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Coherent propagation of Stokes light in a collisionally broadened three-level amplifier
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We undertake a theoretical investigation of the coherent optical propagation of Stokes light in a
collisionally broadened three-level Raman amplifier. The Stokes light consists of two distinct spec-
tral components: off-resonance stimulated Raman scattering and on-resonance stimulated fluores-
cence, induced by collisional transfer of population to a near-resonant intermediate state of the
atomic system. Our model is based on the semiclassical Maxwell-Bloch formalism where the sepa-
ration of the Stokes light into two components results in an expansion from the usual 9 to 13 atomic
variables. We investigate the model both analytically and numerically. We point out the physical
contributions to the simultaneous evolution of pump, fluorescence, and Raman light. We discuss
the development during propagation of these separate pulses, emphasizing the nonlinear effects that

lead to saturation.

I. INTRODUCTION

The model of two radiation fields interacting with a
three-level system is central to many problems in quan-
tum optics which deal with pulse propagation, including
solitons,’”? stimulated Raman scattering (SRS),>™>
superfluorescence,®’ and parametric amplification.® In
an amplifier configuration [Fig. 1(a)], the atoms are
pumped on the first transition (1«<>2) by irradiation with
a laser pulse. Light scattered to the second transition
(2+>3) can be amplified through the process of stimulated
emission. The frequency of the amplified light depends
upon the pump-laser frequency. Two types of output
light are possible: fluorescence, when the laser is tuned
on resonance with the pumping transition and the light is
emitted at the resonance frequency of the amplifying
transition [Fig. 1(b)], and Raman scattering, when the
pump is tuned off resonance and the light is scattered
from a laser-induced virtual level [Fig. 1(c)]. Both types
of light are generally referred to as Stokes light.

In the usual theoretical treatment of Raman scatter-
ing,3 3 the pump laser is assumed to be tuned far off reso-
nance from any higher-lying intermediate state which
provides the dipole coupling that allows the Raman
scattering. It is clear, however, that as the pump is tuned
closer to the intermediate state there will come a point
when thermal energies, due to collisions between atoms,
can impart additional kinetic energy to take population
from the virtual level to the upper state [Fig. 1(d)].°~ 7
The atom then can decay, producing fluorescence. If the
collisional broadening is strong enough, this mechanism
can occur even when the laser is tuned well outside of the
natural linewidth of the pump transition. This leads to a
possibility of simultaneous growth of fluorescence and
Raman light in a collisionally broadened amplifier. In
this paper we develop a theory to account for the propa-
gation of Stokes light in this type of medium. We will be
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particularly concerned with nonlinear effects which lead
to saturation and competition between the different com-
ponents of the Stokes light.

Distinct Raman and fluorescence components occur-
ring simultaneously on the same transition have been
seen in experiments. Wynne and Sorokin!® observed
separate spectral components and their interaction when
tuning near a resonance line in potassium vapor. Com-
petition between components has been proposed as a pos-
sible explanation of results seen in some early attempts by
Carlsten and Dunn'! to generate tunable radiation
through stimulated Raman scattering by near-resonance
pumping with a dye laser. In these experiments, as reso-
nance was approached, SRS output was seen to decrease
instead of exhibiting an expected increase.

The situation was somewhat clarified by Raymer
and Carlsten,’> ¢ who observed the simultaneous
amplification of both Raman and fluorescence light in ex-

(@) (b) © @

FIG. 1. (a) Level configuration of the three-level amplifier.
The dashed lines show the allowed dipole couplings. (b) Gen-
eration of fluorescence in the amplifying transition by on-
resonance tuning in the pump transition. (c) Generation of Ra-
man scattering in the amplifying transition by off-resonance
tuning in the pump transition. (d) Generation of collision-
induced fluorescence by collisional population transfer (double
arrow) from laser-induced virtual level to upper state.
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periments on atomic thallium in an argon buffer gas. The
growth from spontaneous to stimulated emission in both
types of light was discussed by them using gain theories.
Their treatment, however, ignored population depletion
and coherence effects and thus could not explain the satu-
ration behavior observed in their experiments.

The collision process takes energy away from the pump
pulse, which otherwise would have gone into Raman
scattering, and makes it available for fluorescence. It is
important to understand how the output pulses compete
for energy from the pump pulse since it will affect the Ra-
man conversion process. It is also of interest to investi-
gate the development of the fluorescence and Raman
light since they exhibit different spatial and temporal be-
havior due to the different physical mechanisms which
produce them. It is well known that fluorescence exhibits
a lifetime independent of the pump pulse, while Raman
scattering is only generated while the pump pulse is
turned on.'!8

In Sec. II we derive the equations of motion which
serve as the basis of our model. Analytic results for
several limits of these equations are discussed in Sec. III.
In Sec. IV we discuss our numerical results, paying par-
ticular attention to nonlinear effects. We treat inhomo-
geneous broadening effects in Sec. V. In Sec. VI we sum-
marize our results.

II. EQUATIONS OF MOTION

A. Optical Bloch equations

We choose to work in the Heisenberg picture and treat
the atom-field interaction semiclassically. We take as our
model the three-level atom shown in Fig. 2. The ground,
intermediate, and excited states are labeled as |1), |2),
and |3), respectively. Dipole transitions are allowed be-
tween levels 1 and 2 and 2 and 3 but forbidden between 1
and 3. The 1-2 transition is pumped off resonance by a
field Ep and the 2-3 transition is probed by Eg. We take
the total electric field to have the form

E(z,t)=Ep(z,t)+Eg(z1) , (2.1
where
Ep(z,t)=ep&p(z,t)exp] —i(wpt —kpz)]+c.c. , (2.2a)
Es(z,t)=es6E5(z,)exp[ —i(wgt —kgz)]+c.c. (2.2b)

Here, k, =w, /¢, 6,(z,t) is the electric field envelope with
carrier frequency o,, taken to vary slowly in an optical
cycle, and e, is its corresponding polarization vector.
The carrier frequencies for the pump and Stokes waves
are denoted by wp and wg, respectively, and c is the speed
of light.

