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Quantum fiuctuation and correlations in the stimulated Raman scattering spectrum
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Spectral correlations from theoretical and experimental studies of the fluctuations in the single-
shot stimulated Raman scattering spectrum are presented. The coherence-mode representation of
the Stokes field is demonstrated as a convenient and somewhat intuitive method of generating en-
sembles of the fields and spectra. The theory is shown to reproduce the observed spectral fluctua-
tions. In addition, other theoretical approaches are shown to be in agreement with coherence-mode
Qeory.

I. INTRODUCTION

Generation of a Stokes radiation pulse from spontane-
ous emission and its amplification to a large macroscopic
field has recently been the subject of considerable
research. To treat the spontaneous initiation, Heisenberg
equations of motion for the Stokes field operators and
Raman medium are coupled to a classical pump field.
Fluctuations arise from the statistical nature of the spon-
taneous emission and from collisional effects. Raymer
and Mostowski' have presented a fully quantum mechan-
ical derivation of the Heisenberg equations of motion for
the Stokes field. The initiating fluctuations can be
amplified to obtain large scale fluctuations in the energy,
spectrum, and temporal shape of the output pulses.
Large energy fluctuations were observed and theoretically
modeled for Stokes pulses before pump depletion. Re-
cently dramatic spectral fluctuations were observed after
substantial pump depletion. Englund and Bowden '

have shown that on occasional shots, the initiating fluc-
tuations will generate a Stokes field with a near m phase
shift which can initiate a soliton pulse to form in the de-
pletion region of the pump pulse.

Similar fluctuations have also been observed in other
single-pass gain media such as the single-pass dye laser
and in superfluorescence. ' These three systems are all
examples of optically pumped, pulsed single-pass lasers.
The properties of the light emitted from a pulsed single-
pass laser is quite different from that generated in a
pulsed recirculating cavity laser. The most obvious
difference is in the power spectrum of the emitted radia-
tion. ' In a cavity laser the allowed frequencies are
determined by the discrete modes associated with the
laser cavity. In a single-pass laser such as a Raman gen-
erator, single-pass dye laser, or optically pumped
superfluorescence medium there is no cavity to influence
the spectrum.

To give a fully quantum mechanical description of the
buildup of the laser pulse from spontaneous emission and
generate an ensemble of shots, one first chooses a com-
plete set of modes for expanding the radiation field.
While the choice of cavity modes is obvious for a recircu-
lating laser, for a single-pass laser the most intuitive
choice is not clear. In this paper we review the particu-
larly useful choice of localized coherence modes which

were developed earlier. Using this particular set of
modes we can make an interesting comparison between
the two types of lasers.

In a pulsed recirculating laser one can insert additional
etalons in the optical cavity. If the laser pulse stays in
the cavity long enough to adequately sample all the fre-
quency selective elements, all but one mode can be
suppressed resulting in a near-single-mode output pulse.
Using the Raman generator as an example of a single-
pass laser and expanding the Stokes field in coherence
modes one again finds that if the growing pulse remains
in the amplifying medium long enough (thus better sam-
pling the frequency of the Raman transition) the number
of significantly excited modes is reduced. For a Raman
generator, the number of significantly excited modes can
also be varied by changing the Raman linewidth, which
depends on the pressure.

Large spectral fluctuations can be observed when the
output Stokes pulse has several modes which on average
are significantly excited. Although the power spectra of
the individual coherence modes are identical for each
shot, when the modes are added together with weighted
random amplitudes and random phases, the resulting
power spectrum has large fluctuations. These spectral
fluctuations were recently observed in a Raman genera-
tor. While observing the single shot Stokes spectra from
a Raman generator it was found that some shots were
near transform limited while other shots had a broad
spiky spectrum.

It is the purpose of this paper to present theoretical
calculations of the Raman spectral fluctuations and com-
pare them with the experimentally measured results. We
first describe the coherence mode expansion and how it
was used to model the experiment. Next we give the de-
tails of how the experiment was done followed by a com-
parison with theory. In Sec. V we discuss some of the de-
tails of pump depletion. Finally two additional methods
for theoretically generating Raman spectra are presented
which give results similar to those obtained using the
coherence-mode approach.

