present results. A detailed
account exploiting the consequences of broken ergodicity
with focus on certain random systems may be found else-
where.>*

To envision the breakdown of ergodicity one imagines
that the allowed phase space can be partitioned into
several mutually disjoint regions or components. Conse-
quently, the physical measure, used in Eq. (1.1) to calcu-
late averages of dynamical observables, is decomposable
into a union of invariant measures. If ergodicity is bro-
ken then the phase point or configuration (which in the
present problem is specified by the coordinates of all N
particles) belonging to a given component will, in the pro-
cess of evolution, remain in the same component for
times greater than 7, It should be stressed that the
phase points belonging to different components are ener-
getically accessible and, indeed, if the system were ergod-
ic, the trajectory would fill the allowed volume in phase
space (almost) uniformly. When the system is not ergod-
ic, the trajectory will sample only those configurations
belonging to a specific component. Consequently, the
system can be considered to be ergodic as long as the
measure is defined with respect to a given component.
Thus using the invariant measure of a specified com-
ponent,? one can calculate various correlation functions.
If the equal-time correlation functions calculated using
measures for two different components a and 3 turn out
to be identical, then a and B will be called statistically
similar.?* If the number of statistically similar states is
exponentially large, then the statistical mechanics using
the Gibbs ensemble is inappropriate, and it has been pro-
posed that instead the extended Gibbs formalism be
used.>*

Using these ideas, the theoretical demonstration of
broken ergodicity in glassy states starting from a specified
Hamiltonian is not an easy task. In order to show the ex-
istence of various independent components and hence
demonstrate the occurrence of broken ergodicity, one
must consider an ensemble of initial conditions. Further-
more, a suitable dynamical observable which can distin-
guish the different components must be chosen. In order
to verify that the components are statistically similar,
structural quantities like the pair correlation function,
should be shown to be identical for the various com-
ponents. It is, therefore, obvious that computer simula-
tions cannot unequivocally demonstrate that effective er-
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godicity is broken. To convincingly do so one has to fol-
low the time evolution of the system for an exponentially
large number of independent starting configurations
which is clearly not possible. However, numerical experi-
ments can suggest the presence of broken ergodicity and
hence certain consequences can be eludicated.

Although the various statistically similar components
are expected to have identical equal-time correlation
functions, the barriers separating the components are not
infinite. Consequently, in supercooled liquids transport
proceeds by processes that involve crossing the free-
energy barriers separating the components. In general,
one expects a distribution of free-energy barriers. These
systems are truely ergodic' only if the observation time
tends to infinity. In highly supercooled liquids, the time
scale for such crossing events becomes longer than the
typical observation times with the result that effective er-
godicity is broken and the calculation of free energy
should be done with care (see Sec. III C).

We use the following procedure to demonstrate broken
ergodicity. Two independent initial states of the system
are chosen and the components in which these states re-
side are labeled a and b. The choice of the initial states is
described below. A given component consists of the set
of configurations R ={r,r,, ..., 7.}, such that if the
liquid is quenched starting from any configuration in the
set R, then it reaches a specified (metastable) free-energy
minimum a. Clearly the division of configuration space
into components is useful only if there are several com-
ponents separated by free-energy bottlenecks. This typi-
cally happens only in viscous liquids or in solids. A mea-
sure that distinguishes between the two components (if
they exist), which we call the “energy metric,” d (¢), is in-
troduced as

d(t)= (3.2)

M=

S ey (D—ey (O] |

j=1

Here ¢,;(z) is the time-average energy of particle j in
state @, and €,;(¢) is the corresponding quantity in the
state b. The sum runs over all the N particles of the sys-
tem. The properties of d(¢) can be easily predicted. If
the system is ergodic on the time scale 7, then d(z)
should vanish as ¢ approaches 7., because the system
samples all of allowed phase space rapidly, and therefore
€4;(Tobs) =€p;(Tops), implying that there is only one com-
ponent.”> For such a case the usual description of the
system in terms of the familiar Gibbs ensemble in statisti-
cal mechanics is valid. This is the situation expected for
the liquid state. However, when ergodicity is broken,
d (t) should approach a nonzero constant as ¢t approaches
Tobs Suggesting that the two initial states belong to dis-
joint parts of phase space. The long-time behavior of
d (1) serves to distinguish between two components and
therefore demonstrates broken effective ergodicity.