The atomic dynamics can be found by solving for the
behavior of the atomic projection operators,
@ jx =1j) k|, using the Heisenberg equations of motion
in the dipole approximation. We will work with equa-
tions for the averages of the atomic operators by taking
quantum expectation values, which we will denote by
0 =(8 ). The expectation values of the off-diagonal
atomic projection operators describe the atomic coher-
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FIG. 2. Model three-level atom. 1-2 transition is pumped at
frequency wp=w,; —Ap. 2-3 transition is probed at frequency
ws =wy;— Ag.

ences in the system. As they are driven by the electric
field, we will represent them by slowly varying ampli-
tudes with appropriate oscillatory factors. We use the
notation

0,i=S; (2.3a)
0, =5yexpli(wpt —kpz)], (2.3b)
oy =syexpl —i(wgt —ksz)], (2.3¢)
031=s3exp{ —i[(wg—wp)t —(kg—kp)z]} , (2.3d)

and employ the rotating-wave approximation. The re-
sulting equations are the three-level optical Bloch equa-
tions"'° (OBE) and are given in Appendix A.

To account for the different output frequencies of the
amplifier, we now assume that the Stokes field can be
written as the sum of two distinct oscillatory com-
ponents, one at the fluorescence and the other at the Ra-
man frequency:*°

E;=E;+E;
=ep6rexpl —i(wpt —kpz)]

+egrGrexpl —i(wgt —kgz)]+c.c. (2.4)

Here, o =wg and wg =wp— A%, where A% is the detun-
ing of the pump pulse from the stationary atom [see Ap-
pendix A, Eq. (A10)]. The separation of the Stokes field
into two parts suggests that we must also separate the
coherences which are driven by the Stokes field into simi-
lar components:

S33=Ff3FryexpliAd(t —z/c)], (2.5a)

S31=f31+r31exp[l'A(}))(t_Z/C)] . (2.5b)

By using the adiabatic approximation,?! which allows us
to assume that the field envelopes do not vary appreciably
in a time 1/A%, we can obtain separate equations for f,,
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f31> T3, and ry; by inserting the ansatz (2.5) into the
OBE [Egs. (A4e) and (A4f) in Appendix A]. For the s3,
coherence we find
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and d = (jiﬁlk) is a matrix element of the dipole mo-
ment operator, d. The detuning Ag and the damping
constant B33, are given below [Egs. (2.9b) and (2.10b)]. A

d . similar result is found for s;;.
9 - +iA ) L D3
atf32 (B tifs)fz Equation (2.6b) is identical in form to Eq. (2.6a), as can
i _ be seen by setting R — F, except for the additional detun-
_E[QF(SZZ —su)=Qpful, (2.6a) ing, A2. That is, f;, is driven on resonance, while r3, is
3 ) 0 driven off resonance. Since the dipoles are proportional
5’32= —[Bnti(As+Ap)lrs, to the coherences, we see that we can identify f;, with
; ] the fluorescence part of the 2-3 dipole and r;, with the
—E[QR(SZZ_SB)_—QP"N] ) (2.6b)  Raman part.
) ) The adiabatic approximation can further be used to
where the Rabi frequencies are defined as reduce the atomic equations by letting the coherences
Qp= ‘z‘dzrepép ) (2.7a) which are driven off resonance (s,;, f3, r3,) be
# represented by their slowly varying residues, obtained by
setting
QR E%dz}'eR GR N (2-7b)
0s,, /0t =3f 3, /3t =3r;, /3t =0 .
2
Qp= Zdn'ngF ’ (2.7¢) " This gives us our final reduced set of atomic equations:
J
[ P
Es“——?(ﬂpsn—c.c.)-k Ayisy (2.8a)
%szz =é(QPs21 +Qpry+Qpfry—c.c.)—( Ay + Ayy)sy, (2.8b)
%s”:é(ﬂgqﬁn;fn—c.c. )+ Ay (2.8¢)
%r“ =—[By+i(Ag—Ap+A)]ry, — é(QRs“ —Qpry,), (2.8d)
d . i
Efaz =—(Byt+ilg )fSZ_E[QF(SZZ —s3)=Qpf31, (2.8¢)
where s,,, r3,, and f3; are understood to be replaced by their adiabatic solutions:
. Q* Q#f
i FitpJ 32
; Qp(sy) —s3) +Qxryy +5m
521 = ) (2.80
? (By—idp)+ 12|
—1i
TP Ay +i(Ag—Ap)]
1 i
rypy=———————————[Qpls;, —533)—Qpry ], (2.8
32 B3z+i(As+A(}>)2[ R\S$227 833 prail -4
1 i
== (Q —Q3 . .
S Botilhg—Ap) 2( FS21 —Qpf3) (2.8h)
[
The detunings are defined by By =1+ Ay + Ay))+y5, , (2.10b)
Ap=wy;—wp , (2.9a) By=7s; » (2.10¢)
As=w,3—wy . 2.9 .4 By =Bi;-

We have introduced phenomenological constants to ac-
count for the damping in the system.?? Spontaneous de-
cay from level |j) to level |k ) is described by the Ein-
stein decay rate A, and the dipole dephasing rates B,
are made up of natural line broadening and collisional de-
phasing rates, ¥ ;:

By=3(Ay+ Ay)+7vy, (2.10a)

