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Time-dependent features of the fluorescence radiation from a strongly driven three-level atom in

a Raman configuration are studied applying the Eberly-Wodkiewicz counting-rate definition of the
spectrum. Using our earlier formalism, where we assume that one or both of the driving fields are
intense, we obtain analytical expressions for the time-dependent fluorescence spectra. We have also
studied the influence on the transient spectrum of the initial preparation of the atom in three
different dressed states.

I. INTRODUCTION

Recently there has been some interest in studying
atom-field interaction dynamics in the framework of
time-dependent (physical) spectra' (TDS). TDS takes
into account the presence of the measuring device (e.g. , a
Fabry-Perot interferometer). Eberly et al. have studied
the temporal behavior of the fluorescence spectrum of a
two-level atom irradiated by a strong monochromatic
laser field which is switched on suddenly at an initial
time. They have observed that the spectrum changes in
time and the total spectral intensity oscillates according
to the Rabi flopping frequency. The calculated transient
spectrum retains its symmetric, three-peaked structure
for a resonant driving field. For a strong off-resonant
driving field, the temporal spectrum can be quite asyrn-
metric before the steady state is reached. Even when the
laser field is tuned to exact resonance, Lu et al. have
demonstrated that the symmetry of the spectrum about
the driving field is broken if the atom is initially prepared
in pure dressed states of the atom-field Hamiltonian.
Also, irradiation by a noisy laser can produce spectra
that, even in steady state, are closely similar to the earlier
time transient spectra obtained from irradiation by a
monochromatic laser. Time-dependent resonance
fluorescence from a two-level atom has also been studied
theoretically by several others " and in recent experi-
ments. ' In particular, the spectrum of resonance fluores-
cence following the removal of a strong laser has been
studied in detail by Huang et al. " A different aspect of
time-dependent resonance fluorescence spectra can arise
when an atom is irradiated by a strong pulsed laser light
of finite pulse length in which the process of turning on
and off the pulse is to be reflected in the corresponding
spectrum. ' '

The steady-state spectrum of the fluorescent radiation
from a three-level atom in the presence of one or more
strong laser fields is known to show even more interesting
features. These features depend on the detuning from the
atomic-transition frequencies and the strength of the two
laser fields driving the atom. For example, the steady-

state fluorescence spectra from a three-1evel atom both in
the cascade and Raman configurations contain five com-
ponents which are symmetric about the spectral center at
the corresponding laser frequencies when the external
laser fields are resonant and monochromatic. ' ' The
corresponding spectra from an atom in the V
configuration are, however, symmetric triplets. Fur-
ther, if the driving fields are detuned from the atomic
transition frequencies, the spectra exhibit as many as
seven Lorentzian peaks. ' ' On the other hand, for ex-
ample, in the cascade configuration, if the lower transi-
tion is driven by a strong field whereas the upper transi-
tion is probed by a weak field, the spectrum from the
lower transition is found to be the Stark triplet which is
characteristic of a strongly driven two-level atom.
The upper spectrum, in this case, is the so-called Autler-
Townes doublet. ' * lt has also been shown that the
fluctuations in the laser fields affect the spectra consider-
ably. For small phase fluctuations the central peaks and
the sidebands are broadened and decreased in intensity as
the laser bandwidths are increased. For large fluctua-
tions, the Stark multiplets tend to reduce to Stark dou-
blets.

Transient spectra for a three-level atom exposed to a
strong driving field and a weak probe field have been re-
cently studied both theoretically ' and experimentally.
As expected, the transient probe spectrum ultimately
evolves to the well-known steady-state Autler-Townes
doublet. However, the transient spectra are dramatically
different from those found in the steady state, depending
on whether the atom was initially prepared in a pure
dressed state or not. Even the preparation of the pure
dressed states using amplitude and phase-controlled reso-
nant excitation fields has been experimentally demon-
strated.

In this paper we discuss the transient spectra of a
three-level atom in a Raman configuration interacting
with two strong near-resonant laser fields that are
switched on at t =0. In Sec. II we formulate the problem.
In Sec. III we obtain analytical solution for the TDS in
the high-field approximation. The present formulation

39 3464 1989 The American Physical Society



39 TIME-DEPENDENT SPECTRA OF A STRONGLY DRIVEN. . . 3465

can be extended to study the effect of fluctuations in the
driving field on TDS. This is being studied and will be
presented elsewhere.