It might appear that the results for d (¢) can be made to
vary by particle label permutations. Supercooled liquids
and glasses, which are highly viscous, are ergodic if one is
willing to observe them for long enough times. Conse-
quently, the infinite-time limit of €,;(¢) is independent of j
and a and depends only on the particle species. Thus the
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long-time behavior of d (¢) will depend on whether or not
the states a and b are widely separated in phase space and
on how long it takes for free-energy barrier crossings to
occur.

One could also define d (¢) by minimizing d (0) through
index permutations and then computing d(¢) as in Eq.
(3.2) with the permuted labels. The results probably
would differ in detail from those reported below, but the
qualitative results for d(¢) should be unchanged. We
stress that it is the qualitative features that are significant
when attempting to discuss the time scales needed for
effective ergodic behavior to be obtained. We note that
particle permutations will affect the results for d (¢) when
one is considering quenched systems like spin glasses, and
the definition of d (¢) is ambiguous in this context. Super-
cooled liquids and glasses do not involve quenched ran-
domness where transport absolutely ceases, and thus d ()
can be unambiguously defined.

The vanishing of d(¢) for long times has a further im-
plication. If the system is ergodic, then particles of the
same species sample equivalent “environments” and
therefore the €;(¢) for a given species in the liquid should
approach the same constant value at long times.?> This
means that all particles of a given species are statistically
similar for an ergodic system. We will consider the
consequences of this statistical similarity further in Sec.
IV.

We have performed molecular-dynamics simulations
and constructed d (¢) using a code which generates trajec-
tories for a set of particles using two different initial con-
ditions. Initial conditions for fluid states were taken as
the endpoints of different simulations at a given energy.
The initial conditions for the glassy state were prepared
by quenching to the glassy state with I' .jz=1.7 and a con-
stant total energy E =2.0 at quite different cooling rates
so that well-separated points on the E =2.0 energy sur-
face were obtained. That this is so was confirmed by
comparing the resulting single-particle energy distribu-
tions P(g;t) (see Sec. IV) and observing that they differ,
indicating that their locations in phase space are distinct
and are not simply related by particle permutation. For
both the liquid and glassy states, the systems were care-
fully checked for stability in time before calculations of
d (t) were begun. ’

Our results for d (¢), normalized to unity for ¢t =0, are
displayed in Fig. 1. The solid line represents an equilibri-
um liquid with I'.4=0.95, the dashed line represents a su-
percooled liquid with I'.4=1.37, and the long-short
dashed line represents a glass with I'.,g=1.7. The decay
of d(t) reflects the expected reduction of the variance of
the difference in the €;(¢) with increasing time.

These results can be analyzed in terms of the ideas
presented at the beginning of this section. Let p be the
probability that the system at an initial phase point in a
specified component will make a transition to a different
configuration belonging to other components in ¢ <7 ..
If p is smaller than some small number p, then initially
distinct states will be confined to their respective com-
ponents yielding d (¢) =const as t — 7. This then would
imply that ergodicity is broken. If p were strictly zero,
which would be the case when the barriers separating the
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FIG. 1. The normalized energy metric d(¢)/d(0) as a func-
tion of averaging time is shown for an equilibrium liquid state
with I'.y=0.95 (solid line), for a strongly supercooled liquid
state with I'.s=1.37 (dashed line), and for a glassy state with
I'.s=1.7 (long-short dashed line). The initial values d(0)=6.6,
0.6, and 0.2 for I'.4=0.95, 1.37, and 1.7, respectively. For the
liquid, the phase-space components are identical, while they are
distinct for the glass. The supercooled liquid requires a longer
averaging time to demonstrate the identity of the components.

different free-energy minima are infinite, then
d(t)=constas t— 0.