II. THEORY

A fully quantum-mechanical approach to treating the
problem of growing a macroscopic field from spontane-
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ous emission in a Raman generator using coherence
modes has been presented by Raymer et aI. ' We have
applied this approach to our system with the assumption
that only a single transverse mode of the Stokes beam is
excited. We believe this assumption is valid because the
pump beam used was near single transverse mode and be-
cause of the multipass cell geometry used to pump the
Raman generator.

A. Coherent expansion

Before describing the coherence-mode theory in more
detail a few points should be made about the theory. For
a given location in the Raman medium the coherence
modes are identical for all shots. Therefore the magni-
tude of the complex degree of coherence' has its max-
imum value of one for the individual modes. Fluctua-
tions occur because of variations in the level of excitation
and phase of each mode from shot to shot.

Quantum initiation is included through both a
Langevin noise operator associated with collisional
damping and by an initial polarization in the medium.
The noise operator must be included to maintain opera-
tor consistency in the Heisenberg equations of motion. "
Without the noise operator the expectation value of the
number of atoms in the ground state can be shown to de-

cay even in the absence of any interaction. The initial po-
larization is included because the atomic coherence
operator does not commute with the atomic inversion
operator. Therefore one cannot specify both that the sys-
tem starts in the ground state and that the initial polar-
ization is zero. As a possible physical picture, imagine
that one measures the polarization of an ensemble of sin-

gle hydrogen molecules which are prepared in their
ground state. Each molecule would have a finite polar-
ization with an average order of magnitude of eao. How-
ever if the polarization of a sample of hydrogen gas is
measured the magnitude of the resulting polarization per
atom would be proportional to &N /N due to random
orientations. This simple model gives the correct magni-
tude of the fluctuating polarization which initiates the
stimulated emission. Of course the spontaneous emission
can alternatively be attributed to a combination of vacu-
um field fluctuations and polarization fluctuations. ' '

An appealing feature of using the coherence modes ap-
proach is that q-number equations are not replaced with
stochastic c-number equations. Instead, the operator
equations are used to calculate the two time coherence
function which depends only on expectation values of the
system and Langevin operators. Once the correlation
function is calculated for a given gain and location in the
Raman generator it is used to generate the temporal
coherence modes. Next a particular realization of the
electric field is formed by adding these modes together
with random phases and Gaussian amplitude statistics.
This can be done many times to generate an ensemble of
temporal Stokes pulses. Since this is the last stage of the
calculation before depletion it is easy to generate a large
ensemble which can be used to calculate statistics.

We will present here the outline and results of the
theory. The details are presented in Ref. 9. For the case
of no pump depletion and a classical field El, the Heisen-

+F (z, r),
where I is the collisional dephasing rate and a Langevin
driving term F has been added to maintain the operator
consistency of Q. The constants k, and kz are defined in

Ref. 9 but their values will be used as fitting parameters
here. The initial condition for Q and the correlation for
the Langevin operator Fare

& Q '(...=0)Q(',.=0& =p-'~(. —'),
(2)

(P (z, r)P(z', r')&=(2I p ')5(z —z')5(r —r'),
where p is the linear number density and the expectation
value is taken in the ground state. Solving the coupled
equations (1) for the Stokes field operator the two-time
correlation function for the Stokes field can be calculated.
The two time correlation function for a single transverse
Stokes mode is defined in terms of the field operators as

G(ri, 72)= [(E 5 (z, 7 i)P I (z, 72) ) ]
2M&)s

(3)

Substituting the solution of Eq. (1) with (2} into Eq. (3)
the two time correlation function is obtained. We chose
to normalize the correlation function so that G (r„r, ) = 1

where ~, is the center of the laser temporal pulse, and ob-
tained

L ( i }EL(r2) —r(7(+1()
G (r„r2)= e

2)E, (r, ) ~'q (r, ,r, }

X f (r„rz)+21 f e "'g(r')dr'

where

r
q (r„rb ) =4k

&
k2z f ~ EL (r')

~

~dr',
b

f (ri, r2)=[q(~„0)]' I, ([q(r, ,0)]' )

XIo([q(r2, 0)]'~ ) —(1~2),

g (r') = [q (r, , r') ]'~ I, ( [q (~, , r')]'~ )

XIO([q (r2, ~')]'~
&
—(1~2),

(4b)

where (1~2) indicates interchange of wi and rz and T is
the smaller of v.