II. FORMULATION OF THE PROBLEM

A. Master equation

We consider a three-level atom with unequally spaced
levels (E] )Ez) E3) in the Raman configuration, in-

teracting with two single-mode laser fields (Fig. 1). The
first laser driving the Rayleigh transition from the ground
state 13& to the excited state 11& has a frequency 0]
which is detuned from the atomic transition frequency
co& =E& —E3 by an amount 4&. The second laser of fre-

quency Q2 drives the Stokes transition 12 & to 11 & and is
detuned from the atomic transition frequency
m2=E& —Ez by an amount 62. The dynamics of such a
system is described by the master equation for the re-
duced density operator p

dp(t) = —i [Ho,p(t)] —y][ A ]]p(t)+p(t) A ]]—2 A 3]p(t) A ]3]—y2[ A ]]p(t)+p(t) A ]]—2 A q]p(t) A ]q]
dt

—y, [A»p(t)+p(t)A» —2A»p(t)A»] —y4[A»p(t)+p(t)A» —2A»p(t) A»], (2.1)

where

HO=(X]( A ]3+ A3] )+a2( A]i+ A2] )+g]A]]+/A»,
to be constant. The operators A „=1m & ( n1 obey the
usual commutation relations

(2.2a) [ Amn r Apq ] A q~mp napn~qm (2.3a)

a, =d, E,(t)/2 .

The master equation (2.1) involves the usual electric di-

pole and rotating-wave approximations. Further, the
Born and Markov approximations with respect to the in-
teraction with the continuum modes of the radiation field
are inherent. Lastly, the equation is written in a frame
rotating with respect to the laser frequencies. In (2.1) the
coefficients 2y, and 2y2 are the radiative spontaneous
transition probabilities per unit time for the atom to
make a Rayleigh and Stokes transition, respectively. 2y3
and 2y4 are the nonradiative relaxations between the
dipole-forbidden transitions 12 & to 13 & and 13 & to 12 &, re-
spectively, which are added phenomenologically to ob-
tain the nonvanishing steady-state resonance spectrum. '

2a] and 2a2 in (2.2) represent the Rabi frequencies corre-
sponding to the Rayleigh and Stokes transition, respec-
tively, d, (j=1,2) are the dipole matrix elements, and

E, (t) are the driving field amplitudes which we consider

XLp

and the closure property

]f + A/2+ 2433 1 (2.3b)

We might mention here that by taking the matrix ele-
ments of p between the atomic states 1i & and 1j &

(i,j =1,2,3) one obtains from the master equation (2.1),
the familiar Blech equations. The Bloch equations with
the various relaxation mechanisms have been extensively
used in the three-level spectroscopic studies. ' Also,
master equations for multilevel systems have been intro-
duced in connection with the theory of masers by Fain
and Khanin.

B. Dressed atomic operators and the secular approximation.

The master equation (2.1) may be directly used to com-
pute the one-time expectation values of the atomic opera-
tors numerically. However, to obtain analytical expres-
sions we assume that the fields are strong. In this limit
we can also obtain a steady-state solution for the atomic
density operator. We follow essentially the method of
Ref. 29.

We first diagonalize the Hamiltonian 00 of the driven
atomic system given in Eq. (2.2). Denoting the 1g, & the
eigenstates of Ho corresponding to the eigenvalue —

p~,
we express the atomic states 1i & by

(2.4a)

FIG. 1. Schematic diagram of a three-level atom in a Raman
configuration interacting with two monochromatic fields. where a;, b;, and c,- have the explicit expressions

(2.4c)
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a, = —P, a2N;,

i3; =(P; +P;b, ,
—a, )N;,

a2N;,

where the constants X; are defined as

2 2+( 2+ g 2)2+ 2 2]
—1/2

and p; are the roots of the cubic equation

p'+p (b, , +6)—p(Q —b, ,h) —a, b, =0,
where

Q=(a +a )'

(2.S)

(2.6)

(2.7)

(2.8)

two parts, viz, the one containing no oscillatory terms
and the other containing rapidly oscillatory terms,
such as exp[+i(p; —p )t], exp[+2i (p, —p )t], and
exp[+i (2p, —

pJ
—p„)t] (i,j,k = 1,2,3; i &j ) M. aking the

secular approximation, that is, neglecting the oscillatory
terms and finally reverting back to the Schrodinger pic-
ture, we arrive at the master equation

dp(t)
1 Q pk [Bkk~p(t) l Q gk [Bkkp(t)+P(t)Bkk ]

k

+2+ eklBkkp(t)Bll+2 g fklBklp(t)Blk,
k, l k, l

( k~ 1)

(2.13)