Figure 1 shows that for long times, d (¢) vanishes rap-
idly for an equilibrium liquid and more slowly for the su-
percooled liquid. The slow decay of d(t) as t — 7 for
the supercooled state suggests that the exploration of
phase space is very slow. On the other hand, for the
glassy state, the long-time behavior of d(¢) is nearly a
constant implying that the two states belong to two
different components. The extremely slow decay of d (¢)
as t — T, in the glassy state is indicative of the fact that
there is a small (but detectable) finite probability of tran-
sitions from one component to another, i.e., p%0. How-
ever, the nearly constant value of the long-time limit of
d(t) for the glassy case also suggests that these transi-
tions are rare (perhaps exponentially rare) and hence are
difficult to investigate by computer simulation studies.
These observations allow us to conclude that effective er-
godicity is indeed broken in the glassy states.

We have calculated d (¢) using other initial glassy-state
points and have arrived at results similar to those shown
in Fig. 1. However, the long-time limit of d (¢) does de-
pend on the initial states considered. This implies that
d(t) can be used as a measure to distinguish between
different components. As stressed earlier, computer
simulations alone cannot be used to completely charac-
terize these metastable components as their number
should scale as exp(aN).? It is clear that these studies
can point to the existence of broken ergodicity, and in
this context d (¢) can serve as a useful measure. Stillinger
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and Weber?®® have argued that at T =0 the number of
potential-energy valleys for a system of N particles scales
as exp(aN). We suggest here that a large (possibly ex-
ponential) number of free-energy metastable glassy states
become relevant at a finite temperature. The temperature
range where the typical barriers between states is greater
than k5T roughly divides ergodic and nonergodic behav-
ior.

B. Scaling of the energy metric and diffusion

The curves shown in Fig. 1 suggest that the functional
form for the time dependence of d(t¢) for the different
thermodynamic states should be identical. We assume
that the decay of d (¢) is governed by a single parameter,
the “diffusion constant” Dy associated with the rate of
exploration of configuration space. Consequently, we
suggest that the finite-time properties pertaining to ergo-
dicity of liquids, supercooled liquids, and glasses may be

described by the following scaling form for d (z):
d(t)=d(0)f (tDg) , (3.3)

where the scaling function f(x) is unity when x =0 and
f(x)—0 when x >>1. To determine f(x) we have exam-
ined the behavior of d(¢) in a number of ways. The
significant result is for o(¢)=d (0)/d (t) as a function of ¢
which is displayed in Fig. 2. It is very clear that o(z)
grows linearly with time after a transient time and thus

fx)=1/x . (3.4)

The diffusion constant Dg is dependent on temperature.
For the systems considered in this paper it is clear that

500
450
400
350

= 300

250

200
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t/T
FIG. 2. The information in Fig. 1 is shown here as d(0)/d (t)
vs t indicating that after a relatively short-time interval, d () de-
creases as 1/t for the equilibrium and supercooled liquids. This
indicates that the differences in the mean energies are normally
distributed in the statistical sense.
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d (t) approaches zero uniformly from above as t — . A
dynamical scaling form similar to the one found here for
d(t) has been reported recently for the Lyapunov ex-
ponent y(t) for finite times for a large class of two-
dimensional billiard systems.?” For these mixing systems,
the infinite time limit of y(¢) is nonzero. It is tempting to
suggest that d (¢) could serve a similar purpose in quanti-
fying the degree of chaos and the time scale for ergodic
behavior to obtain for systems with a very large number
of degrees of freedom as does y(¢) for few-dimensional
systems. This analogy indicates that the approximate
time scale needed for ergodicity to be obtained in liquids,
supercooled liquids, and glasses is 7z ~1/Dg. A more
accurate estimate of 75 can be made by calculating the
time needed for d (¢) to reach a small fraction of its initial
value. For t =7 the system is effectively nonergodic. It
is remarkable that a single parameter D and the scaling
function f(x) can be used to completely characterize er-
godicity in the Hamiltonian systems that we have con-
sidered.

