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Continuous-time analog neural networks with symmetric connections will always converge to
fixed points when the neurons have infinitely fast response, but can oscillate when a small time delay
is present. Sustained oscillation resulting from time delay is relevant to hardware implementations
of neural networks where delay due to the finite switching speed of amplifiers can be appreciable
compared to the network relaxation time. We analyze the dynamics of continuous-time analog net-
works with delay, and show that there is a critical delay above which a symmetrically connected
network will oscillate. Two different stability analyses are presented for low and high neuron gain.
The results are useful as design criteria for building fast but stable electronic networks. We find

that for some connection topologies, a delay much smaller than the relaxation time can lead to os-

cillation, whereas for other topologies, including associative memory networks, even long delays
will not produce oscillation. The most oscillation-prone network configuration is the all-inhibitory
network; in this configuration, the critical delay for oscillation is smaller than the network relaxa-
tion time by a factor of X, the size of the network. Theoretical results are compared with numerical

simulations and with experiments performed on a small (eight neurons) electronic network with

controllable delay.

I. INTRODUCTION

Much of the current interest in artificial networks
stems not only from their richness as a theoretical model
of collective dynamics but also from the promise they
have shown as a practical tool for performing parallel
computation. ' Theoretical understanding of neural-
network dynamics has advanced greatly in the past few
years. At the same time, electronic implementations
of analog neural networks in very-large-scale integration
(VLSI) technology have begun to appear. ' As these two
lines of research converge, it becomes important to un-
derstand the applicability of theoretical results to
hardware neural networks. Hardware realities such as
switching delays, parameter variability, and parasitic ca-
pacitances and inductances, which are frequently neglect-
ed in idealized models, can lead to instabilities not pre-
dicted by theory. Our current understanding of network
dynamics must be extended to more realistic conditions
in order to produce useful, stable, and fast microelectron-
ic neural networks.

It is well known that symmetrically connected net-
works of analog neurons operating in continuous time
will not oscillate. ' However, this result assumes that
neurons communicate and respond instantaneously. In
electronic neural networks, time delays will be present
due to the finite switching speed of amplifiers. Designing
a network to operate more quickly will increase the rela-
tive size of the intrinsic delay and can eventually lead to
oscillation. In biological neural networks it is known
that time delay can cause an otherwise stable system to
oscillate. ' Instabilities introduced by delays have also
been analyzed in the context of control theory and elec-
trical engineering. ' Neural-network models with two-
state neurons operating in discrete time with parallel up-

date dynamics are also known to oscillate. ' ' These
networks correspond to the infinite-gain and infinite-
delay limits of the model presented in Sec. II ~

In this paper, we show how the existence of oscillatory
modes in continuous-time analog neural networks with
time delay depends on the neuron gain and delay and on
the size and connection topology of the network. We find
that for certain connection topologies, delays much less
than the network relaxation time can lead to sustained
oscillation, while for other network topologies, even long
delays (compared to the relaxation time) will not induce
oscillation. For those network configurations which can
oscillate for small delay, we find the critical value of delay
below which the network will not support sustained oscil-
lation. This critical delay depends on the gain of the neu-
rons and the eigenvalues of the connection matrix.

The aim of this paper is to provide a design criterion
for building stable analog networks, extending the cri-
terion: "symmetric connections implies no oscillation" to
the case of analog networks with time delay. Our results
are based on local rather than global stability analysis
and therefore do not provide a rigorous guarantee of sta-
bility. Rather, we support our results with numerical and
experimental evidence suggesting that the stability cri-
teria presented here are valid under the conditions inves-
tigated. In addition to using numerical integration to test
the theoretical results, we have measured critical delays
and basins of attraction for sustained oscillation in a
small (eight neurons) electronic network with controll-
able time delay based on charge-coupled device circui-

18

In Sec. II we derive a general system of delay-
differential equations starting from the circuit equations
for an electronic network and describe the simplifying as-
sumptions of our model. In Sec. III we present a linear
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stability analysis about the point where all neurons have
zero input and steepest transfer function. This point is
defined as the origin of an N-dimensional space where
each direction represents the input voltage of a neuron.
For sufficiently large neuron gain, the origin loses stabili-
ty in either a pitchfork bifurcation, which creates fixed
points away from the origin, or in a Hopf bifurcation'
which creates an attractor for sustained oscillation.
Which sort of bifurcation occurs first depends on the
largest and smallest eigenvalues of the connection matrix
and on the normalized delay. Experimentally, we find
that the Hopf bifurcation marks the appearance of sus-
tained oscillation in symmetric networks. The analysis in
Sec. III is formulated as a design criterion that will yield
fixed-point dynamics in a delay network as long as the ra-
tio of delay to relaxation time is kept below a critical
value.

In Sec. IV we consider networks operating in a large-
gain regime where fixed-point attractors away from the
origin and oscillatory attractors coexist, each with large
basins of attraction. ' We restrict our attention in this
regime to networks which oscillate coherently. We find
experimentally that the size of the basin of attraction for
coherent oscillation depends on the time delay, decreas-
ing in size as the delay is reduced. At a critical value of
delay the coherent oscillatory attractor disappears, and
only fixed-point attractors are observed. We present a
novel nonlinear stability analysis of the coherent oscilla-
tory attractor which yields a critical delay for sustained
oscillation in these networks.

The results of the linear and nonlinear stability analy-
ses presented in Secs. III and IV are compared with nu-
merical integration of the delay-differential equations and
experiments in the eight-neuron electronic delay network;
good agreement is found between theory, experiment,
and numerics.

In Sec. V we discuss stability for three specific network
topologies: symmetric rings of neurons, symmetric ran-
dom networks, and associative memory networks based
on the Hebb rule. A particularly important result is
that Hebb rule networks are stable for long delays, but
that clipping algorithms which limit the connection
strengths to a few values can yield an interconnection
matrix with large negative eigenvalues which can lead to
sustained oscillation. Finally, a summary of useful results
is given in Sec. VI.

N

RCPT), (t') = —u, (t')+R g T,,f(u, (t' —r') ) .
j=1

(2.2)

Rescaling time, delay, and T, gives the following new
variables: t = t '/R C, ~=~'/R C, J, =R T, . This
definition of J, has a normalization g ~ J, = 1. In terms
of these scaled variables the delay system takes on the
simple and general form

(2.3)

All times in Eq. (2.3) are in units of the characteristic net-
work relaxation time RC.

