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We present here an extensive study of the technique of numerical simulations, applied to the solu-
tion of a system of equations obtained by the positive P representation. The model we introduce to
aid in these investigations has the distinct advantage of an immediate physical interpretation. In
these simulations we experience the divergent trajectory or “spike,” noted by other authors; howev-
er, due to the simplicity of our equations, we are able to categorize and explain these spikes. Final-
ly, we report a disturbing anomaly in some of the simulation results which indicates a possible prob-

lem with the use of the positive P representation.

I. INTRODUCTION

Many recent studies in quantum optics have resulted in
systems of equations which are both coupled and non-
linear, and hence cannot be easily solved by analytic
methods. Authors! have then attempted to find solutions
by direct numerical simulation of the equations in phase
space. It is now well known that the use of traditional
Glauber-Sudarshan P representation as a description of
the system in phase space very frequently leads to a
Fokker-Planck equation for the P function possessing
nonpositive definite diffusion. However, this problem has
been addressed by Drummond and Gardiner,? who intro-
duced a generalized P representation which allows a
better-behaved phase-space description. One form of
this, called the positive P representation, enables the
choice of a Fokker-Planck equation with positive
semidefinite diffusion to be made in all situations. This is
achieved by removing the explicit conjugacy between
some variables, and results in a phase-space representa-
tion in a doubled dimension.

Equations based on the positive P representation have
now been used to study the stationary and dynamic be-
havior of physical systems. Of central interest is how the
increased dimensionality of the phase space affects the
time behavior of the system. Early researchers have not-
ed the occurrence in their simulations of numerical
‘“spikes,” where an individual trajectory shoots out into
the extra nonclassical phase-space dimensions towards
infinity. The question that must be addressed is whether
these spikes are an actual quantum effect, an intrinsic re-
sult of the increased dimensionality, an artifact of the
numerical integration scheme, or perhaps some combina-
tion of these.

Many of the earliest attempts in stochastic integration
were based on an extension of Euler’s algorithm, which,
because of its poor stability properties, may have led to
numeric instabilities. With this in mind, Klauder and
Petersen® devised Runge-Kutta methods of stochastic in-
tegration which lead to improved local-order accuracy.
In the recent paper by McNeil and Craig,* an uncondi-
tionally stable numerical method for nonlinear stochastic
equations was developed which removed all the spikes
from their system. However, we feel that, although an
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improved integration scheme may remove one of the
sources of the spikes, there are other reasons for their ex-
istence much more intimately related to the nature of the
expanded phase space. Indeed, in this study of the para-
metric oscillator by Wolinsky and Carmichael,’ it was
shown that the trajectories of the simulation are naturally
confined to a bounded manifold, and spikes only occur
when the trajectories stray outside this region. Of course
in most physical systems it is not possible to easily specify
the required manifold, if indeed there is one. It is there-
fore necessary to determine more generally the nature of
these spikes, and so in this paper we hope to give a
greater understanding of how this second class of spikes
occurs and what its purpose is in the simulation.

In Sec. II we develop a set of stochastic equations
which may then be numerically integrated. Our Hamil-
tonian model is of a single-mode interferometer which is
damped by both linear and nonlinear couplings to a
zero-temperature reservoir. The great advantage of this
model is that if offers an immediate physical interpreta-
tion with which simulation results can be compared, and
provides as well a framework in which an explanation of
the numerical spikes can be made. Using the positive P
representation we transform the master equation in the
interaction picture, via its phase-space representation as a
Fokker-Planck equation, into a classical process. Using
the Ito rules we obtain an equation for the intensity of the
cavity mode, which now in addition to the classical di-
mension contains the extra phase-space dimension re-
quired by the quantum noise. This stochastic differential
equation is nonlinear, but a change of variables trans-
forms it to a linear equation which has excellent stability
properties, and as well, an exact stochastic solution.

Before conducting the simulations it is necessary to
make an examination of the various possible stochastic
integration schemes (Sec. III). In particular, three
methods are discussed: the traditional Euler algorithm,
the mixed explicit-implicit method of McNeil and Craig,
and a fully implicit difference scheme.

In Sec. IV we use the results of our simulations to
make some general statements about stochastic integra-
tion using the positive P representation. The spikes re-
ferred to above are clearly in evidence, and may be traced
to both the type of integration scheme and the more in-
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trinsic phase-space spike. We find that large, but finite,
excursions into the complex plane are an intrinsic aspect
of this model. However, the initial conditions for these
excursions can only be provided by the effect of the ran-
dom noise driving the system from regions in phase space
in which the variables are approximately conjugate.
Since this involves the surmounting of a barrier this is
normally a rather rare occurrence.

However, a potentially far more serious problem with
the positive P simulation occurs when we consider the ac-
tual time development of the system. If the ratio of the
nonlinear to linear damping is too large, we find that the
stationary state reached has some nonzero excitation,
whereas physically the stationary state should be the vac-
uum. When there is no linear damping, the stationary
state consists of an equal mixture of one- and zero-photon
states, unlike the expected result, where the ratio should
be the initial ratio of odd to even number states. By
directly integrating the stochastic solution of the linear
equation we get identical time development, which sug-
gests that we are simulating the equations properly. The
master equation itself may be simulated and confirms our
physical expectations, as well as indicating that the
source of the anomaly probably lies in the positive P rep-
resentation. Section V presents a short summary and
analysis of the simulation results, and in the Conclusion
we outline our conjecture as to where the positive P simu-
lations have gone wrong.

Finally in the Appendix, we explore another general-
ized P representation, the complex P representation, to
see if a stationary solution can be found and whether this
solution displays the same anomaly as the positive P
simulations. It turns out, however, if the potential condi-
tions are treated sufficiently generally, and a requirement
on the number-state probabilities is imposed, that the
complex P steady-state solution agrees with the physical-
ly reasonable solution.

II. STOCHASTIC MODEL

The model we initially wish to consider is a single-
mode interferometer of frequency ® described by the
operators @ and a ', being damped by both linear and non-
linear couplings to zero-temperature reservoirs. The
Hamiltonian which describes this process is given by

2
H=3 H,;,
Jj=0

Hy=twa'a+ 3 #io,T}, T, + 3 #fio,T],T,;,
i J

(2.1)
Hl = z (angnl,irnl,i+a2g:l,irT ) ’

nli
i

H,=3 (ag,;T;+agT]))

J

where I',;, and I'; are, respectively, the nonlinear and
linear reservoir modes. Following the standard analysis,®
we obtain in the interaction picture a master equation for
the density operator p in a reference frame rotating at an-
gular frequency w as
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%% = 1k(2a’pa"—a"a?p—pa'2a?)