B. Maxwell’s equation

Under the usual slowly-varying-envelope approxima-
tion,' and assuming all fields are copropagating, the
one-dimensional Maxwell equation that describes plane-
wave propagation reduces to three separate equations,
which we write in terms of the Rabi frequencies:
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d , 10 .
¥+?5}- QP=2”‘P(512>A2, , (2.11a)
d , 123 .
5;'1‘?—3‘[‘ QFZZZKF(f32>A23 ’ (2.11b)
d , 19 .
5;+;7§ Qp =2ikg{ryla,, (2.11c)
where we define coupling coefficients
Nld,;-epl’0
KP==—J—%5557—11 (2.12a)
Nld,;-epo
KF=—|—2Zi€ﬁFC—F (2.12b)
N|d,;-eg %0
KR::——LE%Zé%L—Ji (2.12¢)

Here, N is the (uniform) number density of atoms per
unit volume, € is the electric permittivity of the medium,
and { ), N denotes a Doppler averaging on the j-k transi-

J

tion performed over detunings instead of velocities. The
derivation of these equations is sketched in Appendix A.

Equations (2.8) and (2.11) form the basis for our analyt-
ical and numerical investigations. It should be noted that
the separation of Stokes components has led to an in-
creased complexity in the three-level OBE. Instead of the
9 atomic variables in Eqs. (A4) there are now 13. There
is also an additional electric field. The complexity is
somewhat alleviated by use of the adiabatic elimination.
The remaining coherences that are driven on resonance
(f3, and rj,) are responsible for the major contributions
to the fluorescence and Raman dipoles. The main benefit
of this approach is that the field amplitudes &5 and 6
are slowly varying, in contrast to Eg.

III. ANALYTIC RESULTS

We propose to analyze Eqgs. (2.8) and (2.11) in several
limits by reducing the complexity of the full set of atomic
equations. This will help us to understand differences be-
tween the separate spatial and temporal developments of
the Stokes components during propagation. Interactions
between the Stokes components are mediated through the
2-3 inversion. Retention of these terms are in the equa-
tions makes analytic solutions intractable. These effects
will be treated numerically in Sec. IV.

Before we begin, we will simplify the mathematical
description of our equations by making a coordinate
transformation to the moving frame. The transformation
is described by the relations

’

z'=z, 1=t—z/c . (3.1)

This implies a change in the derivative terms in the OBE

and Maxwell equations, given by
9,08 98,18 38
ot 9t 9z «c¢d dz

z' remains the propagation distance while 7 becomes the

(3.2)
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retarded time. Henceforth we will drop the prime on z'.
We will also make some simplifying assumptions for all
of our analytic limits.

(1) We ignore Doppler broadening and set A2 =0. This
implies that we take

Ap=A%, Ag=0. (3.3)

(2) We take the Stokes components to be well separated
in the output spectrum. This requires that the pump de-
tuning be much larger than the dephasing rates:

[Ap| >>By (3.4)

(3) We recognize that the adiabatic approximation re-
stricts us to the weak-field limit

[Qpl <<|Ap]| . (3.5

In each of the subsections below, we will make additional
assumptions for particular analytic limits.

A. Steady-state gains

Insight into the physical processes which contribute to
amplification can be gained by examining Eqs. (2.8) and
(2.11) in their simplest limit, that of rate equations. Rate
equations have been used extensively to determine
steady-state gain coefficients. Steady-state treatments of
SRS are well known.* The first explicit treatment of
steady-state growth of collision-induced fluorescence was
given by Mollow.?® Courtens and Szdke'? and later Ray-
mer and Carlsten!®> !¢ employed the dressed-state formal-
ism to obtain gain coefficients for both fluorescence and
Raman scattering. Our results reduce to their expres-
sions in certain limits, which we discuss below.

The simple exponential growth associated with gain
coefficients can be obtained from our equations under the
following additional assumptions.

(1) The pump pulse is undepleted during propagation.
To ensure this, we will assume

sy(z, ) =1. (3.6)

(2) The population in levels 2 and 3 is independent of
propagation distance. This implies that population
transfer between these levels occurs only through spon-
taneous emission and is independent of the Stokes field.
Consequently, we require

Qe 1Qg ] <<]Qpl . (3.7
This assumption will only be true for short propagation
distances as exponential gain will quickly amplify the
Stokes components to levels where they can modify the
population distribution in the atoms.

Steady-state response of the coherences (and thus the
dipoles) occurs when the collisional damping rates are
much larger than other rates which appear in the atomic

dynamics. The steady-state values are obtained by set-
ting 8f 3, /07=0r;, /07=0. We find
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f32'__—2_ﬁ32 (S22—533) 4 AZ QF N (3.83)
1 1 QpQg
ryy=s—— (3.8b)
3 4 B3y By —ilp

where we have ignored terms contributing to the ac Stark
shifts.

Using these results in the Maxwell equations shows
that the fields evolve exponentially. We write the results
in terms of the field intensities, defined as

Ip=26c|€P)2—m|ﬂPI2 (3.9)
etc. Then
Ip(z,7)=1Ip(z =0,7)exp(—gpz) , (3.10a)
Ip(z,7)=1Ig(z =0,7)exp(grz) , (3.10b)
Ig(z,7)=1Ix(z =0,7)exp(grz) , (3.10¢)
where the gain coefficients are given by
gP—ZKPIZ—ZZ}: , (3.11a)
gp=2«FBI32 {(s22 533)—% |s:,2,|2 : (3.11b)
=2kg L |Byylsyy —s33)++ L 10p) (3.11c)
A% 4 B

The assumption of nondepletion of the pump restricts us
to values gpz << 1.