The initial conditions for a delay-differential system
must be specified as a function P;: [ —r, 0]. All experi-
mental and numerical results presented take each P, to be
constant on the interval [ —r, 0], though not necessarily
the same for different I.. A cursory numerical investiga-
tion suggests that the stability results presented below do
not depend on the particulars of the initial function P, .

III. LINEAR STABILITY ANALYSIS
OF DELAY NETWORKS

We consider the stability of Eq. (2.3) near the origin
(u, =0 for all i) Linearizing . f, (u) gives

(3.1)

The variable u, (t') represents the voltage on the input of
the ith neuron. Each neuron is characterized by an input
capacitance C;, a delay w,', and a transfer function f, .
The nonlinear transfer function f (u) is sigmoidal, sa-
turating at +1 with maximum slope at u =0. The con-
nection matrix element T; has a value +1/R, when the
noninverting output of j is connected to the input of i
through a resistance R, , and a value —1/R, when the
inverting output of j is connected to the input of i
through a resistance R, -. The parallel resistance at the
input of each neuron is defined R; =(g~ ~T;~~) '. We
consider the case of identical neurons C; = C, f; =f,
~,'- =~' and also assume that each neuron is connected to
the same total input resistance, defining R =R, for all i.
With these assumptions, the equations of motion become

II. DYNAMICAL EQUATIONS FOR ANALOG
NETWORKS WITH DELAY

In this section we derive a general system of delay-
diff'erential equations, Eq. (2.3), starting from the circuit
equations for a network of N saturating voltage amplifiers
("neurons") with delayed output coupled via a resistive
interconnection matrix. The circuit is the same as the
analog network described by Hopfield in Ref. 4, with the
addition of a delay ~',

where the gain P is defined as slope of f, (u ) at u =0. It is
convenient to represent the linearized system of 1V delay
equations as amplitudes x; (i =1, . . . , N) along the N
eigenvectors of the connection matrix J, -,

(3.2)

where A, ; (i = 1, . . . , N) are the eigenvalues of the connec-
tion matrix J, . The X; will be referred to as the connec-
tion eigenvalues to avoid confusion with the roots of the
characteristic equation which will be derived from Eq.
(3.2). In general these connection eigenvalues are com-
plex; when J,- is a symmetric matrix, the A. , are real. As-
suming exponential time evolution of the x, , we introduce
the complex characteristic exponents s, and define
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s. t
x;(t)=x;(0)e '. Substituting this form of x, (t) into Eq.
(3.2) gives the characteristic equation

(s, +1)e ' =PA, (3.3)

The origin is asymptotically stable when Re(s, ) &0 for all
i ' . When Re(si, ) )0 for some k, the origin is unstable to
perturbations in the direction of the eigenvector associat-
ed with s&.

A. Linear stability analysis with ~=0

J; = 1

0
1

1

0 1

1 0

~ ~ ~

(3.4)

~ ~ ~ 0

The connection eigenvalues for this matrix are

When the neurons have zero delay (&=0) Eq. (3.3)
reduces to (s, + I)=/3A, In this case the origin is the
unique attractor as long as all connection eigenvalues k,
have real part less than I//3 as shown in Fig. 1. For a
symmetric connection matrix, the A. , are real and the bi-
furcation is of the pitchfork type: For /3) 1/A. k the ori-
gin becomes a saddle and a pair of stable fixed points ap-
pears on opposite sides of the origin in the direction of
the kth eigenvector of J; . In neural networks language,
this new pair of fixed points away from the origin is a
memory.

As an example of linear stability analysis with ~=0,
consider the N XN all-excitatory or ferromagnetic in-
teraction matrix (T~ =+ I/R; T;; =0)

—1 —1 0 (3.6)

—1 —1 —1 0

This network configuration is important in neural net-
works as a model of lateral inhibition' and as a so-called
winner-take-all circuit.

The eigenvalues for the all-inhibitory network are

1/(N —1) (N —1 degenerate)
—1 (once) . (3.7)

For this network configuration, the origin does not be-
come unstable, and fixed points away from the origin do
not appear until P) I /k, „=N—1. Thus the origin for a
large all-inhibitory network is very stable for zero delay.
The eigenvector associated the minimum eigenvector A,

is in the ferromagnetic direction (u, =1 for all i) The.
N —1 eigenvectors associated with the degenerate A, „
each satisfy the condition g;u; =0 which defines a hyper-
plane perpendicular to the ferromagnetic direction.

When /3& 1/A. ,„where k,„ is the maximum connection
eigenvalue, the origin is the only attractor. When
/3) I /A. ,„ the origin is unstable, and two fixed points ap-
pear on either side of the origin in the eigenvector associ-
ated with A, ,„. In this case A, ,„=1 from Eq. (3.5) and
the eigenvector associated with A „is the ferromagnetic
direction ( u; = 1 for all i )

A second example is the N XN all-inhibitory or antifer-
romagnetic connection matrix

0
0 —1

1 (once)
—1/(N —1) (N —1 degenerate) . (3.5) B. Frustration and equivalent networks

Notice that because J, is symmetric the A, ; are real.

STABLE: UNSTABLE

Re(X,)

FIG. 1. The stability of the origin for zero delay is deter-
mined by the condition Re{A., ) & 1/P for all i, where k; are the
eigenvalues of the connection matrix J,, that appears in Eq.
(2.3). The border of the stability region is shown as a vertical
line in the complex k plane.