, and &2. Since the overall amplitude of
the correlation function is not of particular interest here,
there are only two free parameters to choose once the
pump field has been prescribed. These parameters are the
gain times the length of the medium (4k i k2z} and the Ra-
man linewidth (I ). We will be comparing the theory
with an experiment at 32 atmospheres of Hz. Using the

berg equations of motion for the negative frequency com-
ponent of the Stokes field operator E,' ' and system po-
larization operator Q(z, i) = ~3 & ( 1 ~exp[ —i (coL —co+)r]
in the retarded frame are

aE I-'(z, r) = —ik2Q (z, r}EL(z,r),
az

a" '(z, r) = —I Q "(z,r }+ik,E'(z, r)E ', '(z, r)
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g a „f„(r), (6)

where & „ is the creation operator for the nth mode and
E,'+' is given by the Hermitian conjugate of Eq. (6).
Below pump depletion the Raman equations are linear so
the coherence modes evolve independently. Since the
phases of the modes are statistically independent, the
cross terms will drop out when Eq. (6) is inserted into Eq.
(3) to relate the coherence modes to the correlation func-
tion. Defining A,„=(a„a„)the correlation function is

G (ri, r2) = g A, „Q„( ))r1t( t)r.2

Using the orthonormality of the modes Eq. (7) can be
converted to the integral equation

6 ~, ~' „~' d~'=/I. „ (8)

This integral is well defined for a pulsed laser because
G(r, r+b, )=-0 as b, -= ~. To solve this integral equa-
tion for the temporal modes, G(r&, r2) and it(„(r) were
converted to discrete functions of time and the integral
was replaced by a sum. The resulting eigenvalue equa-
tion was then solved on an ATILT 6300 plus microcom-
puter using a standard routine from Argonne National
Laboratory. We divided time into 89 steps and the re-
sulting eigenvalue problem took about 3 min to solve.
The solution vectors are the desired temporal modes and
the corresponding eigenvalues give the average level of

result from measurements by Bishel' we obtained a value
for I of 4.7 Giga radjsec half width at half maximum
(HWHM). Since the temporal pulse shape from our laser
is nearly Gaussian and the pulse is single mode was ap-
proximated EI (r) by a normalized Gaussian times an
amplitude Eo,

(r—r, )'
Ei (r)=

1/2 1/2 p 2(ere ) 2o

Experimentally the 1/e width o of the temporal intensity
is 15 ns giving a FWHM of 26 ns. This leaves the quanti-
ty p:4k, k—zE~ as an adjustable parameter. We deter-
mined the value of P by varying it until the calculated
average gain narrowed linewidth agreed with that ob-
tained experimentally. In the coherence mode theory the
average linewidth is found by evaluating the coherence
function at equal times. However experimentally we
measured the linewidth after pump depletion and the
coherence modes theory is only valid before depletion. If
the linewidth does not change significantly through de-
pletion (as we will shown is the case) our method for ob-
taining P is valid. We found that P= 10000 [which corre-
sponds to a normal steady-state (SS) peak gain of
Gss 4k, k2——zEI (r, )/21 =38] gave good agreement with
the experimental linewidth of approximately 210 MHz.

Once the two time correlation function is determined
from the Heisenberg equations of motion, we need to re-
late it to an orthonormal set of temporal modes. To ac-
complish this the field operators F. ,'+' and E,' ' are ex-
pressed as an expansion in coherence modes,

1/2
27TRCO
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0.994[—1]
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0.935[—3]
0.468[ —3]
0.239[—3]
0.125[—3]
0.663[ —4]
0.360[—4]
0.199[—4]

excitation of the mode. A list of the first 1S eigenvalues
are given in Table I, and the first three modes are plotted
in Fig. 1. Qualitatively the modes look very much like
harmonic oscillator wave functions. In analogy with har-
monic oscillator wave functions the higher-order modes
are weighted more on the temporal wings. This will be-
come important when the fields are propagated through
depletion. The characteristic ratio I o/gz which indi-
cates the number of significantly excited modes is also
shown in Table I.