The simple description of experimental gains allows us
to determine how fast the fluorescence and Raman pulses
grow with respect to each other by comparing the gain
coefficients. First, however, we will look at the individual
terms in the expressions (3.11b) and (3.11c).

Two terms contribute to the fluorescence. The first,
proportional to the 2-3 inversion, serves as a source for
fluorescence when it is positive. A positive inversion is

s 533=1B lQPIZ 1
227 3337 7P21
AL (AytAy)

with 7, the pump pulse width. The condition for positive
gain can be found from the expression for maximum gain,
obtained by setting dgr/d7=0 in Eq. (3.11b) and using
Eq. (3.14). We find we must have

Ay
Ay (Ay + Ay |2+
1 Ay
Yu> (3.15)
2 43
Ay + Ay [1—In 2+
A23

in order that g be positive.
We point out that these results are strictly true only for

((Az] +2A23)§ l—exp[—‘(
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created by the collisional transfer of population to the
upper state. The second term, proportional to
—1]Qp|*/A}, corresponds to a weaker two-photon pro-
cess. Since it is negative, it is an absorptive process.
Physically, this term describes a scattering consisting of
the emission of a pump photon combined with the simul-
taneous absorption of a fluorescence photon. Although
this term will be seen to be negligible in the rate-equation
limit, it must be included in a more general discussion be-
cause initially it is the only term to make a contribution
to fluorescence since the atoms start in the ground state.

The importance of collisions to the amplification of
fluorescence can be seen from the s,, population equa-
tion. The maximum amount of population that can be
transferred to the upper state is obtained by setting
9s,, /07=0 in Eq. (2.8b). We find

s :i ﬂ21 |~QPIZ
Zmx 2 Ayt Ay, Ad
_1__ a0 1P (3.12)
2 Ay +Ay, AL 4 AL '

where we have used Eq. (2.10a). But the second term on
the right-hand side of Eq. (3.12) is exactly canceled by the
absorptive two-photon term

s 1 'QP|2=l Y21 |QpI?
Zma 4 AL 2 Ayt Ay Al

(3.13)

Since s,, is the only term to make a positive contribution
to the gain, this shows that in the absence of collisions
(y,,=0), the fluorescence cannot grow. This result has
been discussed previously by various authors.!®2* The
statement is a general one and does not apply only to the
rate-equation limit.

The situation is actually somewhat more complicated
than this because, while the upper state is being excited,
spontaneous decays populate level 3. Thus the collisional
broadening must be larger than a certain threshold
amount to obtain a positive gain. We can get an estimate
of the 2-3 inversion by assuming a square pump pulse and
integrating Egs. (2.8b) and (2.8¢c). We find

A21+A23)T]}_A23(A21+A23)T), OSTSTP (3.14)

[
a constant pump pulse. It is evident that growth of the
fluorescence can also occur after the pump is turned off
through spontaneous decay of the upper state.

In the rate-equation limit we are concerned with large
collision rates, so we will assume for the moment that
(3.15) is well satisfied. Then the inversion term in the
fluorescence gain will be much larger than the absorptive
term. Taking the collision term to be dominant allows us
to simplify the gain coefficient to

ngzKF—BI?Z"(SZZ_S:B) . (3.16)

Previous treatments of collision-induced fluores-
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cence!? 1423 have obtained this result except that the
time-dependent inversion was replaced by a ‘“‘quasi’-
steady-state value. This value occurs for times such that
A, >>1/7>> A,;. Essentially this means that the solu-
tion is valid for times when the upper-state population
has reached a steady state and there is no significant de-
cay to level 3. This result is obtained in our equations by
substituting the maximum contribution to fluorescence,
Eq. (3.13), for the inversion in Eq. (3.16):

2
gl(-‘QSS)ZKF Y2 lﬂp'
B Ay + A4y) A

(3.17)

It is clear that the quasi-steady-state solution is very
restrictive as it requires the assumption that the spon-
taneous decays vary by orders of magnitude. It also ig-
nores the essential fact that the fluorescence gain is time-
dependent. Equation (3.17) overestimates the fluores-
cence gain as it assumes the maximum possible value.
The actual gain builds up over time through the collision-
al transfer of population to level 2. The importance of
this was pointed out in Ref. 16.

Contributions to the Raman gain also come from two
terms. Unlike the fluorescence, both terms in Eq. (3.11c)
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[Qp |2 /435,A% .

The relative importance of these terms can be found by
taking their ratio. With the approximation (3.14) and the
requirement (3.4) it is easy to show that the two-photon
term is dominant while the pump pulse acts. Under this
condition we can write the Raman gain as

g2 (3.18)

8r R 2[)’3‘A%)

This is the usual expression for the steady-state Raman
gain coefficient.* In other words, the collisional transfer
of population has no influence on the growth of Raman
light during the duration of the pump pulse.

However, once the pump pulse ends, only the inversion
term is nonzero, and so it makes a small contribution. It
may seem puzzling that Raman scattering, which is
thought of as a two-photon process, can be generated
through a one-photon transition. However, this is just
amplification in the far wing of the collision-broadened
2-3 transition line.

The ratio of gain coefficients of the fluorescence and
Raman pulses during pumping now can be found from
Eqgs. (3.17) and (3.18):

2

are positive. Raman light grows through stimulated 8F _ S22 53 4 Ap 0<r<
emission from the upper state, proportional to the 2-3 in- gr - Bs, Bs1 RN T=Tp (3.19)
version, and also through a two-photon contribution,
proportional to or, employing the approximation (3.14),
J
2
8r _ 2BuPu 1 ~(( Ay +2A455){1—expl —( Ay + Ay)7]} — Ay ( Ay + Ayy)7) (3.20)
8r By (A +Ap)

We have assumed kp~«kg for simplicity. During the
buildup of fluorescence, (A, + A,3)7<<1, Eq. (3.20)
reduces to

8  2¥nYau
— 7

_—~

8r Y32

(3.21)

’

where we have replaced the total dephasing rates by the
collisional rates since we are in the rate-equation limit.