A symmetric matrix with connection strengths limited
to three values —positive, negative, and zero —can be
represented as an undirected signed graph with a neuron
at each vertex. ' An important property of the all-
inhibitory network discussed above is that every loop
formed from three neurons in the connection graph has
an odd number of negative (inhibitory) edges. A connec-
tion graph containing loops with an odd number of nega-
tive edges is said to be frustrated. Frustration is impor-
tant in systems with competing interactions and is con-
sidered essential in the formation of spin-glass state in
magnetic systems. We suspect, though have not prov-
en, that frustration is also essential for delay-induced os-
cillation when there is no self-connection, i.e., J,, =0. Be-
cause every triangular loop in the all-inhibitory network
has an odd number of negative edges, this configuration is
said to be fully frustrated. There are 2 ' other net-
works that are also fully frustrated; these other
configurations are related by the Mattis transformation:
For any i let u;~ —u, and J, ~ —J, for all j. All 2
fully frustrated networks have identical dynamics up to
changes of sign. Similarly, there are 2 ' networks
equivalent to the ferromagnetic network, Eq. (3.4), all of
which are completely unfrustrated.
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C. Linear stability analysis with delay kb„d„=A(9)e' (3.8)

ST
UNSTABLE

In this section we show that for ~) 0 the stability re-
gion, defined by the condition Re(s, ) &0, is no longer a
simple vertical line at 1/P in the complex A, plane as in
Fig. 1, but forms a closed teardrop-shaped region that be-
comes smaller and more circular as the delay is increased
as shown in Fig. 2. This idea was discussed by May in
Ref. 25. As ~~0, the region of stability expands to fill
the half-plane Re(A, ) & I/P, recovering Fig. 1. As r~ oc

the stability region becomes a circle centered at X=O
with radius I//3. A circular stability region is charac-
teristic of iterated map dynamics just as a half-plane sta-
bility region is characteristic of differential equation dy-
namics; thus as delay is increased from ~(&1 to ~))1
the local stability condition of the delay-differential sys-
tem goes from that of continuous-time, differential equa-
tion dynamics to iterated map or parallel-update dynam-
ics. The dynamics of a parallel-update network
u, (n +1)=g, J,,f(u~(n)), where n is the index of
discrete time, corresponds to the long-delay limit of Eq.
(3.1). It is known that parallel update networks can oscil-
late with a symmetric connection matrix. '
Sufhcient conditions for which parallel-update networks
will not oscillate have been presented. '

The exact shape of the stability region at any value of
delay can be found by substituting s =0 +ice into Eq.
(3.3) and finding the condition o =0. The loci of points
on the border of the stability region can be written in po-
lar coordinates as

where A( 9))0 is the radial distance from the origin A, =0
to the border at an angle 9 from the positive Re(k) axis.
Putting Eq. (3.8) and the condition o =0 into Eq. (3.3)
gives

(ice, +1)e ' =f3A(9)e' (3.9)

Solving for A(9) gives the border of the stability region as
an implicit function of delay:

A(9) = —(co + I )'i',1

f3

—cu =tan(co r —9),

(3.10a)

(3.10b)

where co is in the range (9—7r/2) &co r& 9 mod 2m. We
are interested in the smallest root ru of Eq. (3.10b) for a
given value of 9 and r. Large roots of Eq. (3.10b) pro-
duce large values of A(9) by Eq. (3.10a), which lie outside
of the stability region defined by the smaller roots. Only
the part of the A, plane inside the smallest stability region
is actually stable. The stability region for the origin is
plotted for several values of delay in Fig. 2.

Because the stability region closes in the negative half-
plane for ~) 0, it is possible for the origin to lose stability
due to large negative connection eigenvalues —even pure-
ly real ones. The intersection of the stability region bor-
der and the Re(k) axis in the negative half-plane is given
by the solution to Eq. (3.10a) at 9=~. We define this
solution as A, dropping the argument for the special case
0=m. The value of A is inversely proportional to the
gain of the neurons and is a transcendental function of
delay defined implicitly by Eq. (3.10). A plot of the prod-
uct AP, which depends only on delay, is shown in Fig. 3.
For large and small delay, A can be approximated as an
explicit function of delay and gain:

STABLE
x = 1.0

( I //3)(rr/2r), r « 1

( I//3) I 1+[~/(r+ I)]'t '", r»1 .
(3.1 la)

(3.11b)

Re(k) For a symmetric connection matrix (k, real) the origin

STABLE 100 .-

FIG. 2. The stability of the origin in the delay network lies
within a closed region in the complex plane of eigenvalues of
the connection matrix J;, . Regions of stability are plotted for
different values of delay: For ~=0, the border is a horizontal
line at Re(A. )=1//3 as in Fig. 1. For r= ~, the stability region
is a circle of radius 1//3 centered at the origin of the A. plane. At
finite delay, the stability region is teardrop shaped, crossing the
real axis in the positive half-plane at 1//3 and crossing the real
axis in the negative half-plane at a delay-dependent value A.
The tick marks along both axes are in units of 1//3.

1

0.01 0.1 10

FIG. 3. The border of the stability region crosses the Re(k)
axis in the negative half-plane at A for 7 &0. The product A/3,

where /3 is the neuron gain, is plotted as a function of normal-
ized delay ~. The value of A is particularly important for sym-
metric networks where the eigenvalues are confined to the
Re(k) axis.
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will be unstable when A, ,„&1/P or A. ;„&—A. The bi-
furcation at A, ,„=1/P is a pitchfork (as it is for ~=0)
corresponding to a single real root s; of Eq. (3.3) passing
into the half-plane Re(s, ) & 0. The bifurcation at
A. ;„=—A corresponds to a Hopf bifurcation' of the ori-
gin, with a complex pair of roots s; passing into the half-
plane Re(s) & 0 at +co;. The imaginary component
co, =(PA —1)'/ at the bifurcation gives the approximate
frequency of the oscillatory mode that results from this
bifurcation.

D. Symmetric networks with delay

gin is the unique fixed point and is stable. As the gain is
increased, the size of the stability region decreases as
1/P. The first eigenvalue to leave the stability region will
either be the most negative A. ;„, as in Fig. 4(c), or the
most positive k,„, as in Fig. 4(d). For the case in Fig.
4(d), a pair of attracting fixed points appear on either side
of the origin along the eigenvector associated with A. „,
and the origin becomes a saddle. For the case in Fig.
4(c), an oscillatory attractor exists along the eigenvector
associated with the eigenvalue A, ;„. The value of gain at
which A, ;„ leaves the stability region in Fig. 4(c) is given

by

Figure 4 shows the evolution of the stability region of
the origin for a delay network at three different values of
gain. Each frame also shows schematically a distribution
of eigenvalues for one of two types of symmetric net-
works: The eigenvalues on the left side of Fig. 4 are
skewed negative, that is A, ,„/1, ;„~ & 1, while the eigen-
value on the right side are skewed positive, with
~A, ,„/A, ;„~ ) l. At low gain [Figs. 4(a) and 4(b)] all ei-

genvalues lie within the large stability region, and the ori-

( 2+ 1 )1/2
P=—,co = —tan(cu~)

~min

77—&cow& m
2

In the limit of small delay, this value of gain is

(3.12)

(3.13)

(c)
Q) 33
~m
Z I

~max
~ml fl

~ sW
~ ~ ~

(b)

(d)

~max
~min

o ~ ~

The period of oscillation is approximately 2'/co ( =—4r for
r « 1).