The result that o(z)=Dyt for times longer than some
transient period suggests a very intriguing kind of
diffusion  process for the dynamical variable
x;(t)=¢€,(t)—g(t). The exploration of the config-
uration space can be described in terms of a random walk
in the variables x,(z) which converges to zero for long
times for an ergodic system. Because of the central role
played by D in describing ergodic behavior, we have nu-
merically determined it for the cases considered in Fig. 1.
We find D to be approximately 4.1, 0.79, and 0.0032 for
I.4=0.95, 1.37, and 1.7, respectively. Using these values
of Dy and assuming that effective ergodicity is reached if
d(t)/d(0)=0.01, the time scale for ergodicity to be
reached turns out to be 247, 1267, and 310007 for the
three states. From this small number of points it is not

- possible to obtain any meaningful functional form for the

temperature dependence of Dy. The dramatic decrease
in Dy suggests that it may deviate considerably from any
power-law behavior. A general exponential form is pos-
tulated in Sec. V based on the analogy between the behav-
ior of x;(z) and Arnold diffusion.” The scaling behavior
and the diffusion process seen in x;(z) suggest that a gen-
eralized central-limit theorem can be applied to x;(t).2
The sequence of variables appears to be independent and
random with the variance decreasing as 1/t. We suggest
that x;(t) is normally distributed in accord with the
central-limit theorem. Deviations from the normal distri-
bution cannot be ruled out before considering higher mo-
ments.

C. Consequences of broken ergodicity

Here we discuss three consequences of broken ergodici-
ty which are related to this study. These are (i) the sta-
tistical similarity of phase-space components, (ii) the cal-
culation of free energy for glassy states, and (iii) the ori-
gin of hysteresis in certain properties of glassy states.

(i) It is of interest to consider the amorphous packing
of atoms in the various components. Using the set of
configurations generated by starting from an initial phase
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point belonging to a given component, we calculated the
pair correlation functions g ,5(7), where 4,B =1,2 indi-
cates the two species making up the pair. The g ,;(7) for
both components a and b (and for others considered)
were found to be identical. This strongly suggests that
the components into which the liquid solidifies are statist-
ically similar.?* Because the configurations for the vari-
ous components were generated by quenching the liquid
at different cooling rates, these conclusions seem to de-
pend only on the thermodynamic state of the glassy
phase. However, the time scale needed to explore the set
of configurations belonging to a given component is gen-
erally expected to depend on the cooling rate.

In a series of simulation studies, Stillinger and Weber?
obtained the ‘“‘quenched” pair function starting from
different thermodynamic liquid states. The configura-
tions were generated by a steepest-descent procedure
where a given phase point corresponding to the high-
temperature liquid converges to a relative local minimum
in the potential energy. The set of configurations that
comprise a specified relative minimum (called a basin by
these authors and referred to as a component in this pa-
per) are those starting points that converge to the same
local minimum. The quenched pair correlation functions
computed by Stillinger and Weber are for 7 =0
configurations, and so thermal vibrational motions are
completely eliminated. These functions were found to be
independent of the starting thermodynamic state. They
referred to the structure as the inherent or underlying
structure of the liquid. The identical amorphous packing
found in different components allows us to conclude that
the components, obtained as a consequence of quenching
to T =0, are statistically similar. We suggest that these
components can be distinguished using the dynamical ob-
servable d (¢) proposed here. The present results allow us
to make a stronger assertion, i.e., if the liquid is quenched
to a glassy state (at T=£0) starting from a liquid then the
resulting components are expected to be statistically simi-
lar. It is for this reason equal-time correlation functions
do not undergo any dramatic change as the glass transi-
tion takes place.

(i) If there are an extensive number ( ~e®") of statisti-
cally similar free-energy states, then one is forced to cal-
culate thermodynamic properties, such as free energy, as
an average over an ensemble comprising the various com-
ponents. A detailed discussion of this point has been
made by Palmer.3

The ensemble of components that one has to consider
implies that the canonical free energy

BF=—1InZ = —InTre BH (3.5)

is not appropriate. We wish to emphasize that strictly
speaking the glassy states are metastable, and hence the
notion of free energy is not meaningful. However, we
have argued that on the experimental time scale the
glassy states are effectively ergodic as long as the set of
configurations being considered is restricted to a given
component, and hence a meaningful calculation of free
energy is possible provided an appropriate ensemble of
components is considered. For the glassy phase this leads
us to the so-called component-averaged free energy,
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F= 3 p°F°*, (3.6a)
a
where
BF*= —InZ%= —InTre ~A# (3.6b)
and
pi=e FF/zZ . (3.6¢)