Equation (3.21) shows that the relative growth of the
fluorescence and Raman pulses depends only on the col-
lisional rates and the pump pulse duration, not on the
Rabi frequency or the detuning. (This is not strictly true
since we have assumed a constant pump. In the general
case, 7 is replaced by fgﬂpdr’/ﬂp.) Assuming the
collisional-broadening rates to be comparable in magni-
tude, we therefore expect fluorescence growth to dom-
inate Raman growth when there is a large collisional
transfer of population and the pump pulse has a long
duration (y,,;7p >>1).

After the pump pulse ends (7> 7p), only the 2-3 inver-
sion terms contribute to the ratio of gain coefficients:

AZ
L (3.22)
gr B3

r

which, from (3.4), shows that fluorescence gain dominates
Raman gain after the pump pulse ends, as expected.

B. Coherence effects

Investigation of the OBE and Maxwell equations in the
rate-equation limit has enabled us to see how the different
one- and two-photon processes contribute to ampli-
fication. However, any coherence effects are completely
damped out in this limit because of the large collision
rates. These coherence effects arise through the interac-
tion of the pump and Stokes fields with the population in
the atoms and can lead to significantly different behavior
in propagation than that predicted by simple gain theory.
In particular, saturation effects can be caused by
coherently driven Rabi oscillations of the population. To
investigate these effects we can no longer assume the 2-3
inversion to be independent of propagation distance and
therefore we will no longer restrict the Stokes com-
ponents to be much smaller than the pump field in magni-
tude. We will, however, assume that only one or the oth-
er of the Stokes components is dominant on the 2-3 tran-
sition at any propagation distance. Therefore we will ex-
amine coherence effects for the Raman and fluorescence
pulses separately.
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1. Fluorescence component

To investigate the interaction of the fluorescence with
the 2-3 inversion we will continue to assume that the
pump pulse is undepleted during propagation. Also,
since we are interested in coherence effects, we will ignore
the damping of the fluorescence dipole and 2-3 inversion.
This gives us a set of reduced equations:

0 =1 2 0 raan . G230
A %227 P21 5 Ty 23T 338k F ) .
ar % AL 2

3 .

5533 = é(fJZQ;'—f23Q[:) , (3.23b)
d i 1 |QP|2

5;.[32:_——2_ (322*533)_2—&%— F - (3.23¢)

The collisional transfer of population from the ground

3453
_1 [
=% N (3.24d)
allows us to write Egs. (3.23) as
d
3V =I—vQr, (3.25a)
9 _
—v=(w—pu)Qg . (3.25b)

or

This pair of equations is equivalent to those of a two-level
atom incoherently pumped at the rate I' and interacting
with a radiation field ), with damping of the dipole pro-
portional to the field.

The general solution of Egs. (3.25), with the initial con-
ditions w(z,0)=v(2,0)=0, is

w(z,7)=p{l1—cos[O(z,7)]}

state to level 2 is an incoherent process. Thus the shape +I"chos[9(z,‘r)—9(z, ))dr (3.26a)
of the pump pulse should not be too important as long as 0
the pump is smooth. We will assume a square pump v(z,7)=—psin[O(z,7)]
pulse. We will also take the fluorescence field to be real , , )
(it is on resonance and we have ignored damping). Then +Ff0 sin[O©(z,7)—O(z,7")]d T, (3.26b)
the dipole will be in quadrature with the field. The nota-
tion where
T ’ ’
W=s,—533 , (3.24a) G(Z,T)z fO QF(Z,T dar' . (3.26¢)
=2if (3.24b) The situation described by Eqgs. (3.26) is shown in Fig.
v 32> ) 3. The pump transfers population to level 2 for a time 7,
10,2 before the fluorescence appears and continues to do so as
r=iB)—> (3.24c)  the fluorescence interacts with the atom. We can explic-
Ap itly include these conditions in Egs. (3.26):
J
I'r, 057=7,
(z,7)= 3.27
winT (I“To—,u)cos[e(z,'r)]+,u+FfT;cos[e(z,'r)—G(z,T’)]dT’, T0S7<1p ( a)
0, 0=7=7,
viz,7)= (3.27b)

(I“To—y)sin[e(z,T)H-Fffsin[e(z,f)—e(z,‘r’)]dT’, T7057Z7p .
To

The integrals can be evaluated explicitly only for very few special cases, the simplest of which is when Qg(z,7> 7,)

has a constant value, Q%:

I'r, 0=7=71,

w(z,7)= T(r—1,) (3.28a)
(Pro—p)cos[ A (z,7)]+u+—————sin[ A (z,7)], 7o57=Z7p
Al(z,71)
0, 0=7=7,
viz,7)= T(r—14) (3.28b)
(Fro—p)sin[ 4 (z,f)]+m {1—cos[A(z,7)]}, 7o<7=7p

where A4 (z,7) is the “area” of the fluorescence pulse,
A(z,7)=Q%7—1p) . (3.28¢c)

Comparing the behavior of the atom in the time regime
To<7=7p to that of the usual two-level atom reveals

[
some interesting features.

The first term in each equation (3.28a) and (3.28b) is
the solution of the standard two-level-atom model,'® with
the replacement I'r,— 1, u—0. The last term shows how
the usual dynamics are modified due to the incoherent
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FIG. 3. Situation described by Eqgs. (3.26). Pump pulse Qp
acts for a time 7, populating upper state before fluorescence Qp
begins.

pumping.