For an eigenvalue distribution which satisfies

,„/A, ;„~ & 1, the first bifurcation to occur as the gain
is increased can be either a pitchfork bifurcation as A, ,„
leaves the stability region, or a Hopf bifurcation as X,„
leaves the stability region, depending on the value of de-
lay. For an eigenvalue distribution which satisfies

~
1, ,„/X;„~) 1, A, ,„will always leave the stability region

before A. ;„regardless of delay.
A stability criterion for symmetric networks based on

linear stability analysis can be formulated by requiring
that A. ;„, the minimum eigenvalue of J, , remain inside of
the negative border of the stability region of the origin.
In terms of the notation we have defined, this criterion
requires —A &A. ;„. The condition can be simplified by
noting that A is always larger than its small-delay limit of
rrl(2'). The stability criterion for symmetric networks
with delay can thus be stated

(e)
no sustained oscillation,

2@A, ;„
(3.14)

FIG. 4. The stability region of the origin and two different
types of eigenvalue distributions (solid circles) are shown
schematically. On the left (a,c,e), the eigenvalues satisfy

~ X,„/k;„~ & 1; on the right (b,d, f), the eigenvalues satisfy

,„/A, ;„~ ) 1. As the gain is increased, the stability region de-
creases in size, and the origin loses stability. The bifurcations
for each type of distribution are explained in the text.

This criterion lacks the rigor of a global stability condi-
tion, which exists for ~=0, ' but is supported by consid-
erable numerical and experimental evidence.

Figures 4(e) and 4(f) show the situation when the gain
is sufficiently large that eigenvalues have left the stability
region through both negative and positive borders, indi-
cating that Eq. (3.14) is violated and that fixed points
away from the origin exist. In this regime the system
possesses multiple basins of attraction for coexisting
fixed-point and oscillatory attractors.

We find experimentally and numerically that delay net-
works may or may not show sustained oscillation in this
large-gain regime, depending on the value of delay and
the eigenvalue distribution. The observed behavior at
large gain may be classified according to the ratio

,„/A. ;„~: Networks with ~A, ,„/A, ;„~ & 1, as in Fig.
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4(f), either do not oscillate at all or will oscillate only
when the delay is much larger than the relaxation time.
We have never observed sustained oscillation at ~&1 in
any network satisfying ~A. „/X;„~) 1 experimentally or
numerically. We do not stress the distinction between
networks which do not oscillate at any delay and those
which only oscillate at very long delay. While this dis-
tinction is interesting and especially important for
parallel-update networks, which corresponds to the

limit of our network, as a design criterion for
continuous-time networks with small delay, the claim
that delay networks with A „/k;„& 1 do not oscillate
except perhaps at very large delay is the result of interest.
This result remains empirical, but we show in Sec. IV
that it is consistent with an analytical result for networks
which oscillate coherently.

In contrast, all networks investigated satisfying
X „/k;„(1will oscillate for suScient delay. At large

gain, as in Fig. 4(e), these networks show coexisting
fixed-point and oscillatory attractors. The basins of at-
traction for the oscillatory attractors are large for large
delay but shrink as the delay is decreased. ' For delay
less than a critical value ~„;„the oscillatory attractors
disappear, and only fixed-point dynamics are observed.
A value for ~„,, cannot be found by the linear stability
analysis described in this section because of the impor-
tance of the nonlinearity in the large-gain regime. An ex-
pression for ~,„;, for networks which oscillate coherently
(defined below) is derived in Sec. IV. The critical delay

found in this case diverges as A. ,„/k,„~~1, in

agreement with the empirical results above.

E. Self-connection in delay networks

J, = 1

ZV 1+[fiJ——1 —1 —1, (3.15a)

1 1 1 r ~ ~

1+5
ZV

—1+ If~I
(N —1 degenerate)

(1 —X)+6
ZV —1+ ffi,

(once) .
(3.15b)

The connection eigenvalues A, „and k;„ for the all-
inhibitory network are shown as a function of self-
connection 6 in Fig. 5. Notice that adding a negative

For the networks described in this paper the diagonal
elements of the connection matrix have been set to zero,
indicating that there is no feedback from a neuron direct-
ly to itself. This convention is not necessary for stability
when the network dynamics are in continuous time. In-
cluding a delayed self-connection affects the dynamics by
shifting the eigenvalue distribution and by decreasing the
relaxation time of the network.

We consider as an example the effect of adding a de-
layed self-connection term to the all-inhibitory network.
The normalized connection matrix and eigenvalues when
a self-connection 5 (assumed real) is included are given by

t
6 —1 —1 —1

max

FIG. 5. The largest and smallest eigenvalues (solid lines) for
the all-inhibitory network, Eq. (3.15), plotted as a function of
the diagonal element 6. The values indicated at the axis cross-
ings are for a general N, but the scale of the drawing is correct
for the case N =3. The asymptotic value for all eigenvalues as
6~+~ is+1.

self-connection (6&0) does not change A. ;„, thus the
value of delay where the Hopf bifurcation occurs in the
all-inhibitory network is not changed by a negative self-
connection. Adding a positive self-connection (6)0) will
bring A. ;„closer to zero and will increase the delay neces-
sary for the Hopf bifurcation to occur. The condition

„/k;„~ ) 1 is satisfied in (3.15) when the self-
connection 5 exceeds (X/2 —1).