+%‘yx(20paT—aTap—paTa) , (2.2)
where « is the nonlinear decay rate, and y« describes the
linear damping rate. The parameter y is thus defined as
the ratio between the linear and nonlinear damping rates,
and proves to be important in the results from the simu-
lations.

We now obtain a phase-space description for the sys-
tem using the positive P representation of Drummond
and Gardiner? for the density operator

la) {(a™)*|

(a™)*|a)

p=[d% [d*a*P(a,a™) , 2.3)
where the @ and a™ variables are to be treated as in-
dependent complex variables. This means that we now
use a description in an extended four-dimensional phase
space. The Fokker-Planck equation thereby obtained ex-
plicitly has a positive definite diffusion matrix and can be
shown to be

d

—P(a,at)= [%(%yxaﬁ-KaJraz)

ot

+ P (Lyka™ +kaa™?)
= a%;xaz+ 8212 kat? | |P(a,a™)
(2.4)
The corresponding stochastic differential equations
(SDE’s) are
da=—k(lya+a®a®)dt +i(k)?adW,(1) , 0s)

da’=—k(lya® +aa™)dt +i(k)"2atdW,(1t) .

It is then possible to obtain a single SDE for the variable
representing the intensity of the cavity mode N =aa™.
Using the Ito rules

dN=daat+ada’+dada™
=—2k(LyN +N?)dt +i(k)">N[dW ()+dW,(1)] .
(2.6)

The stochastic noise term dW (t)+dW,(t) is equivalent
to a single white noise term 2!/2dW (¢), and scaling the
time as 7= 2«t,

dN =—(1lyN +N>dr+iN dW(r) . 2.7
This is a nonlinear complex SDE which can be solved by
using a numerical simulation technique. It is also possi-
ble to obtain a linear equation which describes the time
development of the system, and has no instabilities. Thus

if we consider the inverse of the intensity, and again use
the Ito rules to determine its SDE, we find
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dv =d

oL 2 any
Nl LTIV 1725 (dN)

=[1+Gy—1wldr—ivdW(r). (2.8)
This is an inhomogeneous linear SDE and hence has an
exact stochastic solution which will be looked at in more
depth in Sec. IV D. Qualitatively (2.8) appears to be a
good equation from which to obtain information about N.
Problems can only occur at the origin which corresponds
to the intensity becoming unbounded. However, since
this phase-space point is nonattracting, that is dv=dr
near v =0, any trajectory close to the origin will tend to
drift past without actually reaching it. There will, of
course, be trajectories which pass through the origin, but
the relative probability of any of these is clearly of mea-
sure zero.

Finally the equations for the a and at may be best
simulated by taking the natural logarithm of the vari-
ables, that is,

dx =d(1na)=ida——1—(da)2

=k[L(1—y)=Nldt +i ()" 2dW, (1), (2.9)

dy =d(Ina™)=k[L(1—y)—Nldt +i (k)2 dW,(t) .
(2.10)

The effect of the quantum noise can thus be seen to cause
a random complex part in x and y which breaks down the
classical conjugacy between the cavity-field variables.
The stability of (2.9) and (2.10) is then determined solely
by the stability properties of the intensity equation.

II1. METHODS OF NUMERICAL SIMULATION

A. Introduction

A general set of stochastic differential equations is now
considered, having the form
dx=A(x)dt +B(x)-dW(t) .

(3.1

These will be either Ito or Stratonovich equations, de-
pending on their method of derivation. However, using
the transformations described in Gardiner,’ both Ito and
Stratonovich integration schemes may be employed to
solve (3.1) in all cases.

The simplest scheme for the simulation of the Ito SDE
is the Euler algorithm which replaces (3.1) with a set of
coupled difference equations,

AanEn +l—gc_”=4()_c")At +B(£")M” ,

(3.2)

where the stochastic part AW is calculated at each time
step by

AW"=Z(n)(AD)?, (3.3)

Z(n) being a vector of independent pseudorandom num-
bers from the distribution N(0,1). The Euler method,
however, has poor stability properties and so often re-
quires the use of impractically small time steps.
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B. Improved methods of numerical simulation

A major improvement in the method is to adopt the
mixed explicit-implicit scheme of McNeil and Craig* for
the integration of Ito SDE’s. This involves treating the
deterministic part implicitly via

éﬁnzé('&n +6,

JAt +B(x")-AW", 6,€[0,1]. (3.4)
By performing a stability analysis on the deterministic
equation only, McNeil and Craig have shown that for
6, = 1 the method is “ A4 stable,” that is, no restriction ex-
ists on the size of the time step in order to obtain stable
solutions. We now linearize the deterministic part of

(3.4) about the point x" as

A(£n+91)=é(£n)+.'rj4‘91gn ,
(3.5)
an) = 04;
Aij axj " ’

where J% is the Jacobian of A4 evaluated at x =x". After
the substitution of (3.5) into (3.4) we obtain the Ito
differential scheme

Ax"=(1—-6,J%A) " '[A(x")At +B(x")-AW"] . (3.6)

The choice 6,=0 corresponds to Euler’s method. How-
ever, for 6, > 1, we would now expect the method to have
considerably improved global stability properties. The
choice 8, =1 leads to the “time-centered” algorithm, as it
has formally a local error of (Az)® in the deterministic
part.

C. Implicit stochastic methods

A natural extension to the method in Sec. III B, when
dealing with stochastic differential equations, would be to
also handle the stochastic part implicitly,

A_&nz___(én+el)At+B(£n+92)‘M" ,

0,,6,€[0,11 (3.7

n+6.
2)=

B(x B(x")+J30,Ax" . (3.8)

Jg is now the Jacobian of B evaluated at x =x". The in-
sertion of (3.8) and (3.5) into (3.7) gives rise to the fully
implicit integration scheme

Ax"=(1—6,AtJ" —0,J5-AW"™) !

X[A(x"At +B(x")-AW"] . (3.9)

If we now use a generalized binomial theorem to expand
out the inverse in (3.9), then we obtain

Ax"=A(x")At+B(x")-AW"+6,J5- AWAW "+ O(Ar*?),
(3.10)

Since AW?=0 (At), this means that for 6, > 0 the numer-
ical scheme is no longer simulating an Ito stochastic
differential equation. In fact, the form of the scheme
resembles a Stratonovich equation, and will exactly in-
tegrate the Stratonovich form of (3.1) with the choice
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6,=1. This indicates that care needs to be taken with
numerical schemes which treat the stochastic part impli-
citly.