The cubic equation can be solved readily whenever
In this case the coefficients a;, b, , and c; can be

written down explicitly.
We may now express the original operators A; appear-

ing in the master equation (2.1) in terms of the new
dressed operators B; =

~itJ, )(it ~ by means of the rela-
tions

where gk ekl and fkl are given by

gk (Y1+Yz)+k+3 3bk+ Y4ck
2 2 2

kl (3 1ckclY2bkbl ~)k al +(r3+ Y4)bkblckcl

elk

(2.14)

(2.1S)

3

ak al Bk, ,
k, l = 1

(2.9a)

fkl (lick Yzbk )~l + Y3ckbl Y4bkcl

(k~l) . (2.16)

A12 =
k, l =

Qk blBkl A 21
1

(2.9b)
Equation (2.13) has a steady-state solutionzs 29

pss D 'exp[ —(@1811+pzB22 ) l (2.17)

k, l =
+k~lBkl A 31

1

(2.9c) where the subscript SS denotes the steady state and p,
and p2 have the following expressions:

k, l =
(2 9d) V1=»[(f»fzz —f1zf21)J'(f13fzz+f »f23)],

Jzz=»[(f11f22
—f lzf 21)J'(f11f23+f i3fz1)] .

(2.18)

(2.19)

k, l =
bk ClBkl A

1

(2.9e) The quantities f, (i&j ) are d"efined in (2.16), while the
constants fkk (k=1,2,3) are given by

3

k, l =1
(2.9f)

3

HO g pkBkk
k=1

(2.10)

The reciprocal relations between 8,~
and A; can be easily

written down by noting that the transformation matrix
involving the products of a;, b;, and c; is real and orthog-
onal. The new operators 8; obviously satisfy the same
commutation relations as the old. Also, in terms of the
new operators the Hamiltonian Ho takes the simple form

fkk gk kk [3 1( k)+3 2(1 k)] k

3(
—ck) k+Y4(1 l, )ck . (2.20)

The normalization factor D is chosen such that Trpss = 1

and can be easily shown to be

D =TrIexp[ —(v1B»+J 2B22)]I

= 1+exp( —p, , ) +exp( —
pz )

=[(f»+f13)(f22+f23)

and under the action of the Hamiltonian Ho, B,, (t)
evolves with time as

—(f12 f13)(f21 f23)]J'(f11f22 f12f21) .

(2.21)

B,"(t)=B,"(0)exp[ —i (p; —p )t] . (2. 1 1)

Next, we go over to the interaction representation by
defining

The solution (2.17) is useful for obtaining the steady-
state expectation values of the dressed operators. It is
clear from the nature of this solution that the expectation
values are given by

P(t) exp lt QpkBkk P(t)exp lt QpkBkk
'

k k

(2.12)

(BJ)ss=T (BJpss)=0 ('~j),
~ss=Tr(B pss)

(2.22)

whereby the resulting master equation for p(t) splits into =(e '5,-, +e '5;2+5, 3)/D . (2.23)
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The steady-state expectation values of the atomic opera-
tor A, follow from Eqs. (2.9), (2.22), and (2.23).

It may be added here that the case of a three-level
atom in a strong external field has been previously treated
by Fain and Khanin. Their treatment includes the in-
coherent, steady-state pumping mechanism for the two
excited states besides the external field. Steady-state
values of the elements of the atomic density matrix were
derived. In the present paper, we have ignored the in-
coherent excitation mechanisms. The only excited mech-
anisms are the external fields and only damping present is
natural radiative decay. The role of the nonradiative
damping terms y3 and y4 is merely to prevent population
trapping which occurs when the two external fields are in
exact resonance with the respective transitions. Finally,
we mention here that the approximate master equation
(2.1) is valid under the conditions that the Rabi frequency

1 2 Xl ~2 X3 X4'

III. TIME-DEPENDENT FLUORESCENT SPECTRA

d&8,, & —(in, , +r,, )&8,, &

dt

+2 & fii&Bn&&;k&,k
k, l

( k~1)

where

(3.2)

jj Pj JPj

I; =g,'+g'. —2e,-

(3.3)

(3.4)

In particular, when i =j we have the three coupled equa-
tions,

dt
= —2f„&81 1 &+2f,2&822 &+2f,3 &833 &

(3.5a)

d&822&

dt

=2f3, &8„&+2f32&822&—2f33&833 &, (3.5c}
dt

A. One-time atomic operator averages

For an atomic operator 0, we define the average as

&O&=Tr(Op) . (3.1)
= —(in,f+r,J)&B,J(t) & .

and for i&j, we obtain the six equations,

d&8;, (r)&

dt
(3.6)

The general equation of motion for &8; (t) & can be
readily obtained from (2.13) and reads as

Equations (3.5) and (3.6) can be solved and the solutions
can be written in the compact form