IV. CRITICAL DELAY IN THE LARGE-GAIN LIMIT

In this section we find a critical delay for sustained os-
cillation in the large-gain regime, where fixed-point at-
tractors away from the origin coexist with a single
coherent oscillatory attractor. The main result, Eq. (4.4),
applies to networks in which the oscillatory attractor is
along a coherent direction. Coherence is defined by the
condition that all ~u, ~

are equal. Equivalently, a coherent
oscillatory attractor lies along a vector pointing to any
corner of an X-dimensional hypercube centered at the
origin. When the eigenvector associated with A, ;„ is in a
coherent direction, then the most robust oscillatory
mode —that is, the one that will exist at the smallest
delay —will be coherent. In this case, the network will
not oscillate when the delay is smaller than the critical
delay derived below. Connection topologies which have a
coherent direction associated with A, ;„ include fully frus-
trated networks (the all-inhibitory network and all Mattis
transformations ) and symmetrically connected frustrat-
ed rings. For other networks discussed in Sec. V, includ-
ing the diluted inhibitory network and the negative-only
clipped Hebb rule, the eigenvector associated with A. ,-„

appears numerically to approach coherence at large N,
though this has not been proven rigorously.

The stability criterion of Sec. III, Eq. (3.14), based on
linear stability analysis, applies at all values of gain but
becomes useless in the large-gain limit. In particular, Eq.
(3.14) requires that the delay vanish as the gain diverges
in order to prevent oscillation. In contrast, we find ex-
perimentally and numerically that as the gain becomes
large the critical delay below which oscillation vanishes
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approaches a gain-independent limit. We believe that
t is gain-independent critical delay results from an insta-

i ity of the oscillatory attractor itself. Below, we derive
a value for the critical delay ~ fo t d hor sustained coherent

mi y consi ering the sta-oscillation in the large-gain limit b d
r ~ ~,„;, sustainedbi ity of the oscillatory attractor. For ~(

s s own e ow, this novel
stability criterion agrees very well with experimental and
numerical data.

{a)

A

{b)
A

f (u(t-z))

u(t)

A. EA'e ctive gain along the coherent oscillatory attractor

A, = g J,, sgn(ut) (1 —e ') .
J

(4. 1)

For coherent oscillation along th de irection associated
with k;„all of the A, in Eq. (4.1) will be the same
(defined as A ) and the term in ab 1 t 1

will be e ual to
in a so ute va ue brackets

wil be equal to —X;„(&0). In this case /3, ff will be
bounded below by I /A, as shown in Fig. 6(c):

The basic idea of the derivation is that neurons with sa-
turating output can be regarded as having an "effective
galil peff that is not constant along the oscillatory attrac-
tor and can be finite even when f ( )

' '
fi

'
1u is in nite y steep at

u =0. The effective gain is defined as/3 =f(u (t))lu t u(t).
e a tA ff is defined as the ratio of neuron output

output; for a delay network, f(u (t)) does not appear at
t e output until a time r after u (t) appears at the in ut.
This definition of,&p ff reduces to the usual gain p when

a e input.

f (u) is linear (with or without delay). We assume that
t e oscillatory attractor loses stability when the variable
effective gain is sufficiently large at all points on the at-
tractor that perpendicular perturbations will always lead
the system off of the attractor. This instability occurs
when the minimum value of p, ff along the attractor
exceeds a critical value related to 0o ow perpendicular to
the oscillation direction.

When the lar e-g -gain network is oscillating coherently,
neuron outputs swing between +1 in the form of a square
wave, while the inputs alternately charge and discharge
exponentially with a time constant equal to the relaxation
time of the network as shown in Fi . 6(a). The s
va ue o p, ff occurs when the input amplitude is at the
maximum of its charge-discharge oscillation and the cor-
responding output is saturated at +l. At this point,
is the reciprocal of this input amplitude. The maximum
amplitude 3, at the ith input depends on the delay and is
given by

jeff

f {u(t))
u(t)

1

A

, is t us givenefined by the condition A, , /3 =1 '
h

md. x
(1 —e '"")

(4.3)

Solvin for ~,g or ~„;,gives the main result of Sec. IV,

z„,, = —ln 1+
min

(0&A. .„„&—k,„) . (4.4)

To illustrate this result we again consider the
NXN all-inhibitory network Eq. (3.6) in the large-gain
limit. This network has connection eigenvalues

;„=—', giving a large-gain critical
delay

FIG. 6. (a) The input f(u(t)) (triangular wave) and out ut

~(u(t —~ s
ve an output

with del
)) ( quare wave) for a saturating infinit-ni e-gain neuron

wit e ay in an oscillatory state. The value 3, given by Eq.
(4.1), is the maximum amplitude of the input. (b) The same in-

put and output waveforms as above with the offset between in-

put and output due to delay suppressed. (c) The effective gain

p ff defined as the ratio of f( u ( t) ) lu ( t), takes on finite values
e min&mum valueeven when f (u) is infinitely steep at u =0 Th

of Puf is where the input is maximum; at this point P,ff= 1 / A.

;„(1—e ') (4.2)
N —1= lnCl lt

1
for large N (4.5)

Flow perpendicular to the oscillatory attractor is de-
scribed by Eq. (3.2) with A. equal t th N—
of J-
the —1

o Jt excluding k;„and with /3=/3 Th 1eff e east st able of
t e —1 irections perpendicular to the 'lle osci atory at-
rac or is a ong the eigenvector associated with

Thus the attractor will lose stability when k
alon the o

a i i y w eil A~a~Peff ) 1 all
g e oscillatory trajectory. From Eq. (4.2), this con-

dition is satisfied when A, /2 ) 1 Thmax e critical delay

Figure 7 shows ~~„;, for the all-inhibitory networks as a
function of the size of the network N. The solid line is

q. . ; t e circles are data from numerical in-
tegration with P=40 indicating the smallest delay that
would support sustained oscillation. The rapid decrease
in ~,„;, as the size of the network increases ind t th

e a -inhibitory network is very prone to oscillation for
large
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FIG. 7. Large-gain critical delay ~,„;, for the all-inhibitory

network plotted against N, the size of the network. The solid
line is the theory from Eq. (4.4), the filled circles are from nu-

merical integration of the delay equations at P=40. Numerical
integration data were obtained by starting the system with ini-
tial functions $;:[—r, 0] along the eigenvector associated with

;„and constant over the interval [ —r, o]. The delay equa-
tions were integrated with Euler method integration and
checked for oscillation after many (up to 10 ) time constants.
The critical delay was found by repeating the integration using a
ten-split binary search in the value of delay.