In our applications (3.1) is explicitly an Ito SDE, so
that in order to use a fully implicit scheme a correction
term is required. However, this can always be found by
generalizing the transformations in Gardiner,” and in-
volves the replacements

Azﬁ(“_esz"B(”(-ln) ,

. (3.11)
B:B(l)
Substituting these corrections into (3.9) gives the fully im-
plicit algorithm
-1
AW"+6 62—[JB ‘B(x")]At

Ax"=|1—0,At3" — 6,4

X{[A(x"—6,J5--B(x™)]At +B(x")-AW"}, (3.12)

where all terms now obey Ito statistics.

D. Accuracy of the methods

To analyze the local errors in each integration scheme
we use the same procedure as Klauder and Petersen’ and
obtain the exact solution for Ax" by Picard’s successive
approximation method,

Ax"=A(x")At +B(J£")-M+J§-B(5n)'f0 dW(t"+7) f’dW t"+7)+3" -B(x")

43 [ MrdWr )+ (05 7B

L1
2

9’B
§£2

BB [ [ [ TaW (et ndW e W ) O (A
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A£"=fl “‘[A(x(t))dtﬂa(x )-dW(1)] (3.13)
:f“’[_ x(t"+m)dr+B(x(t"+7))-dW(t"+7)]
0
(3.14)

We now expand A and B in a Taylor series about x(t"),

Ax(t"+7))=A(x")+T"-Ax™"
1 62 n,7\2
+ 25 -(Ax "™+ )
o (3.15)
n = n nT aZB
B(x(t"+7))=B(x")+J}-Ax + *—a (Ax™7)?+
_x

where

AxPT=x(t"+71)—x(t")

= [ T4 +7)dr +Blx(t"+7)-dW (1" +7)] .
(3.16)

The lowest-order approximation is to drop all but the
first terms in (3.15), substitute into (3.14), and calculate
the integrals according to the Ito rules. Extensions may
obviously be made to any order in At by repeating the
process of Taylor expansion, now in (3.16), and retaining
terms of higher order in (3.15). To O (At3/?) we obtain

- [ Var [Tawantr)

(x" f“f f AW "+ 1) dW ("1 )dW (1" +7")

(3.17)

In the mean only the first term will contribute, since the third term vanishes owing to the nonanticipating nature of the
integrand, and all other terms have an odd number of Wiener increments. That is,

(Ax")=A(x")At +0(At?) .

(3.18)

So to analyze the local errors in our numerical schemes, we look at the order of the mean-square difference between the
exact solution and each of our algorithms ((Ax”"—Au")?). For simplicity we consider the one-dimensional case, where
Ax"is given by (3.17), and Au" is the difference equation for each of our numerical schemes.

(i) Euler method. From (3.2) we have

Au"=A(x")At +B(x")AW (3.19)

so that in the mean, (Ax") =(Au") to O (Ar*/?). Performing the mean-square analysis, the leading-order term is
ar T n ’ 2 ny12 2

((Ax"—Au"?)=[JEB(x" ] o dW(t"+T)fodW(t +7‘)] =1[JgB(x")]*At (3.20)

Hence the local error in the Euler method is of O (At?)
(i1) Mixed implicit-explicit method. We now have Au" given by (3.6), and providing the condition

|6, 7% At <1 (3.21)
is maintained, we may expand the inverse out in a binomial series to obtain

Au"= A(x")At +B(x"AW+0,J B(x")AWAt+6,J"% A(x")At*+ - -- (3.22)

In the mean we still have (Ax")=(Au") to O (At3/?). Equation (3.20) will also provide the leading-order mean-square
term, so that the local error in the mixed implicit-explicit method is of O (At?), i.e., exactly the same as in the Euler
method. However, the global accuracy is governed more by the stability, so that in practice, this is expected to be a
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much better method.
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(iii) Fully implicit method. The fully implicit method is given by (3.12). Again, a condition similar to (3.21) is re-

quired to expand the inverse, and finally results in

Au"=A(x")At +0,JEB(x")(AW?*—At)+B (x") AW
n n n n aZB ny12 ny2 n
+ |6, J%B(x")+6,J3 A(x")—6,6, 3——2-[B(x P+JE)PB(x") | |AW At
X

+60%J2)B(x"AW?—At) AW +O(Ar?) .

First, since { AW?)=A¢, in the mean the fully implicit algorithm will now correctly simulate the Ito SDE to O (At

Performing once more the mean-square analysis

((Ax"—Au")2)=< 738 (x") [fOA’dW(t"+T)fo’dW(z"+r')—92(AW2—At)]+0(AWAt)]2> ,

then it may be shown that, for 6,=1, the term of O (Ar)?
vanishes. There is, thus, an improvement in local accura-
cy with the fully implicit method. Terms at O (At/?) are
always zero, owing to their having an odd number of sto-
chastic increments. So when we look at the next-order
mean-square terms, now at O (Ar?), this then involves the
calculation of terms such as

[J7 4 (x")]2< [fo“fdwuwrr)—e,m AW]2> . (325)

However, it now proves impossible to reduce this error to
zero for any value of 6, although a minimum is reached
for 6,=1. Similar results can be shown for the other
third-order mean-square terms arising from (3.17). Thus
the local error in this method is of O (Az3).

This is in agreement with the result of Rumelin,® that
no integration scheme may be constructed that has a lo-
cal error better than O(At?) in the mean square. The
best that may be achieved is by using the fully implicit
method with the choice of parameters ;=1 and 6,=1,
which can be shown to minimize all the third-order terms
such as (3.24).

This analysis would then seem to indicate that there is
an improvement to be found in local accuracy through
the use of the fully implicit method. However, the ques-
tion remains as to whether these improvements would be
apparent when conducting the simulations, as there is no
theoretical treatment which can predict the stability of a
scheme which treats the stochastic part implicitly.

The double dot notation is defined by setting

aBk,[
Jglii,m = ox
and
=B =3 gl ,mBim -
ILm

IV. SIMULATION RESULTS

Simulations were now conducted of the equations
developed in Sec. II for a wide range of ¥ values, and us-
ing all the integration schemes obtained in Sec. III. In
each case a suitable initial point in phase space is select-
ed, and then the individual trajectories are integrated
from O to a specified ¢. In the limit of a large number of
trials the ensemble average at each time step represents

(3.23)
32y,

(3.24)

!
the time development of the stochastic variable.