Because the inversion is initially positive, the fluores-
cence will grow. From the McCall-Hahn area theorem?’
for two-level atoms, we expect a weak probe to grow to a
stable area of 7. This is because all the population in the
upper state will be transferred to the lower state by a 7
pulse with no remaining coherence in the atom to drive
the field. For the pumped atom, we find from Eqgs. (3.28)
that for a 7 fluorescence pulse

w(d=m)=—Try+2u, (3.29a)

v(A =’IT):%F(T"“T0) . (3.29b)
This says that most of the initial available population
(T'ry) is now in the lower state, while some (2u) remains
in the upper state because of the absorptive part of the di-
pole. Some energy which has been pumped into the atom
during the 7-pulse interaction has ended up in the dipole.
Therefore, a 7 pulse is no longer stable in this situation.
This can also be seen from the fact that the second term
in (3.28b) is proportional to

cos’[ A4 (z,7)/2],

which has period 27, not .
For a 27 fluorescence pulse we find

w(d =2m)=TI1y, (3.30a)

v(A4 =2m)=0. (3.30b)

Therefore the population returns to the upper state and
there is no residual coherence, so the 27 pulse will be
stable. However, comparison of Egs. (3.30) to the initial
conditions of the atom before the fluorescence starts, Egs.
(3.28), reveals the surprising fact that even though the
atom is continually pumped while it is interacting with
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the fluorescence, it ends up precisely in its initial state
after passage of the 27 fluorescence pulse. In other
words, all of the energy transferred to the atom must end
up in the field through propagation effects. Since we ex-
pect the 27 pulse to be stable, this implies a strong
reshaping of the fluorescence as it evolves. As more ener-
gy gets into the field, the pulse will sharpen, growing nar-
rower and higher.

This result cannot be true in general, however. Equa-
tion (3.30a) says the result is independent of I, which be-
comes larger as collisional broadening is increased. This
clearly cannot be, as strong collisions will cause damping
of the dipole (an effect we have ignored in this simple
model). In addition, the reinverted atom is in an unstable
state and will begin to decay. We will see in the numeri-
cal studies that although a 27 pulse is not stable, it is
“quasistable” in the sense that although it attempts to re-
tain its area of 27, additional peaks develop after its pas-
sage which cause the combined fluorescence area to grow
to multiples of 27.

In this approximate analysis of coherence effects in the
fluorescence, we have used a very simple model. The as-
sumption of a square fluorescence pulse cannot be
justified in discussing the propagation properties of the
fluorescence. As we will see in Sec. IV, the propagation
of fluorescence is a great deal more complicated in the
general case. It may be perhaps surprising, therefore,
that such a simple model will be able to describe some of
the basic features of coherence effects in the fluorescence.

2. Raman component

For the investigation of coherence effects in the Raman
light, we can no longer assume nondepletion of the pump
pulse since the Raman scattering results from a two-
photon process. However, we will now assume that we
can ignore population transfer to level 2 and spontaneous
decays, i.e., |Bj/Apl—0 and A, 7<<1. Then the
relevant equations becomes

i
E:snz'z_(ﬂ;?rw—ﬂrprn) , (3.31a)
is%:—i—(QTPrSl —Qfpri3) (3.31b)
or 2
) o i
67’312—(B3I+IA )r31—5'0‘?p(511“‘5’33) N (3310)
where
QpQ%
=ToA (3.31d)
TP 24,
is called the two-photon Rabi frequency and
Q 2 __ ) 2
L Sl 7] 3310
4Ap

is the ac Stark shift. Equations (3.31) form the basis of
the two-photon vector model?® and have been extensively
used to describe off-resonant interactions in three-level
systems.?’ ~%°

Two basic types of coherence effects can be obtained
from these equations. The first, and better known, are



two-photon Rabi oscillations.?! We can obtain this result
if we assume that damping and the ac Stark shift are
negligible. Then Egs. (3.31a)-(3.31c) are formally identi-
cal to the equations for a two-level atom driven on reso-
nance and admit the solution

w3 =cos[ A1p(z,7)], (3.32a)

vy =sin[ Ap(z,7)], (3.32b)
where

Arplz, )= fOTQTP(Z,’r' )dr' (3.32¢)
is the two-photon area and

Wi3=S;, =533 » (3.32d)

vi3=2Im(r;;) . (3.32¢)

We have implicitly taken the pump and Raman fields to
]
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be real. Therefore the population inversion and coher-
ence oscillate sinusoidally and thus the two-photon Rabi
frequency will experience coherence effects, just as the
fluorescence does on the 2-3 transition. However, the
manifestation of these oscillations is different from the
fluorescence case since both the pump and Raman fields
must vary.

The second coherence effect is due to the propagation
of the two-photon Rabi frequency. The following
Maxwell equation describes propagating of the two-
photon field:

()

i
EZ_QTP=—_

A Qrplkp(syy =) Frp(sy —s33)]
P

]
+'A1—(KP|QR 2=k |Qp D (3.33)
P

This can be separated into two equations for the field am-
plitude and phase:

d 1 .
—é;R =5X§,_(KP!QR |>~kg |Qp|*)u3sing —v,3c086) , (3.34a)
Ri _ 1 R 1 2 2 .
az¢_ ZA-_P_ [KP(SH_522)+KR(522_533)]+?A—2_(KP|QR' —KRlﬂPl )(u13COS¢+U13Sln¢) ’ (3.34b)
P
f
where T'(7) is closely related to the two-photon area, Arp.
QTP=Rei¢', =y +ivg) . (3.34¢) Indeed, for the special case where
E = = =
We now look at the phase of the field. If we disturb the r(2=0,1)=Ep(z=0,7),
phase by a small amount, ¢ —¢+8¢p, we can relate the they are identical.
change in phase increment to the change in amplitude: Interpreting the limits 7T(r—ow)<<1 and T(r

()

dz

1 0R

= 2, % (3.35)

Thus a small change in phase will become unstable when
the two-photon Rabi frequency is decreasing, i.e., R /9z
is negative. This effect will be most important at points
where R is small. We can therefore expect phase instabil-
ities near the tail end of the pump pulse when either the
pump or the Raman pulse is being absorbed. This phase
instability will cause a change in sign of the part of the
two-photon Rabi frequency which is being absorbed.’%>!
This consequently implies a decrease in the two-photon
area with a corresponding modification of how popula-
tion is transferred between levels 1 and 3.