&8,,(r'+r) &
= +

vlv2 v —v v v vlv21' 2

(v —2h;v +g,. ) &8(t') &++ ( 2f, v+g; )&BJJ(—t')& exp( vr), —
j(&i)

(3.7}

&8, (t'+r) &
= &B, .(t') &ex [p—(iQJ+1,J)~] (i&j), (3.8)

where v' —(h, +h, +h3)v+(g, +g, +g3)=0 . (3.11)

h 1
—f13+/22+f2»

h =f»+f13+f23
h3=fll+f
gl 4(f13f22+f23f12 }

g2 =4(f»f22+f 13f21»

g 3 4(f 1 1f22 f12f21 )

(3.9a)

(3.9b)

(3.9c}

(3.10a)

(3.10b)

(3.10c)

and v, and v2 are the two roots of the quadratic equation

& BiJ &ss gi ~viv2 ( +J )

&8„&„=0.
(3.12a)

(3.12b)

B. Time-dependent fluorescence spectra

The time-dependent fluorescence spectra can be writ-
ten as a double convolution integral of the form'

From Eq. (3.7) and (3.8) it is clear that the steady-state
solutions for the expectation values of 8; are as follows:

Iii s(D, t, I )=2I Re f dt'exp[ —I (t t')] f dr exp[(l /2 —iD)r]GJi s(t', r) —.
0 0

(3.13)

The subscript R (S) stands for the Rayleigh (Stokes)
spectrum. In (3.13), I is the full width at half maximum
of the (effectively Lorentzian) transmission peak of the
Fabry-Perot interferometer used to measure the frequen-

I

cy spectrum of the fluorescence, D is the detuning or the
frequency offset of the Fabry-Perot line center above the
laser frequency, i.e., D =co—0, (co —Q2) for the Rayleigh
(Stokes), and the autocorrelation functions Gii s(t', r) are
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given by

G„(t',r)=( A „(t'+r)A»(t') ),
Gs(t', r) = ( A»(t'+r) A„(t') ) .

(3.14a)

(3.14b)

( A „(t'+1-))= y a, b, (B,, (t'+7-))

+ g a;b (B;,(t'+ r)), (3.16)

We note that

& A, (t'+7)) = ya;c;&B;;(t'+7)&

+ g a, c, (B,, (t'+r)),
E, J

(i&j)

(3.15)

where the solutions for the expectation values
(B,"(t'+r)) can be written down from Eqs. (3.7) and
(3.8). Expressing A&3(t') and A&1(t') also in terms of
B, (t') a"nd applying the quantum regression theorem we
obtain the following expression for Gz(t', r) and
Gs(t', r):

a, a, e, e,g, a, aI L9;G„(t',r)= y ' ' ' ' (B,,(t'))+ g g -[8,(v 2h;v—+g;)(Bt(t'))
V —VI, Vp /, I 1 2

+ g g. ( 2f, v+g,—)(B, (tt') ) ]exp( —vr)+ g a, aI9;(B1(t') )exp[ —(iQJ+1,~)r],
J i,j, I

(i~j ) (i~j)

c, (Rayleigh),
0;= '

b, (Stokes),

(3.17)

(3.18)

substituting once again the solutions for (B; (t ) ) from Eqs. (3.7) and (3.8) in Eq. (3.17) we can obtain an explicit ex-
presston for G (t, r). Using this expression for Gz z(t', r) in (3.12) and noting that the r and t' dependences of G~ z
are both exponential, the integrals can be easily carried out. After some straightforward but tedious algebra we obtain
the following explicit expressions for the spectra:

I (D, t, I )= ' ' + g S„(D,t, I )+ g U„(D, t, I ),A (D, t, I )

(I /2) +D

where

(3.19)

A (D, t, I )=2I g B(v)f (v, D, t, I )exp( vt), —
v' —0, vi, v2

g akatckcf & Bkk )SSQt(v)
k, i

f (v, D, t, I ) =Z, I 1 —exp[ —(I /2 —v)t]cos(Dt) I +Z2exp[ —(I /2 —v)t]sin(Dt) —Z3 I 1 —exp[ —(1 v)t]I—
u &ss

. (Bt1(0))FI(v)+ g (B„(0))G,, (v), v~0

( jp i)

(I /2)(1 /2 —v)+D'
(r/2 —v)'+D'

VD

(I /2 v) +D—
Z3= r

2(I —v)

V 2A( V+gI
F,(v)=

V V)Vp

2f (~
v+ gI

Gt, (v) =
V V)V2

(3.20)

(3.21a)

(3.21b)

(3.21c)

(3.21d)

(3.21e)

(3.21f)

(3.21g)