10.

0.1

S,

10

M

100

B. Crossover from low-gain to high-gain regime

We have now found two critical values of delay: For
small gain (P& A, ,„) the network does not oscillate for
~& ~0, where ~& is the value of delay where the Hopf bi-
furcation occurs. For small delay,

77

2f3A;„. (4.6)

At large gain, the delay network does not oscillate for
r & r, „,„where r,„;, is given by Eq. (4.4). We now consider
the crossover from the small-gain regime to the large-
gain regime for the specific example of a mutually inhibi-
tory triangle of neurons. For this network,

0 —1 —1
1J-=— —1 0 —1IJ max

—1 —1 0
(4.7)

Figure 8(a) shows the two theoretical curves for each of
the two regimes. The data points are the values of delay
where the oscillatory attractor disappears as measured in
the analog circuit (open circles) and by numerically in-
tegrating the delay equations (filled circles). Figure 8(b)
describes the four regions of the P-r plane with distinct
dynamics. For /3&2 and r &rH, where rH is found by
setting A, ;„=—1 in Eq. (3.12), there is a single fixed-
point attractor at the origin. For f3&2, r) r~, the fixed
point at the origin is unstable, and there is a single oscil-
latory attractor. At f3=2 a fixed point away from the ori-
gin appears. At this crossover point, ~H =1.209. For
P & 2, the Hopf bifurcation line no longer marks the criti-
cal delay for sustained oscillation. As P becomes large,
the critical delay for sustained oscillation approaches the
gain-independent theoretical value of ~,„;,. From Eq.
(4.5), r«, , ( N = 3 ) = ln 2 —=0.693.

FIG. 8. Phase diagram for the all-inhibitory (or frustrated)
triangle of delay neurons. (a) Two theoretical curves are shown
as solid lines: The line labeled wH indicates the value of delay
and gain where the origin undergoes a Hopf bifurcation, from
Eq. (3.14); the line labeled ~,„;, indicates the large-gain critical
delay where the oscillatory mode loses stability. Below r,„;, only
fixed-point attractors are stable. The data points are critical de-
lays measured in the electronic network (open circles) and by
numerical integration (solid circles) with f3=40. Numerical in-
tegration data were obtained as described in the caption of Fig.
7. (b) The four regions in the I3 rplane wi-th qualitatively
different dynamics are S~, single fixed-point attractor at the ori-
gin; O~, single coherent oscillatory attractor; SM, multiple
fixed-point attractors away from the origin; OM, multiple attrac-
tors away from the origin, including fixed points and a coherent
oscillatory attractor.

V. STABILITY OF PARTICULAR NETWORK
CONFIGURATIONS

In this section we consider sustained oscillation in
three symmetric delay networks: (1) symmetrically con-
nected inhibitory rings; (2) randomly connected sym-
metric networks; and (3) Hebb rule and clipped Hebb rule
associative memories.

A. Symmetrically connected rings

A ring of neurons with symmetric connections all of
equal strength but of either sign, inhibitory or excitatory,
has a spectrum of connection eigenvalues given by

k„=cos[(2~/X )( k +y )],
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~max

~min

'Tl'

cos
N

( & 1), N odd;frustrated

= -1, N even (5.2)

sec
N

( ) 1), N odd; nonfrustrated .

Only frustrated rings with odd N satisfy

i
A. ,„/X;„i & 1, suggesting that only these configurations

will show sustained oscillation. This is confirmed experi-
mentally and numerically. In the large-gain limit, the
critical delay r, „,, is found from Eq. (4.4), giving

r,„;,= —in[i cos(rr/N)] —(N odd; frustrated) . (5.3)

Notice that ~„;, increases with increasing N for the sym-
metric ring while for the all-inhibitory network ~„;t de-
creases as 1/N. Inhibitory rings are thus much less
prone to oscillation than fully connected inhibitory net-
works. The critical delays from numerical integration are
compared to Eq. (5.3) in Fig. 9.

B. Random symmetric networks

Oscillations in randomly connected neural networks
have been considered previously for symmetric random
networks with parallel-update dynamics, which show at
most period-2 oscillations' ' and for asymmetric net-

where rp= —,
' for a frustrated ring, i.e.,

sgn Q J," = —1,
ring

and y=0 for a nonfrustrated ring. The ratio of max-
imum to minimum eigenvalues can be found directly
from Eq. (5.1):

+1/pN with probability p+

0 with probability 1 —p . (5.4)

The eigenvalue spectrum of a random symmetric ma-
trix is described by the Wigner semicircular law.
The notation used here follows Ref. 37. For an NXN
random symmetric matrix whose elements have a mean
Mo/N and a variance o. /N, the spectrum of eigenvalues

p(X) converges for large N to a continuous distribution,
for Mo =0,

works with parallel-update dynamics, ' Monte Carlo
dynamics, ' and continuous-time dynamics.
Asymmetric random networks are capable of a wider
range of dynamics than symmetric random networks, in-
cluding chaos. ' Periodic and chaotic dynamics in a
symmetric mean-field magnetic model with delayed in-
teraction have also been described.

We only consider the effect of delay in symmetric net-
works, and find only simple (nonchaotic) oscillation
above a critical delay. The absence of chaos in the sym-
metric continuous-time delay network (with monotonic
nonlinearity) is not surprising, as the two limits of short
and long delay are known to possess only fixed points and
period-2 oscillations. Rigorous proof of this conjecture
has not been presented to our knowledge.