To generate the complex fields for a member of the en-
semble, the modes are added together, each with a ran-
dorn phase uniformly distributed between 0 and 2m, and
Gaussian weighted amplitude given by'

(9)
n

P(/a„/)=2 exp
n

where a„ is a Gaussian complex random variable. To
generate random amplitudes for ~a„~, we calculated the
required mapping which turned out to be
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FICx. 1. First three temporal modes generated using the
coherence-mode theory. The modes resemble, harmonic-
oscillator functions. Higher modes are weighted more on the
temporal wings.

TABLE I. Statistical weights for the 15 dominant coherence
modes. The value of I cr /gz indicates the number of
significantly excited modes. Brackets denote powers of ten.

I o. /gz
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~a„~ =Q —A, „ln(1 —x), (10)

where x is a random number with constant probability
density between 0 and l. Thus the computer picked an x
and the calculated ~a„~ was used as the amplitude of the
nth mode. Thus at this point we have a prescription for
generating an ensemble of pulses before depletion without
ever converting the q-number equations to c-number
equations.

B. Propagation through depletion

QA* = —rQ*+Z,*Z, ,

where now the Stokes field and system operators have
been replaced by c numbers. This is valid because of the
large amplitudes involved. The Q in Eq. (11) is defined in
terms of the atomic matrix element QaMC in Ref. 16
(RMC stands for Raymer, Mostowski, and Carlsten),

' 1/2

k) co
QRMC (12)

QaMc is the c-number analog of the Q operator in Eq. (1).
For completeness a Langevin driving term should be in-
cluded in the equation for Q, however for large field
strengths it should have no effect. Each member of the
ensemble of Stokes pulses was used as a Stokes seed to
produce a member of the ensemble after depletion. The
ensemble average intensity of the Stokes seed was adjust-
ed to be approximately 1% of the pump intensity. This
insured that the modes had not yet begun to compete for
pump photons. However at this energy the coherence
modes have on the order of 10' photons, justifying the
use of the semiclassical equations. The same pump pulse
that was used to generate the coherence modes was used
as the initial EL for the depletion program. This leaves
the length of the nonlinear region as the one remaining
parameter to adjust. By comparing with the experimen-
tal depleted temporal pump pulses, the gain distance was
adjusted to give the observed amount of depletion or
equivalently the correct Stokes pulse duration.

Both before and after pump depletion the power spec-
trum for each member of the ensemble was calculated us-
ing a fast Fourier transform program. Finally, using this
ensemble of shots a comparison can be made with the ex-
perimental results.

III. EXPERIMENTAL RESULTS

For our experiment a frequency doubled, single-mode,
Nd:YAG (YAG stands for yttrium aluminum garnet)

In order to make a comparison with our experimental
data the generated ensemble of fields must be propagated
through pump depletion. This was done numerically us-
ing the full nonlinear, coupled, semiclassical equations, '

aE, =k, k2ELQ*,
Bz

BEL = —k, k2E, Q,

laser operating at 532 nm was used to pump a multipass
Raman cell. The 1.5-m cell was centered between two
concave mirrors with a focal length of 50 cm (Fig. 2).
The pump laser beam entered the multipass cell though a
hole in one mirror and did not retrace its path before ex-
iting through a hole in the opposite mirror. There are
beam crossings in the multipass cell, however, they are
separated by more than the laser pulse length. The beam
had a confocal parameter of 38 cm and made 15 passes
through the Raman cell. The laser pulse had a nearly
Gaussian temporal profile with a full width at half max-
imum (FWHM) of 26 ns and approximately 1 mJ of ener-
gy. No anti-Stokes or second Stokes radiation was ob-
served due dispersion and loss through the multipass cell
mirrors.