In Eq. (3.6b) the trace operation is performed by restrict-
ing the phase space to that corresponding to a specific
component .’ It is clear that Fs4F and in fact F > F.
The difference between F and F is related to the so-called
complexity and is essentially the loss in configurational
entropy when the liquid makes a transition to the glass.*
With the framework established here®® the physical
meaning of configurational entropy can be made trans-
parent. Because the glassy states are effectively noner-
godic, the system does not explore all the available parts
of the configurational space. The bottlenecks which re-
strict the system to explore only a subset of the available
configurations lead to a loss in configurational entropy S,
as the liquid becomes a glass. Thus the decrease in S, is
strictly a consequence of the lack of ergodicity. This
leads one to conclude that activated processes in the
glassy phase should be entropically driven which was
originally suggested by Adams and Gibbs.'® The
difference between F and F is only meaningful when the
number of relevant random states is exponentially large
as is surely the case for the structural-glass problem.?¢

(iii) It is well known that the variation of certain prop-
erties of glasses is history dependent and those properties
exhibit hysteresis.’! For example, in several glasses the
enthalpy or volume show different temperature depen-
dences depending on whether the sample is being heated
or cooled. This is easily understood in terms of the
division of phase space into various components with
rare mixing between configurations belonging to different
components. Suppose a glassy sample with initial
configuration {r;}, i=1,2,...,N, belongs to a given
component a and is heated to the liquid phase. As the
temperature increases there is rapid mixing of the
configurations belonging to different components. This
experiment would yield a specific enthalpy versus temper-
ature relation.’’ Now let the final liquid sample with the
configuration {7/} be cooled to a glassy state. In all like-
lihood, the configuration of this glassy state {r;"} would
belong to a different component than the one containing
{r;}. Furthermore, the rate of exploration of
configuration space will in general depend on the topog-
raphy of a specific component and on the cooling rate.
The lack of mixing property leads one to conclude that
the result of heating and cooling experiments should yield
different results resulting in hysteresis for nonergodic sys-
tems.

IV. ENERGY DISTRIBUTION

The distribution of time-averaged particle energies
P (g;t) provides some further insights into the differences
between equilibrium states of a liquid and nonequilibrium
glassy states. Although the total energy of the system is a
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constant, the way the energy is distributed among the
particles is difficult to predict. We have constructed the
distribution P(e;t) using the time-averaged energies of
the individual particles for the entire binary soft-sphere
mixture. In Fig. 3 the evolution of P (¢;¢) with increasing
averaging time for an equilibrium liquid state of an
equimolar mixture of soft spheres and for a glassy, non-
equilibrium state of that mixture is exhibited. First con-
sider the distribution for the equilibrium fluid state,
which is displayed on the right-hand side of the figure
and is centered at E =5.0. The solid line joining the
pluses shows this distribution at ¢t =107, the dashed line
joining the squares shows the distribution at 507, and the
short-long dashed line joining the triangles shows the dis-
tribution at 1007. It is significant that an apparently
short-time interval ¢ =107 is much greater than 7, =7,
the time for the decay of the velocity time autocorrela-
tion function,'®® and this implies that tp is not the
relevant time for the establishment of the equivalence of
time and ensemble averages.

Over short-time intervals, say 107, the average particle
energies are broadly distributed. As time progresses, the
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FIG. 3. The distributions of average energies of the particles
in a mixture P(g;t) are shown for a fluid in thermodynamic
equilibrium and for a glassy state. Energy is quoted in units of
the energy parameter of Eq. (2.1). The equilibrium results are
centered about an average energy of 5 and the glassy-state re-
sults are centered about an average energy of 2. The equilibri-
um state has an effective coupling-constant value of I'.=0.95,
while the glassy state has a value of I'.g=1.7. The solid line
joining the pluses represents the distributions after an averaging
time of 107, the distributions after 507 are represented by
dashed lines joining squares, and the distributions after 1007 are
represented by long-short dashed lines joining triangles. In each
case, the distributions were coarse grained with a resolution of
0.1 energy units. The distributions have also been obtained for
a strongly supercooled state with [';g=1.37. They are quite
similar to the equilibrium liquid distributions but are not shown
here to avoid cluttering the figure as it is centered at E =2.5.