As a first step, a comparison was made between the
various integration schemes for the ¥ =0 equations. A
check was made initially that all methods converged in
the ensemble average to the same stationary state, and a
cutoff was devised to give an indication of when an indi-
vidual trajectory diverged (i.e., a numeric spike). It
proved most convenient to use the cutoff required in the
binomial expansions of methods (ii) and (iii), and since for
the N SDE the Jacobian of the drift vector 4 is of O(x),
we define a divergent trajectory as one where

x| >_1 @.1)

0,At
for any phase-space variable x;. This definition is then
extended to define a cutoff for the Euler algorithm. Now
using method (ii) with 6,=4, and method (iii) with
91,92=%, over a large range of time steps At, we obtain
Table 1.

As expected the v simulation, being linear, was totally
stable for all methods and integration steps, there being
no spikes with any method, and for any time step. The N
simulation results confirm clearly that the Euler algo-
rithm is only reliable for small integration steps. Howev-
er, it should be noted that even with the A-stable mixed
implicit-explicit method (ii) there were still a finite num-
ber of spikes. This confirms that for some systems, as we
shall see, reasons for these spikes can be intrinsic, rather
than simply a poor integration scheme. The results are
not conclusive for a comparison between methods (ii) and
(iii), although it does appear as if there is no major im-
provement to be made in the extra linearization of the
stochastic terms, while it is definitely more complicated

TABLE I. Entries are the number of divergent spikes found
until 2000 nondivergent trajectories are reached.

N simulation

Method
At (i) (ii) (iii)
0.005 12 5 5
0.01 33 6 18
0.05 276 21 42
0.1 . 984 127 108
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computationally. This would suggest that the properties
of stability and global accuracy are more important in
determining the accuracy of the simulations, rather than
the local order of the method.

Finally the Runge-Kutta algorithm of Klauder and
Petersen was implemented. This, however, offered no im-
provement in terms of the number of spikes encountered
or in the description of the convergence to the stochastic
steady state. Thus for our system of equations, all of
these improved stochastic algorithms are seen to be
essentially equivalent. For the rest of this paper, then, we
shall use the time-centered mixed implicit-explicit
method to integrate our stochastic equations.

A. Results of the ¥y =0 simulation

This corresponds to the situation where the cavity
mode is only damped nonlinearly, i.e., through two-
photon absorption. Then the stochastic limit of the N
and v equations was found to be

N, 1 vy 1
N—Ny—->0,v—vy—>0 (4.2)

As required the variables N, and v, representing the ex-
tra dimensions of the positive P representation are zero in
the ensemble average. The result N — ; also has a simple
physical interpretation, representing a superposition of
the stable |0) and |1) number states. An initial coherent
state is a Poisson distribution of odd and even number
states so that a steady state of V =3 corresponds to a bal-
anced superposition of final number states.

Now at each time step, and for each trajectory we have
the relation between N and v

Uy —v

y
= B =— . 4.3)
x vf+vy2 ’ y,f‘*'vy2
However, since
1 (v [])
N == . (4.4)
< x[w]> Zyﬁ(vx[oo])Z-F(vy[oo])z

there is no simple way to relate the stochastic limits of
the numerically stable v equation with the physically in-
teresting N equation. Instead, when simulating the v
equation for each trajectory, at each time step it is neces-
sary to calculate N, and N, from (4.3), and then ensemble
average N, and N, over all the v trajectories. We shall
refer to this process of simulating the v trajectories and
using them to generate the time behavior of N as the 1/v
simulation.

With this refinement the N and 1/v simulations give
rise to the same stochastic time development and station-
ary state (see Fig. 1). This would seem to confirm that
our N equation, although nonlinear, is being simulated
correctly.

It was noted above that with all methods there was a
finite number of spikes in the N simulation. The ex-
istence of these spikes has been of some concern recent-
ly.® Because of the simplicity of our equations we are able
to isolate the cause of these spikes and understand better
their purpose in the positive P simulations. This can be
seen when we consider the pair of deterministic equations
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Re(N)

T T T T

0 1 2 3
time
FIG. 1. Ensemble average of cavity intensity Re(/N) vs time,

y=0. , jump process, 200000 trials; ----- , 1/v simulation,
15000 trials; — — —, N simulation, 15000 trials. Parameters:
dt=0.01, y=0.

resulting from (2.7),

dN,=—(N}—N})dr, dN,=—2N,Ndr,
then if N =(—X,0) for any X>0,

dN,=—X%dr, dN,=0, N—(—,0).
That is, the equation is unstable for an initial condition
on the negative real axis. Of course N being on the nega-
tive real axis corresponds to an unphysical situation, and
in the deterministic analysis starting from a physical ini-

tial condition could never be reached. However, if we
now consider the addition of the stochastic parts

dN,=—(N}—N})dr—N,dW (1),
dN,=—2N,N,d7+N,dW(7)

then the effect of the noise terms can lead to a single tra-
jectory landing on the negative real axis. There will then
be an explosion along the negative real axis as in the
deterministic case, but owing to the coupling N, dW (7).
N, must also go away from zero. The deterministic part
of the N, equation then takes over and causes N, to
quickly increase in the direction of the initial sign of N,.
There is, thus, a dramatic shooting out into the nonclassi-
cal complex phase space. Eventually the Ny2 term in the
deterministic part of the N, equation will stifle the unsta-
ble N2 term causing N, to return to the origin and be-
come positive. But for N, positive, the deterministic part
of the N, equation reverses sign, so that N, will now tend
back to zero. As this happens, N2 will again dominate
over Ny2 causing IV, to stop increasing, and to return to-
wards small positive values. We are now back in the
“physical subspace” of N, positive and N, small. The
complete description of this spike is of a large loop in the

(4.5)

(4.6)
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604

50 4

40

304

Im(N), Im(1/v)

204

Re(N),Re(1/v)

FIG. 2. Single-trajectory complex plot showing spike; s
N simulation; ----- , 1/v simulation. Parameters; dt=0.02, y =0,
X (initial condition)= —5, ¢, =0.5.

extended phase space which is almost symmetric about
the N, axis and is randomly a loop in the upper or lower
half plane (see Fig. 2). The quantum noise affects the tra-
jectory in two ways, firstly allowing it to explore the ex-
tended phase space, but then providing this looping
mechanism to return it to the physical domain. The ex-
act size of the loop is not constant and depends on the
values of the random noise terms, but it is clear that the
loop must be of a finite size and eventually return close to
the positive real axis. It is only during this time that
there is any significant excursion into the extra dimen-
sions of the positive P representation.