We will find in the numerical studies that one or the
other of these two coherence effects (strong two-photon
Rabi oscillations or phase instabilities) will be dominant
during propagation. Which effect will be more important
can be understood from a discussion of saturation effects
in transient SRS given by Elgin and O’Hare.’> They
define a nonlinear time function 7 which can be written
in our notation as (approximately)
dys-es 1

T(r)= 24,

Jlopz=0,7)Pdr . (3.36)

d,;-ep

— ) >>1 as “low input pump energy” and “high input
pump energy,” respectively, Elgin and O’Hare discuss the
different behavior of the system based on the amount of
energy in the input pump pulse. For low input pump en-
ergy they show that the pump pulse envelope oscillates
around {2, =0 as it develops and eventually all the pump
energy is converted into Raman energy. This corre-
sponds to the development of phase shifts in the pump
pulse through the instabilities we have discussed. In the
limit of large input pump energy, they show that popula-
tion oscillations are important, corresponding to the
two-photon Rabi oscillations.

These results lead to a fairly simple physical interpreta-
tion. If the input pump energy is large enough, the two-
photon area will develop to be greater than 7 before ab-
sorption of the tail end of the pump pulse can lead to
phase instabilities. Then population transferred to level 3
will begin to be returned to level 1, implying an
amplification of the pump light toward the tail end of the
pump pulse, giving stable growth. If the input pump en-
ergy is too small, this will not happen and phase shifts
will be dominant.

IV. NUMERICAL SIMULATIONS

We are interested in features of Stokes amplification
that are due to nonlinear effects. Some of the terms
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which contribute to these effects (such as Stokes competi-
tion through the 2-3 inversion) were left out of our ana-
lytic limits. To investigate the nonlinear behavior of the
system, we will return to Egs. (2.8) and (2.11) and in-
tegrate them numerically.

To obtain realistic parameters for our numerical inves-
tigations, we will base our three-level system on atomic
thallium. This is the system used by Raymer and
Carlsten in their investigation of SRS and stimulated
collision-induced fluorescence.!* 1 We have successfully
used our model to obtain qualitative and quantitative
agreement with the results of some of these experi-
ments.>? A discussion of the atom is given in Appendix
B.

We will take our pump pulse to have a Gaussian tem-
poral shape. We will take the pump pulse width [ampli-
tude full width at half maximum (FWHM)] to be 7, =10
ns. We will assume very weak Gaussian Stokes probes of
intensity 10 nW/cm? and temporal width of 107,. These
will be initially centered under the pump pulse. All other
relevant physical parameters will be given in the figure
captions.

In many cases, the growths of the fluorescence and Ra-
man components proceed independently until the pulses
become comparable in magnitude. We begin by examin-
ing each pulse separately.

A. Fluorescence component

A typical result of the amplification of fluorescence be-
fore the Raman pulse becomes large is shown in Fig. 4.
The collisional broadening has been chosen moderately

large (y,;7p=10, ¥3,7p=1.0, y3;7p=0.25) so that
01
! z=0.12 cm ’ pump
0.0 T T 1
z= 0.16 cm
Mo I R EE— T 1
g z=0.20 cm
S
=
™ — T T 1
9 z=0.24 cm fluorescence
:‘;: = T = ]
g z=0.28 cm
5}
-
E 3 T T |
z=0.32 cm
T e 1
z= 0.36 cm Raman
T - /!\ )
0.0 10.0 T(ns) 20.0 30.0

FIG. 4. Example of growth of fluorescence component show-
ing ringing oscillations, development of 27 pulses, and satura-
tion. Parameters are peak pump intensity, I,=2 MW/cm?
Ya7p=10, ¥3,7p=1.0, ¥3;7,=0.25, Ap7p=2.0X10*. Pump
pulse is shown reduced by a factor 5X 107 % Pulses are labeled
by dotted line (pump), dashed line (fluorescence), and solid line
(Raman).
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fluorescence begins with a larger gain than that of the
Raman component. Initially, the fluorescence peak is de-
layed toward the end of the pump pulse, a reflection of
the time-dependent collisional transfer of population to
the upper state. For z <0.08 cm the spatial growth of the
fluorescence is exponential as can be clearly seen in Fig.
S.

By the distance 0.08 cm the fluorescence has grown
large enough to start to induce coherent response in the
2-3 transition. This marks the beginning of the satura-
tion of the fluorescence. The first effects of nonlinear be-
havior are seen for 0.12<z <0.16 cm as the fluorescence
drives population from level 2 to level 3. This results in
the development of additional peaks at the tail end of the
fluorescence. This is analogous to the well-known
Burnham-Chiao®34 ringing seen in a two-level amplifier.
The amplitude of each generated peak has the opposite
sign of the one before it, the first being positive. The
ringing develops as energy is exchanged back and forth
between the atoms and the fluorescence.