We consider delay networks with symmetric connec-
tion matrices whose elements J;~ ( =J,; ) are independent-
ly fixed at one of three values (+, —,0). Any two neu-
rons are connected by a positive connection with proba-
bility p+ and by a negative connection with probability

p . The connectance p is defined as p =(p++p ); the
bias q is defined as q=(p+ —p ). Using the normaliza-
tion of J; described in Sec. II, the connection matrix is
given by

3.0

2.0—

o large-gain theory
~ numerical integration

(4o —X)/2rro, IA,
I
&2o

0, (Xi) 2opo(k) =

and for Mo&0,

(5.5a)

1.0— (&)= '
1

(5.5b)
po(A. )+—5(k —Mo+(o /Mo)), iMoi ) o

0.0 I I ! i I I I

0 1 2 3 4 5 6 7 8 9 ~0
N

For the (+, —,0) matrix [Eq. (5.4)] we identify

FIG. 9. Large-gain critical delay ~c„t for symmetrically con-
nected frustrated rings with N=3, 5, 7, 9 from Eq. (5.3) (open
squares) is plotted along with critical delay from numerical in-
tegration (filled circles) with /3=40. Numerical integration data
were obtained as described in the caption of Fig. 7. Frustrated
symmetric rings with even X do not satisfy iA. ,„/X;„i & 1 and
therefore are not expected to oscillate for any delay within the
large-gain theory. Numerically, frustrated rings with even N
showed sustained oscillation only for very large delay (~& 10),
though this is possibly a numerical artifact.

Mo~ —,
p

(p —
q ).z 1 z

p N

(5.6a)

(5.6b)

From Eqs. (5.5) and (5.6), we can find the maximum and
minimum eigenvalues of J; . Setting J,, =0 will add a
term of order O(1/N) to all of the eigenvalues; we will
neglect this and all terms O(l/N). These results are
therefore valid only for large N, where N' &&N
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—[(p —
q )/N]' +O(1/N) for q & (p/N)ir22 2

p
max —+O(1/N) for q ) (p /N)'q

. p
2 — 2——[(p —

q )/N]' +O(1/N) for —
q &(p/N)'

p
~min

+O(1/N) for q ) (p/N)I~~
. p

(5.7a)

(5.7b)

"max (5.8a)

(5.8b)

Figure 10 shows the theoretical range of eigenvalues for a
100X 100 randomly diluted inhibitory matrix as a func-
tion of connectance p . The small crosses are the calcu-
lated eigen values for a computer generated random
( —,0) matrix for p =0.4, 0.7, and 0.9.

For the randomly diluted inhibitory network, with or
without delay, the neuron gain at which the origin be-
comes unstable via a pitchfork bifurcation, creating fixed
points away from the origin, is given by

The condition k,„/k;„~ &1 is only satisfied when —
q

& (p/N)', suggesting that a symmetric random net-
work must be biased sufticiently negative before it will os-
cillate for small delay.

An example of a random symmetric network that will
oscillate for small delay is the randomly diluted inhibito-
ry network. For this network p+ =0 and p = —

q =p
Ignoring terms of O(1/N), the maximum and minimum
eigen values are

]/2

v N
2

—] /2
1——1 (pitchfork) . (5.9)

w, „;,= —ln 1— 2 1

&N p

]/2

(5.10)

Figure 11 shows ~,„;, as a function of connectance p for
N =1000. This figure shows that for a very mild dilu-
tion of connections, ~,„;, is greatly increased, but addi-

Because A, ;„ is independent of connectance the delay at
which the origin loses stability by a Hopf bifurcation is
also independent of connectance. Inserting k;„=—1

into Eq. (4.6) gives wH =-~/2/3, the small-delay limit being
appropriate for large N and therefore large I8.

The large-gain analysis of Sec. IV can be applied to the
diluted inhibitory network when N is large. At large N
the eigenvector associated with A, ;„ is nearly coherent,
that is, the differences in ~u, ~

along the eigenvector asso-
ciated with A, ;„are small compared to ~u, ~

and appear
numerically to vanish as N ~ ~ . Applying Eq. (4.4)
gives a gain-independent critical delay which does depend
on the connectance. From Eqs. (4.4) and (5.8), the ran-
domly diluted inhibitory network will not oscillate in the
large-gain limit for ~ & ~«,„where

0.8

0.6

0.4
IJJ

0.2
~)0.0—

LLI -0.2
g~ -0.4—

-0.6

-0.8—

-1.0
t'

-1.2
0 0.2

max

0 4 0.6

N=100

0.8 1.0

01

0.01

FIG. 10. The range of connection eigenvalues for a symme-

trically diluted inhibitory network with N =100 from Eqs. (5.5)

and (5.6) is plotted as a function of the connectance p ( solid

lines). The horizontal line at —1 indicates a single eigenvalue

lying outside of the quasicontinuous distribution. The

small crosses are eigenvalues computed for a randomly generat-

ed symmetric 100X 100 matrix with p =0.4, 0.7, and 0.9.

0.001
0.2 0.4

p

I

0.6
I

0.8 1.0

FIG. 11. Plot of the large-gain critical delay ~„;t as a function
of connectance p for the diluted inhibitory network with
N=1000 (Ref. 39). Note that very mild dilution greatly in-

creases ~„.„;t.
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CI lt

1—«d «1
N

(5.1 1)

where d = 1 —p ( (( 1) is a small random dilution.
Equation (5.11) can be compared to the critical delay for
the undiluted all-inhibitory network, Eq. (4.5), to give a
simple expression for the increase in critical delay due to
random dilution

( diluted )

4dX
crit

1—«d « 1
N

(5.12)

This result demonstrates how small random dilution of a
large inhibitory network can be used to stabilize a net-
work by increasing the critical delay for sustained oscilla-
tion.

tional dilution does little to further increase ~„,t When
the dilution is mild (p —1), the right-hand side of Eq.
(5.10) can be expanded to yield

1 /2

large negative eigenvalues but satisfies k,. „/X;„&1 for
all m, suggesting that these networks wi11 not oscillate
when the delay is smaller than the network relaxation
time. Experimentally and numerically, we find that this
clipping algorithm does not produce sustained oscillation
until the delay is much longer than the relaxation time.
Figure 12(b) shows the distinct eigenvalues for the two-
value clipping algorithm —J,' =(1/Z)e( —J; ), where e
is the heavyside function and Z =g; e( —J,~

). This clip-
ping algorithm, which sets all positive elements of the un-
clipped matrix J, to 0 and all negative elements to
—1/Z, has the hardware advantage of only requiring a
single inverting output from each neuron, as pointed out
by Denker, ' but as seen in Fig. 12(b) introduces a large
negative eigenvalue which can lead to sustained oscilla-
tion for a neuron delay of the order of the relaxation time
(r- 1 ).