The Stokes pulse grew from spontaneous emission and
at the exit of the cell had fully depleted the central por-
tion of the pump laser pulse. A typical Stokes pulse had
a 2—3 ns rise and fall time and a F%'HM of 12 ns. The
Stokes beam was then expanded and passed through a
parallel plate Fabry-Perot interferometer with a plate
spacing of 15 cm and a finesse of approximately 75. The
divergence of the Stokes beam was adjusted to obtain two
orders of rings. A lens at the exit of the interferometer
focussed the rings onto a photodiode array which sam-
pled a cross section of the ring pattern. The array was in-
terfaced to a computer which then scaled the data to pro-
duce a power spectrum of the Stokes pulse. Thus our ex-
perimental setup allows us to make a power spectrum
measurement on a single shot.

To monitor the frequency stability of the pump laser
pulse, its power spectrum was also monitored using a
second Fabry-Perot interferometer. Thermally induced
mode jumps were observed to occur approximately once
in every 500 shots. In between these jumps, the laser fre-
quency was stable to 10 MHz. Using this monitor we
were able to insure that data on the Stokes pulse was tak-
en only during periods of pump laser stability.

The experiments were done with 32 atm of Hz in the
Raman cell. At 32 atm the collisionally broadened Ra-

SINGLE- MODE

NQI YAG LASER

RAMAN GENERATOR
(

1

680nm

532nm

FABRY PEROT
INTERFEROMETERS

PHOTO DIODE ARRAY

FIG. 2. Experimental setup using a multipass H2 Raman cell
and two Fabry-Perot interferorneters to monitor both pump and
Stokes single-shot power spectra. The Fabry-Perot in the pump
leg was only used to detect mode hops. The pump pulse was ob-
served to be stable to 10 MHz between mode hops.
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Pump depletion leaves the average linewidth unchanged as the

uncorrelated wings of the Stokes pulse are amplified.

0. 04
S
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15 modes to generate a 300-member ensemble. Figure 8
shows the results for the average linewidth. There is
essentially no change in the linewidth through depletion.
This is consistent with the simple gain narrowing result
because after growing 13 orders of magnitude from quan-
tum noise the last order of magnitude has little gain nar-
rowing effect. Two examples of the Stokes temporal
pulses are shown in Fig. 9 from which the spectra in Fig.
6 were calculated. Note that the temporal pulse becomes
much longer through depletion, growing from roughly 5
ns before depletion (as seen from the width of the
predominate mode in Fig. 1) to 12 ns after depletion. For
the linewidth to remain unchanged through depletion the
average time scale for fluctuations in the Stokes pulse
must remain fairly constant. Since the final Stokes pulse
has only minor amplitude fluctuations it must have large
phase variations to maintain the linewidth.

The spectral autocorrelation functions before and after
depletion are shown in Fig. 10. The autocorrelation
function has two characteristic widths associated with it.
The broad overall width is the result of the ensemble
average line width of the pulse and the narrower central
width is indicative of the frequency width of the individu-
al peaks which make up the various spectra. The width
of the individual spikes cannot be narrower than the
Fourier transform of the Stokes pulse. The correlation
function for a Gaussian power spectrum is &2 broader
than the spectrum. The gain narrowed linewidth is very
nearly Gaussian and even though the individual frequen-
cy spikes are not Gaussian we would expect that the
characteristic width of their contribution to the correla-
tion function would be approximately &2 broader than
their width. Before depletion the average duration of the
Stokes pulse (the average temporal Stokes pulse is given

by the diagonal of the G matrix) was 4.7 ns and its
Fourier transform was 95 MHz. This predicts a width of
134 MHz for the central peak in the correlation curve.
We also expect the width of the background of the auto-
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FIG. 9. (a) Theoretical temporal Stokes pulse corresponding
to the spectra shown in Fig. 6(a). The pulse is fairly smooth ex-
cept for the soliton pulse which is forming at the trailing edge.
This particular soliton dip has little eR'ect on the spectra be-
cause it involves only a small fraction of the pulse energy. The
normalized pump intensity had a peak value of 0.0376 (1/ns) for
comparison. (b) Temporal pulse corresponding to the spectra
shown in Fig. 6(b). This pulse is again fairly smooth and similar
to Fig. 6(a), even though its spectra is much noisier. This indi-
cates that the average linewidth is determined by phase varia-
tions and not amplitude variations.
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FIG. 10. Autocorrelation calculated from the coherence-
rnode theory before pump depletion (dashed curve) and after