This explanation of the spikes supports the notion of
Carmichael et al.,'° that there is no physical basis for
these spikes. Indeed it may be seen that as the loop is ap-
proximately symmetric about the imaginary axis, and
equally likely to shoot out in the positive or negative
imaginary direction, then in the ensemble average it pro-
duces no physical contribution. However, due to the
finite ensembles that we are using, these spikes will result
in fluctuations about the physical development.

In the N simulation, all methods become inaccurate on
the spike trajectories, so it is necessary to retain a cutoff
and remove from the ensemble average all trajectories
exceeding this. In the v simulation, spikes correspond to
the trajectory tending close to the origin, and since every-
thing is well behaved here, the trajectory may be followed
accurately and no cutoff is required. In general, to avoid
the unsatisfactory practice of just ignoring spike trajec-
tories, we would suggest the best procedure is to establish
a changeover sphere in phase space for the variable being
integrated. If a trajectory goes beyond this boundary, a
switch is then made and the inverse variable equation is
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used to track the trajectory until it returns inside the
sphere and the variable equation is restarted.

B. Results of the ¥ >0 simulation

We now extend the simulations to include a mecha-
nism for linear damping. The time development for the
intensity N is obtained by performing the N and 1/v
simulations using method (ii). As can be seen in Figs. 3
and 4 a definite stochastic limit is reached in both situa-
tions where

N—1(1—y) fory<l, N—O0 fory=1.

However, this result is in conflict with our physical inter-
pretation. We would have expected that as soon as a
linear damping mechanism was introduced, even with a
small damping rate compared to the nonlinear mecha-
nism, that the |1) state would no longer be absolutely
stable due to a finite possibility of a transition to the
ground state. Thus we would expect N —0 for all y >0,
with the decay curve steepening for larger y.

To test the time scale for this decay we went back to
the master equation (2.2), and defining P(n)=(nlp|n),
the diagonal matrix element in the number-state repre-
sentation, we obtained the equation

P(m)=x[(n +1)(n +2)P(n +2)+y(n +1)P(n +1)
—n(n—1+y)P(n)]. 4.7

This is the equation of a unidirectional jump process,
with a transition rate per unit time from a state |n ) given
by

A=kn(n—1+y), (4.8)
2.04
1.5
210
a
0.54
\%4,u A,
NN R R P s gt S e
0.0
T T T
0 5 10
time
FIG. 3. Ensemble average of cavity intensity Re(N) vs time,
y=0.5. , jump process, 200000 trials; ----- , 1/v simula-

tion, 15000 trials; — —
ters: dt=0.02, y=0.5.

—, N simulation, 15000 trials. Parame-
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time

FIG. 4. Ensemble average of cavity intensity Re(N) vs time,

y=1. ——, jump process, 200000 trials; ----- , 1/v simulation,
15000 trials; — — —, N simulation, 15000 trials. Parameters;
dt=0.02, y=1.

made up of two transitions: n—n —2, n—n —1, with
transition rates A,; =«kn(n —1) and A;=kyn.

The simulation of a jump process is a well-studied pro-
cedure; to correspond with the phase-space simulation we
scale the time as 7= 2«t, and note that an initial condition
in the N simulation of X (real) is equivalent to a Poissoni-
an distribution of mean X for the starting values of the
jump process.

For y =0, A has two stationary values at n=0,1 so that
the time development of the ensemble average of the in-
tensity n is towards the ratio of the final number of |1)
states to |0) states. As seen in Fig. 1, for large initial
conditions X this ratio is =+ and the simulations of the
positive P and jump process give rise to identical time de-
velopment, within the accuracy of the simulations. Due
to the Poissonian probability distribution for smaller ini-
tial conditions, the final ground state will dominate, re-
sulting in a result of less than half for the stationary state
of the jump process [i.e., for X=0.5 n(jump)—0.316].
However, in the positive P simulations, the intensity vari-
able still tends strictly towards half, now at variance with
our physical predictions.

For y >0, the only stationary value of A is at n=0
(since n € W), and hence the ensemble average n(¢)—0
as t— co. This is in direct contradiction with our previ-
ous simulation results (Figs. 3 and 4), although in accor-
dance with our physical expectations. We notice from
(4.8) that there is a second stationary state given by
n=1—v, 0=y =1, and a superposition of this and the
ground state would give rise to the N — 1(1—y) stochas-
tic limit of the simulations. However, there is no physi-
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cal reason for the fractional photon number states that
this explanation would require.

C. Simulation of the field variables

In the next simulation, our stochastic equations were
used to obtain the time development of the a and a™
variables. Using the results of Sec. II we integrated

dx(1)=[{(1—y)=N(n)ldr+idW,(7), (4.9)

where N (7) is found at each time step by integrating
dN =—2(1yN +N*dr+i2"*[dW (1) +dW,(7)]
(4.10)

or equivalently using the 1/v simulation. For each trajec-
tory we calculated a(7)=exp[x (7)] and found its ensem-
ble average over all the trajectories at each time step.
The time development of @t may be similarly determined
using the equation for y or the relation a* =N /a. The
results for all ¥ show that a and a* decay to zero (see
Fig. 5) in the stochastic limit. The stability properties of
the x and y variables are totally determined by the stabili-
ty properties of N, and hence do exhibit spikes, although
scaled by At.

It is most interesting here to look at the time develop-
ment of a and N for a single trajectory [Figs. 6(a) and
6(b)]. We see here that a (and a™ similarly) tends to-
wards a circular distribution about the origin. The radius
of the circle is determined by y, being a maximum for
¥ =0 and zero for ¥y 2 1. The trajectory of the intensity
variable N, however, is a crescent, located predominantly

o
3]

Re(N),Re( ),Re( )

0.04

time
FIG. 5. Ensemble average of cavity and field variables in
time, ¥ =0. , N obtained by 1/v simulation; ----- , a ob-
tained by x simulation, — — —, a™ obtained from N/a. Pa-
rameters: 10000 trials, dr=0.02, y =0.
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(a)

Im(N)

Re(N)

1y (b)

Im(«)

-24

Re(a)

FIG. 6. (a) Single-trajectory complex plot of N in time. *, N
obtained by 1/v simulation, every fourth time step. Parameters:
dt=0.01, y =0, X (initial condition)=2, ¢, =20. (b) Single-
trajectory complex plot of a in time. *, a obtained by x simula-
tion, every fourth time step. Parameters: dt=0.01, ¥y =0, X (in-
itial condition)=1.414, t,,,, = 20.
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in the real positive half plane and symmetric about the
real axis. The perfect phase diffusion in the distribution
for the field variables explains why the ensemble average
of the a and a™ variables tends to zero in the stochastic
steady-state limit while the intensity remains finite.