(3.21h)
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akc„W,k(v)R, (D, t, I,k, l, v;, v )

S, (D, t, I )=
(r/2 —v)'+D' (3.22a)

S,(D, t, I )=
(I /2 —v, ) +D (3.22b)

S,(D, t, I') =
kl v= vi, v2

(k ~l)

akcl Qk(v)R3(D, t, I,k, l, v, , v )

(r/2 —I I I ) +(D +nkI )
(3.22c)

akcl (Bkk )SSR4(D, t, l, k, I, v, , vj )

S,(D, t, I )=
(r/2 —r„,)'+ (D + II„,)'

( k~ l)

a c;(B,"(0))W3, (v)TI(D, t, l, v, k, l, i,j)
U, (D, t, I )=

(I /2 —v) +D
(i&j)

a, c, alck (B,, )SS(Bkl(0) ) Tz(D, t, I,v, k, l i j )
U2(D, t, I ) =

(k~1)

(3.22d)

(3.23a)

(3.23b)

U, (D, t, I )=

where

j,k, l

(k~l, k~j)

a akcl (Bk (0))T,(D, t, I,v, k, l, i j)
( r/2 —rf I )'+ (D + &kl )' (3.23c)

Wlk(v) akCk (Bkk )SSEk(V)+ g QICI (Bll )SSGkl(V)
I

(l~k)

2k(VI~ vj ) —akCkgk(vj )Fk(V; )+ g QICIQI(vj )Gkl(VI )

I

( 1~k)

W3k (v) akckFk( v) + y a!el Gkl(v)
l

(1~k)

R„(D,t, I,k, l, v, , v. )

=21 ( Y&„[1—exp[ —(I /2+a„—)33„)t]cos(D +g„)t )
—Y2„[exp[—(I /2+a„—I3„)t]sin(D +g„)t I

(3.24a)

(3.24b)

(3.24c)

Y)„=

with

—Y3„(l—exp[ —(I —P„)t]))exp( —P„t) (n =1,2, 3,4),
(I /2 —a„)(I /2+a„—P„)+(D+g„)

(1 /2+a„—P„) +(D+q„)
(2a„—P„)(D +g„)

( I /2+ a„—P„) + (D +g„)~

(I /2 —a„)
(r —p„)

(3.25)

(3.26a)

(3.26b)

(3.26c)

al= f33=V, pl =pl =g2=p4=0, a2=v, , p2=vj, a3=a4=1 kl, g3=g4=0kI,
T„(D,t, I,v, k, l, i,j)=21 I(X&„— X)2sc(og„t) (+„X—3X4„)sin(g„t)

—exp[ —(I /2+5„—e„)t][X&„cos(D+p„)t +X3„sin(D +ILt„)t]

+exp[ —(1 —e„)t]X2„I exp( —e„t),
(I /2+6, „—E„)(I /2 —5„)+(D+jj,„)(D+p„—g„)

(1 /2+6„—e„) +(D +@„—g„)

(3.27)

(3.28)

(3.29a)



3470 JAYARAO, LAWANDE, AND D'SOUZA 39

0(i = IOVi 0(p = 5~i

I.25;
C

C5

lK

0
gO

.pO

2.I5

Cl
40

Al
O

FIG. 2. Time-dependent (a) Rayleigh and (b) Stokes spectra as functions of time t and spectral frequency oft'set D under resonance
conditions with y3= y4=0, the spectrometer bandwidth I =0.1, and the atom prepared initially in the ground state.

X2. =

X3„=

X4

(I /2 —5„)(I —e„) g„(D+p„)—
(r —~„)'+g'„

(I /2+5„—e„)(D +P„)—( I /2 —5„)(D+IM„—g„)
(I /2+5„—e„) +(D +@„—g )

(D +p, )( I —~„)+g„(r/2 —5„)
(I —e„) +g„

(3.29b)

(3.29c)

(3.291)
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(y, t =5) all seven peaks are clearly resolved. Figure 5(b),
where the atom is assumed to be initially in the dressed
state,

~ g2) also shows a similar behavior, except that here
the central peak and a left-hand sideband begin to devel-
op initially. The case where the atom is initially in the
dressed state ~P3) is even more interesting. This is illus-
trated by the curves in Fig. 5(c). Here the development
of the transient spectrum begins nearly symmetrically
with the appearance of the two near sidebands. Subse-
quently, for intermediate time (y, t =2), the central peak
begins to appear, and for larger times (y, t =5), all the
seven peaks are clearly resolved. In each of these three

cases, the transient spectra (ytt ~ ~ ) ultimately attain
the same steady-state limit shown in Fig. 4.
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