pump depletion (solid curve). The central portion narrows

though pump depletion because the temporal Stokes pulse be-

cornes longer. The characteristic width of the uncorrelated
background and the widths of the central peak are shown before
and after pump depletion.
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correlation function to be &2 wider than the average line
width which is 224 MHz both before and after depletion.
This predicts a width of 317 MHz for the background. If
two Gaussian, each with an amplitude of one half and
having widths of 95 and 317 MHz, are added together the
correlation curve is very nearly reproduced as shown in
Fig. 11. This is reminiscent of the correlation function of
continuous wave chaotic light for which the central peak
is twice as high as the uncorrelated background.

After depletion the Stokes pulse is longer and its trans-
form is 60 MHz. Multiplying by &2 gives a width of 85
MHz for the narrower of the two characteristic widths of
the correlation function. The frequency widths for the
central peak before (134 MHz) and after (85 MHz) de-
pletion and that of the background (317 MHz) are
marked in Fig. 10 for comparison.

The shape of the correlation function before depletion
indicates that the pulse is fairly coherent and the width of
the average spectra is largely due to the transform limit
of the Stokes pulse which is 95 MHz. As the Stokes pulse
grows through depletion the temporal wings are
amplified. Fluctuations in the temporal wings are
amplified thus preserving the spectral linewidth.

When generating Stokes ensembles using coherence
modes theory, the higher order modes place fluctuations
in the temporal wings even though their amplitude are
relatively small. To demonstrate this a second ensemble
was generated using only the three most excited modes.
Before depletion the average linewidth was quite close to
the 15-mode calculation. However after depletion the
spectral wings are clearly reduced. A comparison of the
linewidth after depletion using 3 and 15 modes is shown
in Fig. 12. Although the higher modes have smaller sta-
tistical weights as listed in Table I they are largest in the
temporal wings where the lower modes are small. As
seen in Table I the average excitation of the fourth mode
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FIG. 12. Ensemble average power spectrum calculated using
only three temporal modes for 300 members before pump de-
pletion (dashed curve) and after pump depletion (solid curve).
Without the weaker modes to place fluctuations in the Stokes
wings, the spectrum becomes narrower through depletion.

is more than or order of magnitude smaller than that of
the first mode yet it still has a significant e6'ect on the line
shape as the pulse is depleted.

In addition to spectral fluctuations some temporal
Stokes pulses have a sharp dip after depletion and the
pump pulse has a corresponding spike. An example can
be seen in the trailing edge of the Stokes pulse shown in
Fig. 9(a). This type of feature has been studied ear-
lier ' ' and has been shown to be a forming soliton.
The nonlinear equations have soliton solutions in the lim-
it of no collisional damping (I =0). The soliton forma-
tion is initiated by a near ~ phase shift in the Stokes pulse
at the start of depletion. The phase shift originates in the
quantum initiation. The second coherence mode has a vr

phase shift at ~=2 ns as seen in Fig. 1 ~ In fact all but the
first mode has one or more phase shifts. However when
the modes are statistically added together with random
phases, the result is usually a phase drift instead of an
abrupt phase shift. Nonetheless on occasional shots a
sharp phase shift is generated in the linear growth region
and a soliton pulse is initiated. The statistics of the
pulses have been calculated and measured. ' Similar
phase shifts or phase waves have been predicted to occur
in superfluorescence.
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VI. ALTERNATE THEORETICAL APPROACHES

FIG. 11. Sum of two Gaussian of equal weight, one
representing the correlation due to the overall background and
one representing the correlation due to a transform limited
pulse (solid curve), and the autocorrelation function before de-
pletion (dashed curve). This is consistent with autocorrelation
function of chaotic light for which the central peak is twice as
large as the uncorrelated background.

Although the coherence modes approach provides a
convenient and somewhat intuitive way of modeling Ra-
man generation, an alternate c-number approach can also
be used. To use the c-number approach the field and
atomic operators are replaced by c-number variables and
the Langevin noise operator is replaced by a classical ran-
dom variable.