D. An exact solution for the v equation

In Sec. II we obtained an equation for the variable 1/N
(2.8), which is a linear inhomogeneous process. To solve

this, we considered first the homogeneous process
du =[(Jy—Ddt —idW()]u . 4.11)

Defining then the variable y =Inu, it will have the equa-
tion
dy=X(y—ldt —idW() . (4.12)

This may be directly integrated, and results in the solu-
tion for u,

u(t)=u (0)exp [fo'[%(y——l)dt’—idW(t’)] ]

=u (0)é(2), (4.13)
which defines
$(1)=e'7~ D 2xp [—ifo’dW(t')] . (4.14)

So now dealing with the time-scaled inhomogeneous pro-
cess

dv=[1+(3y—1wldt —iv dW (1) . 4.15)

If we define z=v[#()]"}, then as is shown by Gar-
diner!! for the general case, we obtain the equation for
the z variable

dz =dt[¢(t)] ! (4.16)
and the exact stochastic solution for v (2) is

v()=v(0)e? ™V exp | —i [['aw (1) ]

+ [avexp [Hy =i —e)—i flaw |
t
@.17)

This solution may be used to find the time development
of the mean of v (¢). .That is, taking the expectation value
of (4.17), together with the rule for any Gaussian variable
Z with zero mean,

(exp(Z))=exp(1(Z?)), (4.18)
then after performing the integration it may be shown
that

<v(o>>——2—

2—y

2

<U(t))=e(‘y—2)t/2
2—y

(4.19)

Hence in the steady-state limit, for y <2,

lim (v(t))—»-——z—,
. 2—vy

n—oo

and for y 22
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lim (v(t))— o0 . (4.20)

n— oo

The results of the simulations for v conform exactly in
the steady state to (4.20), and the time development clear-
ly has the right type of y-dependent exponential decay.
Unfortunately though, it is impossible to analytically re-
late these exact results for v to the physically interesting
N results, other than to show that for y =22, N must tend
towards zero.

One numerical approach that we can take is to numeri-
cally integrate (4.17) by using a routine such as the tra-
pezium rule. The stochastic part is handled in a similar
fashion to the simulation as

t t/At
Jlaww= 3 can'?, (@.21)
0 k=0
where C is a pseudorandom number from N(0,1) with an
ensemble average taken of 1/v at each time step of a large
number of integrations. Looking at the results for y =0
and 1 (see Fig. 7), we see that they show exactly the same
time development as in the simulations, confirming the
correct numerical simulation of our equations.

V. ANALYSIS OF SIMULATION RESULTS

When we look at the results of the simulations con-
ducted in Sec. IV, we see there is a definite anomaly in
the behavior of the positive P simulation, when compared
with both the jump process results and our physical intui-
tion. This is seen most graphically in the different steady
states obtained for certain y values by the various

2.01

B

0.5

0.0

4

time
FIG. 7. Exact 1/v integration of cavity intensity vs time;
Upper curves: ¥y =0, dt=0.02; , equivalent jump process,
100000 trials; ----- , 1/v integration, 500 trials. Lower curves:
v=0.5, dt=0.02; , equivalent jump process, 100000 trials;
----- , 1/v integration, 500 trials.

A. M. SMITH AND C. W. GARDINER 39

<N>,

0.5

Y
FIG. 8. Diagram of steady-state intensity vs y. 0, N and 1/v
simulation; @, jump process.

methods (Fig. 8). As indicated in the diagram, the
significant values of the horizontal axis are at y =1 and 2.

For y <1, there is a discrepancy between the stochastic
stationary states (although for ¥ =0 this is only apparent
for small initial conditions). Other nonphysical behavior
is also observed (Fig. 9) in this region, where the cavity
intensity increases uniformly for some time although
there is no physical process in the Hamiltonian which
permits this. What is noticeable from Fig. 9 is that the
simulation always follows initially the correct time devel-
opment, but then there is suddenly a dramatic change as
though some hidden factor in the equations causes the
simulations to tend towards a different limit.

For 1<y <2 the simulations all now decay to zero, al-
though, as is shown in Fig. 4, there are differences in the
moderate ¢ time development when compared with the
equivalent jump process. However, as ¥ increases, the in-
tensity curves for the N, 1/v, the jump simulations tend
to approach each other more closely. The simulations for
v =22 all decay to zero in numerically indistinguishable
fashions by all methods. This is in line with our theoreti-
cal v analysis, which showed that for y =22 then v — o
rapidly, which must force the intensity N to quickly de-
crease to zero.

There seems no doubt that the simulations are correct,
that is, the time development is the one given by the form
of the stochastic equations. In this paper we have used
straight N simulations, the 1/v simulation, and the in-
tegration of the exact stochastic v solution—all with
identical results. Even though numerical problems such
as spikes do occur in some of these techniques, they may
be dealt with consistently and without introducing any
systematic error. We are thus confident that the explana-
tion for this anomaly is not simply a numerical one.

Another important piece of evidence is that of the
jump process simulation, which proceeds directly from
the master equation. This was found to conform to our
physical predictions for all values of ¥, and all initial con-
ditions. This would seem to confirm that our Hamiltoni-
an model does correctly represent the physics of the situ-
ation, and that the derivation of the master equation is
sound.

This leaves then, the positive P representation itself as
the only remaining source of the anomaly. We consider



39 SIMULATIONS OF NONLINEAR QUANTUM DAMPING USING . ..

0.6 4

0.5

. ;7"‘\{’ ..’*'h A
el

o) )
,u..‘ﬁ_'n\ ““_, '.'".'\\"5"" A "{_'-‘\ o ""-,‘J\.» Y,

Re(N)

0.2

T T T
0 5 10

time
FIG. 9. N simulation of intensity vs time, small initial condi-

tion. ——, jump process, 200000 trials; ----- , N simulation,
15000 trials. Parameters; dt =0.02, y =0.

that this is most likely to be in the assumption of the van-
ishing of the boundary terms as the phase-space variables
tend towards infinity in the extended phase space. In
derivations of the positive P representation this step is
never explicitly checked, and since the appearance of
these terms affects the normalization properties of the
solution, their exclusion may explain the nonphysical
properties exhibited in our equations. This conjecture is
now presented in greater detail in the conclusion to our
analysis of simulations in the positive P representation.