THIRUMALAI, MOUNTAIN, AND KIRKPATRICK 39

average energies become quite well defined about two
characteristic values, the lower value, which is the mean
energy of the smaller particles, is approximately E =4.7
and the upper value, which is the mean energy of the
larger particles, is approximately E=5.3. In fact,
P(g;1007) can easily be represented as a sum of two
sharply peaked Gaussians. For this system, 107 is not an
adequate averaging time for stationary behavior to result,
but 507 is since there is relatively little change in the dis-
tributions between 507 and 1007. The variances of the
energies E;(#) of the individual particles are large, on the
order of the width of the distribution, indicating that the
particles are sampling a wide range of local environments
and therefore a large region of phase space. This is con-
sistent with the ergodicity expected for the liquid state.
Essentially identical results were obtained for a strongly
supercooled liquid state. The time required for a stable
long-time distribution of the average particle energies to
develop is one indication of the time required for ergodic
behavior of time averages to apply. As we now show, a
stable distribution by itself is not a measure of ergodicity.

The distribution of energies for a glassy state of the
binary soft-sphere fluid is displayed on the left-hand side
of Fig. 3. Unlike the equilibrium liquid case, there is
effectively no change with time in the distribution of the
individual particle energies. Also, the variances of the in-
dividual particle energies are much smaller than the
width of the distribution of energies for that species, as
shown in Fig. 4, indicating that particles are effectively
trapped (localized) in a fixed environment which is what
is expected for a glassy state. It has been shown in the
previous section that ergodicity is not preserved in the
glassy phase. Thus, stability of the distribution of aver-
age particle energies in time does not insure ergodic be-
havior.

P(g;1007) is examined separately in Fig. 4. There the
distributions for each species are indicated along with the
total distribution. For the liquid the lower-energy peak is
entirely due to type-1 particles (triangles) and the higher-
energy peak is entirely due to type-2 particles (squares).
This implies that all particles of a given type have identi-
cal average energies. Hence the distribution is peaked at
the mean values for a given species with small dispersion.
For the glass, however, the distributions for the two
species are broad and there is considerable overlap of the
distributions. Although the total distribution for the
glass appears to be roughly a Gaussian, it should be
viewed as a sum of two Gaussians, one for each species,
with a large overlap between them. Note that the statisti-
cal similarity of all particles of a given type holds in the
liquid but not in the glass. This suggests that the various
peaks in the distribution P (g;7,,) for the liquid state can
be obtained by examining any arbitrary particle, whereas
a similar exercise in the glassy state would lead to large
errors. In this sense statistical symmetry is lost in the
glassy phase.

We argue that the results for P(g;t) for liquids, super-
cooled liquids, and glasses point to the possibility of bro-
ken statistical symmetry. Because glasses are rigid and
have nonzero shear elastic constants,> >33 one expects that
the symmetry of the system is lowered as a consequence
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FIG. 4. P(g;1007) is resolved into contributions from the
two species. The distribution of energies for type-1 particles are
indicated by triangles connected by a dashed line, and the distri-
bution of energies for type-2 particles are indicated by squares
connected by a dashed line. The total distribution is indicated
by a solid line. The dashed lines for the liquid are exactly over-
laid by the solid line. The energy is in units of the energy pa-
rameter of Eq. (2.1).

of the liquid-to-glass transition, i.e., there is a broken
symmetry associated with the glassy state. This state-
ment should be treated with some caution because the
connection between generalized rigidity and the presence
of broken symmetry has been clearly established only for
systems that undergo a genuine thermodynamic phase
transitions.'* It is well known that for glassy materials
(especially polymeric glasses** ) the different moduli de-
pend on the experimental time scale. However, in many
cases the changes in the elastic moduli are typically about
10% over a time range spanning several decades.’® Thus
for our arguments leading to the existence of broken sym-
metry, we will assume the near constancy of the elastic
moduli and assume that the equations of an elastic solid
are obeyed.’” With this caveat, we present the following
arguments to describe the statistical differences between
the liquid and glassy states.