C. Associative memory networks

Associative memory networks are designed to converge
to one of many fixed points ("memories") away from the
origin. Which memory is retrieved depends on the initial
state of the network. The existence of many attractors
each with a basin of attraction is essential to the dynam-
ics of an associative memory.

A variety of algorithms for adjusting the interconnec-
tions to efficiently encode memories have been
developed. Certainly the most commonly used is the
Hebb rule or outer product rule, where the interconnec-
tion matrix is of the form

1.2

0.9

0.6 .

~) 0.3-

& 0.0

-0.3

-0.6

+ 4
+

+

+

+

+

+
f

+

t

t

10
MEMORIES

15

P

N=100

20

N

J;; =0, (;=
I random string of +1'sI (5.13)

1.5

1.0
N=100

where m is the number of memories stored. For I «X,
the eigenvalue distribution for a Hebb rule matrix with m
random memories has m large positive elements of mag-
nitude —1, and (N —m) small negative eigenvalues of
magnitude ——m /~V. Thus the Hebb rule matrix
satisfies ~X,„/A. ;„)1, suggesting that it will not oscil-
late, except perhaps when ~))1. Numerically, we find
that even very long delays (r)) 1) will not induce sus-
tained oscillation in a Hebb rule network. This observa-
tion is supported by the recent claim that Hebb rule
networks with parallel-update dynamics and two-state
("Ising" ) neurons, corresponding to the infinite-gain and
infinite-delay limit of our analog delay system, also do not
oscillate.

A variation of the Hebb rule that is important for
hardware implementation is the clipped Hebb rule, which
restricts the interconnection matrix to a few values. The
distribution of eigenvalues for a clipped Hebb matrix J
is greatly affected by the details of the clipping algorithm
as illustrated in Fig. 12. Figure 12(a) shows the
distinct eigenvalues A. (J ) for the clipping algorithm
J,'J = (1/Z ) sgn( J, ), where Z is the normalization
Z =g; ~sgn( J," ) ~. This clipping algorithm introduces

0.5

o
& -0.5-

+ r

i I I I

+

I!

i I ~t .
"

ii

-1.0-

-1.5
10

MEMORIES
15 20

FIG. 12. Connection eigenvalues for clipped Hebb matrices

plotted as a function of the number of stored random memories

using two clipping algorithms discussed in the text. (a) Hebb
matrix J;, clipped according to J,', =(1/Z)sgn(J;, ), with normal-
ization Z =g, ~sgn( J;, ) ~, gives an unbiased matrix and an eigen-

value distribution which satisfies
~ X,„/X;„~& 1 for all numbers

of memories. (b) Clipping algorithm which sets all positive J;,-
to zero and all negative J;, to —1/Z, with normalization

Z=g, 0( —J;, ), has the advantage of only requiring a single

output from each neuron, but produces large negative eigenval-

ues that can lead to sustained oscillation. The data were ob-

tained numerically for a 100X 100 Hebb matrix J;, with random
memories as in Eq. (5.13).
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VI. DISCUSSION AND REVIEW OF USEFUL RESULTS

In summary, we have considered the stability of analog
neural networks with delayed response. The aim has
been to extend the stability condition "symmetric con-
nection implies no oscillation, " which is valid when the
neurons have instantaneous response, to a more realistic
model of neural networks where time delay is included.
We find that symmetrically connected networks can un-
dergo sustained oscillation when the neurons have de-
layed output, but only when the ratio of delay to relaxa-
tion time exceeds a critical value.

At low neuron gain, linear stability analysis about the
origin suggests that for r & —tr/(2PA, ;„) a symmetric
network will not oscillate. In this inequality, ~ is the neu-
ron delay in units of the network relaxation time, p is the
gain of the neurons at the origin, and A, ;„ is the
minimum eigenvalue of the connection matrix J,- in Eq.
(2.3).

This stability criterion based on linear stability analysis
is valid at all values of gain but becomes uselessly conser-
vative in the large-gain limit. At large neuron gain, fixed
points exist away from the origin, and the dynamics are
no longer well characterized by linear stability analysis
near the origin. Symmetric networks in which the max-
imum and minimum eigenvalues of the connection matrix
satisfy ~t(, ,„/A, ;„~ ) 1 are not found to oscillate as long
as the delay is comparable to or less than the network re-
laxation time. Symmetric networks with ~k,„/k;„~ &1
show coexisting fixed-point and oscillatory attractors at
large gain. There exists a critical delay ~„;, in the large-
gain limit below which oscillatory attractors vanish and
only fixed points are found. For symmetric networks in
which the oscillatory mode present for the smal-
lest delay is coherent (as defined in Sec. IV), we find
sustained oscillation vanishes for ~ & ~,„;, where
r,„;,= —ln(1 +A. ,„/X;„). This result is independent of
gain and is useful as P~ ac, unlike the above result based

on linear stability of the origin [Eq. (3.14)].
The stability criteria have been compared to experi-

ments carried out on a small (eight neurons) electronic
neural network with controllable time delay and to direct
numerical integration of the delay equations with good
agreement. Some results for particular network topolo-
gies are the following.

(a) The all-inhibitory network is the most oscillation-
prone configuration of the delay network. For this
configuration, the critical delay in the large-gain limit is
given by r,.„;,=ln[(N —1)/(N —2)) —1/N, where N is the
size of the network. Thus at large cV, a delay much small-
er than the network relaxation time will produce sus-
tained oscillation. Diluting the all-inhibitory network by
randomly setting a small fraction d «1 of the intercon-
nections (J; and J, ) to zero, will increase the critical de-
lay by a factor of (4dN)'

(b) Rings of symmetrically connected delay neurons
will oscillate only when the ring is frustrated

sgn Q J,, = —1

ring

and there is an odd number of neurons in the ring.
(c) The Hebb rule matrix, given by Eq. (5.13), satisfies
,„/A, ;„~ ) 1 and is found by numerical integration not

to oscillate for arbitrarily long delay. Clipping algo-
rithms, which limit the interconnections to a few
strengths, can introduce large negative connection eigen-
values and produce sustained oscillation in networks
where the delay is smaller than the network relaxation
time.
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