VI. CONCLUSION

The positive P representation has been in existence for
ten years now, and although there has been some concern
expressed about the spiking behavior, we believe that this
is the first investigation in which one can say with some
confidence that the positive P representation predictions
are not correct—they are at variance with what the mas-
ter equation itself predicts. It is therefore important to
understand what is going wrong.

While a conclusive answer cannot be given, a very
good indication can be found. Firstly one may notice
that the derivation of the positive P Fokker-Planck equa-
tion involves a partial integration and the subsequent dis-
carding of surface terms. If we consider, for example, a
diagonal coherent-state matrix element {B|p|B8) of the
density operator, when p is written as a positive P distri-
bution, we have

(Blplﬁ)=fdzafdzaerP(a,aﬂ

6.1)
(a*la) ‘
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= [d% [d*a*texp[—(B—a)B—a™)*]

XP(a,a™) . 6.2)

Since a and a* are allowed to vary all over the complex
plane, we can see that the direction in which a*=—a is
particularly dangerous, since the exponential factor can
blow up like exp( |a|?). This means we must have

Pla,—a)=exp(—|al?) (6.3)
at the very least for convergence. The explicit construc-
tion of the positive P function (see Gardiner'? for details)

P(a,a+)=—4%exp[—%Ia—(a+)'|2]

X (La+(a)*llplila+(a™)*]) (6.4)
can be seen to only just satisfy this constraint for reason-
able p. However, it must be remembered that the posi-
tive P function is not unique, and that the explicit con-
struction merely proves the existence of at least one posi-
tive P function. In particular, the solution of the positive
P Fokker-Planck equation is certainly not of this kind.
In the model being studied here, for y <2, there is always
a probability of v (z) passing close to the origin in each
trajectory; in other words, the probability density of v is
nonzero at v=0 in the stationary state. Translated into a
statement about P(v), and hence P(a,at), this means
that the probability density P(a,a™) will go to zero at
best like |aa™|™3, which would certainly violate the
growth condition (6.3) rather badly. On the other hand,
for ¥ > 2, v(¢) must become infinite as t — o, so that the
probability density at the origin of v will be zero in the
stationary state. In fact, in the stationary state, the v
probability is zero everywhere except at v = oo, which
certainly satisfies the condition (6.3).

In the time evolving state, it is clear that there is al-
ways some probability of going near the origin in the v
equation, but from the simulation results, this can only be
significant when y <2. Also in the initial time develop-
ment from a physical initial condition, we would expect
there to be an accumulation of probability at the origin of
v. This growth in probability for ¥ <2 provides a good
explanation of the phenomena noted in Sec. V whereby,
for any y, the simulation initially displays the right time
development (see Figs. 3 and 9, for examples). The hid-
den factor which causes the simulation to .go wrong is
then intimately related to a finite probability of the v tra-
jectory being at the origin.

We can summarize our conclusions in a conjecture.
The spikes always arise from a reciprocal variable passing
near the origin, and when this happens the probability
density (in the reciprocal variable) at the origin is
nonzero. This corresponds to P(a,a’)=|aa™|7? at
infinity, in which case the positive P representation is not
valid. Thus if spiking behavior is observed, the results of
the simulations are not reliable, although they may ac-
cidentally nevertheless be accurate, as appears to be the
case for y =0 with large initial conditions (also in the
steady-state limit for / <y <2).

A proof of this conjecture is left to either a later work
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or to others. It seems to us to be more important at this
stage to analyze what possible correction terms could be
implemented to compensate for the spiking, since a
method whose usefulness has proved itself so widely
should not be abandoned lightly.
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APPENDIX: A COMPLEX P REPRESENTATION
STEADY-STATE SOLUTION

A generalized P distribution, which may give rise to an
analytic steady-state solution under certain conditions, is
the complex P representation, where the density operator
p is given by
la) ((a™)*]

((at)*la)
C and C’ being contours in the complex a and a™ planes.
It is then possible to rederive the Fokker-Planck equation

for P(a,a™) (2.4), and write it in the form of probability
currents

p=fcdafCIda+P(a,a+) (A1)

9 1= |9 |gta2+ Lya—L 0 o2
aTP(a,oz ) 3 aa zya ) aaa
d +2, 1 +
+aa+ aa +Eya
1 3 1 +
- a Pla,a™)
da™

(A2)

The most general requirements for a steady-state solution
are then

a+a2+5ya—%‘%a2 P(a,a)=¢(a’), (A3)
aa’l+Zyat == aa+ a’? |P(a,a)=Pla), (A4
a

where the ¢(a’) and () must in addition satisfy some
generalized potential conditions. To find the form of
these functions we write P, as

~P5(a,a+)=%o;’—f;—) (AS5)
then (A3) and (A4) can be written as
S%[e‘2"“’+(ozoz+)'7Q]=—2(9(oz+)(aoz+)_7’e_2"“"Jr
(A6)
ag+ [e 2" (aa*)"7Q]=—2x(a)aa*) e 2@
(A7)
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where we have defined for simplicity
Olat)=apa™), xla)=a*¥la) . (A8)

The generalized potential conditions are now see to be

aa+ Ea;[e‘z““'waﬂ"g]]
o
2% 82+ [e_z""+(aa+)_7Q]] ,  (A9)

so we obtain the condition on 8(a™) and x(a)
0

—2 _[—26(at Naat) Ve 2aa”
dat [ ]
— d +\—vy —2aa™
—%-[—Zx(a)(aa ) e 1. (A10)
After some cancellation (A 10) becomes

+
9 _pa*)—102) 24600
a

da™

Z%X(a)—r%(a—)——Za’L)((a) ,

which can only be satisfied for

6(a™)=0, x(a)=0,

(A11)

for the ordinary potential solution, or
6at)=Ada", xla)=Aa.

So taking a linear combination of these, the solution of Q
will be given by either

%[(acf“)_”e_2"“"+Q]=—2Aa+(aa+)_"e-2""+ ,
(A12)
or
aa+ [(aa+)_7’e_2"“"+Q]=—2Aa(aa+)_7’e_2"“’+ .
a
(A13)

(i) Case y =0. We now perform either of the indefinite
integrals (A12) or (A13) to give

Q=A +Bex" (A14)
where B is a constant of integration and hence
P(a,at)=A(aa®) 2+ B(aa®) 22 | (Al5)

(i1) Case ¥ = 0. We now obtain for Q
O =B(aa*t)e?@ —24(aa*t )@ (qt) I |
(A16)
where I is the indefinite integral
I=fa’arac_7’e_2‘er . (A17)

This integral may be calculated using a power-series ex-
pansion, and although modifications have to be made at
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integral values for ¥, by analytic continuation the general
steady-state solution is found to be

P,(a,at)=B(aa™ ) 22’
© (_2aa+)r*l

+44e2”
¢ 20 (r—y+1r!