The solution of Eq. (1) for the single transverse mode
Stokes field operator as derived in Ref. 1 is
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E,' '(z, r) =E,' '(O, r) i—k2EL (r)e 'f dz' Q (z', 0)IO([4k, k2(z —z')p (r)]' )
0

I, ( 4k, k2z p(r) —p(r') '
)

+(k, k,z)' 'EL(r) f dr'e "' ''EL(r')E', '(O, r')
0 [p(r) —p(r')]' '

—ik2EI (~)f dr' f dz' e "~' ' 'F (z', r')Io({4k&k2(z —z')[p(r) —p(r')]] ' ), (15)

where the I„(x)are modified Bessel functions and

p(r)= f ~EL(r')~ dr' (16)
0

is the power of the laser field integrated up to time ~. In
order to integrate the c-number analog of Eq. (15) numer-
ically, one needs to decide what to specify for the initial
conditions for Q(z, O) and E, (O, r) and the magnitude of
the Langevin fluctuations. The choice will depend on
whether in the final result one calculates normal ordered
quantities or antinormal ordered quantities. Since detec-
tors measure intensity which is a normal ordered quanti-
ty, one should use normal force. The ordering is impor-
tant when calculating low level intensities where a
difference of one photon is significant. However at the
end of the Raman generator the fields are quite large and
thus classical so that the difference between the two or-
derings is expected to be extremely small. For normal or-
dering one can use the square root of (Q (z, O)Q(z, O)),
(a (0, )ra(0, &)), and (F (z, r)F(z, r)) to determine the
magnitude of the fluctuations. The reverse operator or-
dering is used for the antinormal ordered approach.

When using normal ordering there is no contribution
from the vacuum field but there are contributions from
Q (z, O) and F(z, r) (Q (z, O)Q. (z, O) ) is the initial linear
number density. However for times large compared to
I/I the contribution from the initial Q decays as can be
seen from Eq. (15). This is unphysical because one would
expect that an initial polarization fluctuation in the medi-
um would be amplified as the laser pulse passes and lead
to a substantial Stokes field for most of the pulse dura-
tion. This problem arises because of the way we have
phenomenologically included damping. To maintain con-
sistency the Langevin term is added. To calculate the ex-
pectation value (F (z, r)F(z, r)) the second of Eqs. (1) is
used with the laser driving field omitted.
(F (z, r)F(z, r) ) is found to be proportional to the linear
number density of the atoms in the ground state minus
the linear density of the atoms in the excited state ~3)
which is essentially the linear number density in the
ground state. This "large" Langevin force generates a
contribution in the last term of Eq. (15) which properly
accounts for the initial polarization fluctuations plus the
polarization fluctuations occurring after ~=0.

On the other hand if one choose to use antinormal or-
dering there is no contribution from (Q(z, O)Q (z, O))
but now there is a contribution from the vacuum field. In
addition, the expectation value from the Langevin force,
(F(z, r)F (z, r) ), is now "small" and proportional to the
linear density of atoms in the excited state ~3). This
Langevin force preserves the number of atoms in state
~3) in the absence of driving fields. Since the fraction of
atoms in state ~3) is quite small one would expect that

the contribution from the Langevin term would also be
small.

When performing a c-number calculation, it is advan-
tageous to use antinormal ordering because as we will
show the Langevin term can in fact be neglected. This
also has been verified by Englund. ' Omitting the
Langevin term greatly decreases the computing time be-
cause this term contains a double integral. To show that
the Langevin term can be omitted when using the an-
tinormal ordered approach to calculate large-field ampli-
tudes, we performed the c-number calculation without
the Langevin force and then compared the results with
those obtained from the normal-ordered coherence-mode
theory.

We initiate the Stokes field by including random noise
in the initial Stokes field. Since the final Stokes field is
much larger than the initiating noise the first term in Eq.
(15) can be ignored leaving only the third term. To gen-
erate an ensemble member the operators were replaced
with c-number variables. As with the coherence modes
approach this equation is only valid in the linear regime
before pump depletion. Therefore the resulting field from
the c-number analog of Eq. (15) was used as the Stokes
seed in the semiclassical nonlinear equations for propaga-
tion through depletion.