To illustrate the nature of this broken symmetry con-
sider a large region of volume (1, in the liquid state so
that statistical measurements of the various properties
[and in particular the calculation of P(eg;¢)] become
meaningful. The length implied by the choice of 1, has
nothing to do with the “correlation length” associated
with the system. P(g;f|Q,) calculated by following the
dynamics of particles in , is expected to be identical to
that obtained from considering the “infinite” system. If
one considers another large region of volume Q,
sufficiently far removed from ,, then P(e;tlﬂ.z) calculat-
ed by following the dynamics of particles in Q, also will
be identical to P(g;t). These conclusions follow from the
law of large numbers. In the liquid state there is a statis-
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tical symmetry in the sense that when a time average is
performed,*® one macroscopic region is statistically iden-
tical to another region. This is a weaker statement than
the one that all particles of a given type are statistically
identical.

In the glassy phase the motion of particles is coopera-
tively correlated within a system-specific region £.!%%
Roughly speaking, there is order within a distance r =§
and the particles are randomly distributed for » > £. The
introduction of a preferred length £ does not imply that
space is not homogeneous. In fact, for length scales
larger than & the space is homogeneous, and there is no
translational order, even when one performs a time aver-
age. For the binary mixtures we have considered here,
§=30,;, and a typical region of this size contains about
60 particles. The glassy phase can be thought of as being
partitioned into a distribution of cooperatively rearrang-
ing regions (CRR) each with a correlation length of
roughly £.'® The distribution P(e;t|Q;), Q,; being the
volume associated with the ith CRR, represents some
part of the total distribution but due to the large number
of distinct environments, no one P (g;t|Q;) can be viewed
as representative of a system, even though each CRR can
contain a sufficiently large number of particles that they
may be viewed as independent statistical systems. If one
considers the entire sample, i.e., all the Q;, then the dis-
tribution has the form shown for the glass in Fig. 3.
From the central-limit theorem it follows that P(e;¢t) for
the binary soft-sphere mixture is a sum of two Gaussians.
The crucial point is that the behavior of P(g;t) can only
be obtained by considering the whole sample and any two
CRR can yield results quite different from that seen in
the infinite system. It is in this sense that statistical sym-
metry is broken in the glassy state.

In order to confirm these ideas we divided the sample
(the cubic box) into eight subvolumes, each subvolume
being considered to be a CRR. The distribution of ener-
gies for each of the CRR was constructed by considering
only those particles residing in a given CRR. We find
that the various distributions P (g;t|Q;) (i =1,8) are frag-
ments of the total with considerable variation from one
CRR to another, in accord with the above ideas. It
should be pointed out that because of the small system
being considered, the result of the simulations for this
purpose should be considered as being suggestive. Never-
theless, this exercise confirms the physically motivated
arguments.

The concept of statistical symmetry can also be viewed
as a statement that all particles of a specific type are
“equivalent.” In particular, this is a statement that in the
equilibrium fluid, each particle of a given type is statisti-
cally equivalent to all other particles of that type. The
sharpening of P(g;t) in the liquid as time increases is a
reflection of this. Conversely, the breaking of statistical
symmetry in the glass is an indication that this statistical
equivalence is not present. Statistical symmetry is a
time-averaged quantity and cannot be inferred by exam-
ining time-independent properties of a system. More im-
portantly, statistical symmetry cannot be examined by
considering a single frozen pattern of the liquid or the
glassy phase. The inference that statistical symmetry is
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broken in the glassy phase has been made by considering
an ensemble of CRR with each CRR containing many
particles. Thus in a sense this symmetry is a discrete
symmetry of the system.