(A18)

In the limit y =0 it may be easily verified that (A18)
reduces to (A15).

1. Normalization of the steady-state solutions

A normalization of the steady-state solutions is usually
performed by setting the total probability to be 1 via the
contour integral

[ daf da"P(a,at)=1. (A19)
(o} c’

Now since both (A15) and (A18) depend only on
N =aa™, we make the change of variables

N=aa't, z=a,
hence (A20)
dadat=z"'dzdN .

Choosing a circular contour around the origin for the z
integration we finally obtain

2mi [ P(N)dN =1. (A21)

(i) Case y =0. The insertion of (A15) into (A21) gives

: 1 INN -2 -
2mi AfCideN-}—chze N74dN|=1. (A22)
The choice of a circular contour about the origin for C,
makes the first integral zero, and for C, we choose a
Hankel contour together with the relation'’

?2‘%= fcze”y_zdy (A23)
to give
2mi | A X0+B X If(ﬂ;) =1. (A24)
Therefore
= E(rz%z : (A25)

while A remains free.
(ii) Case y = 0. Substituting (A18) into (A21) results in

o _ (=2

4
4 ,§0 (r—y+Dr!

2

fceZNN"ldN

+B [ eN""UN |=1. (A26)
2

Now choosing both the contours to be Hankel paths, and

noting that, because of the nature of the I" function, all

but the first term in the r sum are zero, we obtain the nor-

malization requirement
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p=—T2-y) _ 24T0—y) A27)
(1)~ 2mi) (L)

Comparing the two cases we see that for y=0, the
nonzero probability current solution proportional to A
contributes zero probability, but there is a finite addition
from this as y increases from zero.

2. Steady-state moments

These are calculated as

((aT)"’a">S=fcdafClda+a+’"a”Ps(a,a+) , (A28)

of which the most important in our case is the mean
steady-state intensity

(a'a),=(N),=2mi fCN”PS(N)dN ) (A29)

where we have employed the change of variables (A20).
(i) Case y =0. Following the same procedure as in Sec.
1 of this appendix we obtain

(N),=2mi |4 [, —Ilng +B [_e*NTIdN | (A30)
1 2

_ (27i)?

2
—4m4 .
T 2747

(A31)

Substituting the value of B from (A25) gives the mean in-
tensity result

(N),=1—4m%4 . (A32)
(i) Case y 2 0:
— . - (—2)"?1 2Nprr
(N),=2mi 4Ar§0——(r_y+1)r!fcle N'dN
+B [ N7l | . (A33)
2

With the choice of Hankel contours for C, and C,, the

first integral will always be zero, and the second integral

gives

mi)X Ly B
r'(l—vy)

If we then substitute in for B from (A27), and cancel the

I" functions, we finally obtain

(N),= (A34)

(N),=1(1—y)—4nm%4 . (A35)
Comparing (A35) and (A32), the mean intensity changes
continuously from one solution to the other as it must.
The result (A35) predicts exactly the same steady-state
dependence for 0=y =1 as do the simulations in Sec. IV.
However, there is another criterion to be placed on solu-
tions, in addition to satisfying the generalized-potential
conditions, before we can correctly predict steady-state
moments. This is the requirement on the number-state
probabilities and will be looked at in Sec. 3 of this appen-
dix.



3524

3. Number-state probabilities

The probability of the nth number state is given by
(nlp|n ), and is important to calculate since for an allow-
able steady-state distribution the probabilities must be all
of the same sign. So using (A1) and the expansion of an
arbitrary coherent state as

o+
o aa /2as

la)y=3 £ 7

s=0 (S.

Is), (A36)

then it may be shown that the number-state probabilities
are given by

—aat +\n
{nlp|n )=fdafda+wﬂ(a,a+) . (A37)

n!
Again the integrand will always be a function of N so we
make the change of variables (A20), and choose the z con-
tour to be a circle around the origin, giving

—Nprn
(nlpln)=2ai [ dN<—Lp (W) . (A38)
(i) Case y =0:
(nlp|n)=2mi Af e NN"T2gN
P n! Cl
+ B [ NN (A39)
n! Cz
and choosing Hankel contours for both C, and C,,
<n|p|n)_——'(l:2“(‘L—[B A(—1)] . (A40)
(ii) Case y = 0:
— ; < (_ r*l N n+r—1
(nlpln ) =2mi ’z r—y+1 wr f e dN
+ B [ eNNntrogN (A41)
n! Cz
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_ @m)? B _ A
n! r2—n-—y) 200—y)0(1—n) |’

(A42)

where we have used the standard Hankel contours and
the properties of the " function for negative integers to
obtain (A42).

We are now finally in a position to correctly determine
the steady-state distributions of the system. For y =0,
(A40) shows that we obtain a nonoscillating set of solu-
tions providing | 4| <|B|. It also confirms that the only
|0) and |1) number states have nonzero probabilities in
the steady states. The mean intensity will be given by
(A32) where A is now bounded by the probability re-
quirement above. We still have the novel feature that the
solution proportional to A contributes zero probability
[refer to (A22)] but does have an effect on the mean. The
value of A is not exactly specified by the probability re-
quirements, but instead would depend on the imposed ini-
tial condition for the intensity. For large initial condi-
tions we would expect the most probable value of A4 to be
zero, in which case (N );=1, the ground and first num-
ber states having equal probability in the stationary state.

For y >0 the effect is more striking. Due to the oscil-
latory nature of the I' function in (A42), B must be zero
in order to prevent the appearance of nonzero probability
number states with opposite signs. In this case we then
only obtain a nonzero probability for the ground state as
we physically require. As shown in Sec. II of this appen-
dix the A solution now has finite probability and can be
normalized. However, putting B=0 into (A34) gives
(N ),=0 so that the complex P representation provides
results in accordance with our physical expectations and
the jump process simulation.

Finally, we should note that this analysis explicitly ex-
cludes nonzero integral values for y, but it may be shown
that the mean intensity for these cases is also zero in the
steady state using the complex P representation.
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