Our input vacuum noise field was created by summing
up a set of sine wave modes with random phases. The
vacuum field should contain all frequencies; however only
those near resonance will experience gain. The frequency
spacing of the noise modes was chosen by the resolution
of the system. Experimentally, our pump beam was ap-
proximately Csaussian with a FWHM of 26 ns. Taking
the Fourier transform produced a frequency spectrum
with a 1/e width of 20 MHz. Thus a 20-MHz spacing of
the modes resulted in a finer spacing than the resolution
of the system, making for an effective zero spacing. By
using 159 modes centered about the Raman resonance,
the initiating Stokes noise covered approximately twice
the Raman linewidth.

Starting with this noisy input field, we evaluated the
Stokes field with the same gain that was used in the
coherence modes approach. With this gain the Stokes
noise grew by 12 orders of magnitude. This is consistent
with starting with %co/2 in each optical mode, weighted
by the Lorentzian Raman linewidth, and then amplifying
to 0.01 mJ pulse energy. As in the coherence-mode ap-
proach the final two orders of magnitude of amplification
through depletion were done using the nonlinear stimu-
lated Raman scattering (SRS) equations.

The final linewidth and spectral correlation function
generated using this approach were essentially identical
with those calculated using coherence modes. A compar-



3496 D. C. MacPHERSON, R. C. SWANSON, AND J. L. CARLSTEN 39

C3

I—

LLJ 0. S

C3

C3

Ld 0. 5
CL
C3

0
-400 -200 0 200

FREQUENCY (MHz)

0
-400 -200 0 200

FREQUENCY (MHz)
400

FIG. 13. Comparison of the correlation function calculated
using coherence mode theory {dashed curve) and using semiclas-
sical theory with random Stokes noise (solid curve). The two
methods give essentially the same results despite the lack of a
Langevin noise term in the semiclassical approach.

FIG. 14. Comparison of the autocorrelation function be-
tween coherence-mode theory {dashed curve) and that calculat-
ed using the gain narrowed noise approach. The close agree-
ment suggests that the details of the Stokes initiation and
growth through the linear regime have little eff'ect on the final
statistics.

ison of the correlation functions are shown in Fig. 13.
Also the single-shot spectra showed similar fluctuations,
with many of the narrower peaks approaching the trans-
form limit. Comparing this approach with the more ex-
act theory of the coherence-mode representation, we
found that the two theories gave essentially identical re-
sults, despite the 1ack of any Langevin contributions in
the c-number calculation. We expect this is true because
the collisional noise just rerandomizes the initiating
quantum noise. Thus this experiment cannot determine
the effect of the collisional noise on an individual shot.
The lack of dependence of the statistics on the Langevin
noise term is somewhat unfortunate because this experi-
ment cannot test the validity of the Langevin approach.

As a third and simpler approach we generated large
amplitude noise to use as a seed for propagation through
depletion. This noise was generated by again adding to-
gether closely spaced sine waves but weighted by the gain
narrowed linewidth instead of the full Raman linewidth.
This eliminated the linear growth region and started the
calculation at the onset of pump depletion. The average
temporal profile of the Stokes seed was assumed to be the
same as that produced using the c-number equations be-
fore depletion. For this reason the c-number equations
had to be integrated first; however, information about the
individua1 fluctuations is not carried over from the c-
number calculation. We called this the gain narrowed

noise approach.
Using the gain narrowed noise as the Stokes seed we

again obtained the large spectral fluctuations after de-
pletion. The resulting spectral correlation function
shown in Fig. 14 was also very similar to that obtained
using the coherence-mode approach and thus in agree-
ment with experiment.

From the gain narrowed calculation we conclude that
the observed spectral fluctuations are a result of amplify-
ing a random temporal segment of chaotic light. These
fluctuations tell us little about the fluctuations added to
the pulse by collisions as the pulse is amplified. However,
it may be possible to see the effects of collisional noise if
the output from a Raman generator is split and then
amplified in two separate amplifiers. A correlation in the
spectra from the two amplifiers should be affected by the
different collisional noise which is added in the two
amplifiers.
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