Due to the rigidity and the high degree of cooperativi-
ty of particles with a given CRR, the particles undergo
only small-amplitude local displacements. Because the
local environment varies from one CRR to another, we
would predict that the density of transverse modes (exci-
tations due to the rigidity of the glass) should be broad
and structureless. This is in accord with experimental
measurements on metal-metalloid systems.*

The dynamics in this glassy phase is expected to be
dominated by rare fluctuations in CRR that lead to rear-
rangement of particles and hence structural relaxation.!®
Consequences of rare fluctuations of the type given here
(referred to as droplet fluctuations) have been recently
used to study the decay of spin-spin correlations func-
tions in regular and random Ising systems.*! Although
there appears to be some similarity in the physics of the
two problems, a more quantitative implementation of this
idea, leading to precise predictions of the long-time be-
havior of the dynamic structure factor is difficult. How-
ever, the arguments similar to those suggested by Adams
and Gibbs would immediately lead to a Vogel-Fulcher
equation for the temperature dependence of the
viscosity.26(®

The idea that local fluctuations are important in
characterizing the structure of the glassy state has also
been recognized by Egami and his co-workers.*? ”* They
have considered the role of local stresses and developed
an elastic-energy-based model for the glassy state. They
also have examined the distribution of local stresses for
static situations.

V. DISCUSSION

The ergodic behavior of liquids, supercooled liquids,
and glasses has been investigated in this paper. It has
been shown that precise predictions about the finite-time
properties and the time scale needed to obtain (effective)
ergodicity can be made. This is done by the introduction
of an energy metric d(z), which is shown to obey a
universal dynamical scaling law for long but finite times.
The argument of the scaling function contains a parame-
ter, namely a “diffusion” constant Dg, which is essential-
ly the rate at which configuration space is sampled. Thus
1/Dg can be thought of as a mixing time. In the usual
analysis of physical systems obeying differential equations
(such as Hamilton’s equations) mixing times are obtained
by computing Lyapunov exponents. Although, for the
conservative systems considered in this work, these
characteristic exponents can be calculated in principle, in
practice such computations are very difficult. Further-
more, for systems with very large numbers of degrees of
freedom, the results are not easy to interpret. Here we
indicate that D explicitly plays the role of Lyapunov ex-

THIRUMALAI, MOUNTAIN, AND KIRKPATRICK 39

ponents and thus the ergodic behavior for conservative
systems (more generally measure preserving systems)
with very large numbers of degrees of freedom can be in-
ferred from a single parameter.

We have also studied the distribution of energies of the
individual particles both in the liquid and in the glassy
states.*> A careful analysis of the variance of the distri-
butions in different states has been used to argue that a
discrete symmetry of the system, labeled statistical sym-
metry, is broken when the liquid makes the transition to
a glassy state. It should be stressed once more that these
arguments have been made by noting that the relevant
time scale involved in the problem is the experimental or
observational time scale 7. Consequently, the lowest
frequency of interest is wy=1/7,,,. We suggest that the
rigidity of the glassy phase as indicated by the nonzero
shear modulus at w=w, is closely connected with broken
statistical symmetry. These conclusions were reached by
examining the time-averaged properties of the subsystems
of the glass (referred to as CRR) and by noting that the
statistical mechanical properties of the glassy states can
only be inferred by considering the ensemble of all the
subsystems. The long-time dynamics in the glassy phase
is thus dominated by fluctuations in the subsystems in
conformity with the ideas originally proposed by Adams
and Gibbs.

The analogy between the diffusion process in the space
of the time-averaged energy variables x;(#) =g, (t)—¢,; ()
suggests a similarity with the more familiar Arnold
diffusion involving excursion of the actions along reso-
nance layers.” The phase space is filled with the reso-
nance layers entangled in a complicated manner leading
to the Arnold web. It has been shown the time scale for
Arnold diffusion goes as exp(1/8%), where & is the
strength of coupling between the resonance layers and
a >0.447 Using this diffusion analogy and noting that
the diffusion constant introduced in this paper decreases
dramatically as the temperature is decreased, we can
infer that the effective coupling between the components
decreases as the degree of supercooling increases. Thus
the time scale for obtaining ergodicity increases exponen-
tially. If this analogy is indeed correct, then this should
be reflected in the motion of the particles. We have ex-
amined the local dynamics of several particles and have
noted that in the glassy phase, the trajectory of a test par-
ticle appears almost ‘‘quasiperiodic” for long times.
These ideas are pursued in detail elsewhere.*®
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