Propagation of the ringing oscillations is seen up to
0.16 cm. The leading edge of the fluorescence is
amplified and advances underneath the pump. By 0.16
cm the first fluorescence peak has grown to an area of 2.
The 27 pulse is expected to be quasistable, as discussed in .
Sec. III. This is evident in the propagation from 0.16 to
0.20 cm where the first peak starts to pull away (toward
small times) from the second. The first peak leaves no
coherence after its passage to aid the advancement of the
second peak.

Eventually, however, some fluorescence starts to devel-
op between the two peaks (z=0.24 cm) due to the
repumping of level 2. Since the first peak returns the
atom to its initial state, the new peak develops like the
first. That is, the new peak grows to an area of 27 and
starts to pull away from the following peak.

It should be noted that this newly generated “ringing”
is different in character from the normal Burnham-Chiao
ringing. Each subpulse (at 7=16 ns and 7=17.5 ns at

0.0 -
E.; -2.0-
(9]
= 40+
>
= 6.0
o ;
Q H
o -804
2 i
g -100;
5 i
= —1204}
o i
.
O -14.0+
-16.0 . . . .
00 05 1.0 15 20

FIG. 5. Growth of energy in Stokes components for simula-
tions of Figs. 4 and 8. Pulses labeled as in Fig. 4.
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z=0.28 cm) has a fairly well-defined area of 27. Also, the
amplitude of the new peak at 7=17.5 ns has the same
sign as the previous peak at 7=16 ns (the valley between
the peaks does not go down to zero) and it is generated
while the atom is being pumped. This is not the case for
the initial ringing which develops after the pump pulse
ends.

This behavior of the development of a series of 27
peaks continues as the propagation proceeds until the
Raman pulse starts to amplify strongly at approximately
0.32 cm. It induces a direct transfer of population from
the ground to the excited state, causing the 2-3 inversion
to become negative. The fluorescence dipole then be-
comes absorptive and consequently the fluorescence that
falls underneath the Raman pulse begins to decrease (0.36
cm).

The various stages of propagation just described are
general features of the fluorescence growth. The degree
to which each occurs depends strongly upon the physical
parameters of the simulation. An example of this, show-
ing the dependence of the fluorescence component on the
parameters which are important for the collisional
transfer of population, is shown in Fig. 6. Here, the
pump intensity has been reduced by a factor of 10 and
the collisional-broadening rates have been increased by a
factor of 10 from those in Fig. 4. This is an example of
the rate-equation limit for the fluorescence. The fluores-
cence growth is very similar to that of Fig. 4 except that
the distinction between peaks is somewhat washed out
due to the rapid dipole dephasing. The most important
aspect of this example, however, is seen in Fig. 7. Com-
parison of this figure to Fig. 5 shows that, before satura-
tion, the energy growth in the fluorescence pulse is al-
most identical in both cases. This is because, although
we have independently varied the pump intensity and col-

5.0
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FIG. 6. Growth of fluorescence component in an amplifier
with ten times the broadening of that in Fig. 4 and 1,=0.2
MW/cm?. Pump shown reduced by a factor 2X 1073, Pulses
labeled as in Fig. 4.
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FIG. 7. Growth of energy in Stokes components for simula-
tion of Fig. 6. Pulses labeled as in Fig. 4.

lisional rates, we have chosen their product to remain
constant. The amount of population transferred to level
2 and, thus, available for amplification of the fluores-
cence, is directly proportional to B,,|Qp|?/A% [see Eq.
(3.14)]. The constancy of this factor yields the same
overall transfer of energy to the fluorescence in both
simulations. It should also be noted that, although the
fluorescence growth has remained the same, the Raman
growth is significantly different because of the decrease in
pump intensity and increase of the collision rates.

The different stages of fluorescence development can be
summarized as follows. Initial exponential growth occurs
most strongly in the trailing edge of the pump pulse since
the upper level is populated gradually, by collisions. The
2-3 transition acts like a two-level amplifier causing the
development of ringing oscillations. The leading edge of
the fluorescence eventually advances underneath the
pump pulse and a sequence of 27-type pulses is generat-
ed. These coherence effects play a fundamental role in
determining the amount of pump energy which can be
converted to the fluorescence. The Rabi oscillations can
cause a self-saturation of the fluorescence or, alternative-
ly, the fluorescence growth can be cut off by the rapidly
rising Raman component.

B. Raman component

From our discussion in Sec. III B2, we expect to see
different behavior in the Raman component, depending
upon the amount of initial pump energy. Our first exam-
ple (Fig. 8) is a continuation of the propagation begun in
Fig. 4. The initial growth of the Raman light is delayed
toward the end of the pump pulse due to the transient
Raman effect.> As the Raman pulse amplifies, it ad-
vances under the pump and additional peaks develop in
its tail. A similar behavior was observed for the fluores-
cence. Here, the development of peaks is due to two-
photon Rabi oscillations of population between levels 1
and 3. The signature of these oscillations can be seen in
the small dips of intensity of the pump pulse which corre-
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FIG. 8. Continuation of simulation of Fig. 4 showing devel-
opment of Raman component. Self-modulation of the pump
and Raman light is caused by coherent two-photon Rabi oscilla-
tions. Pump shown reduced by a factor 0.2. Pulses labeled as in
Fig. 4.

spond to peaks in the Raman pulse. As in the case of
fluorescence, these oscillations lead to a saturation of the
amplifying component (see Fig. 5).

Based solely upon our discussion of gain coefficients in
Sec. IIT A, we might expect that if we adjust the pump
intensity and detuning so as to keep |Qp|/A, constant,
the growth of the Raman light will not change. That this
is not so is illustrated in Fig. 9. Here we have decreased
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FIG. 9. Development of Raman component in a system
where the pump amplitude and detuning have been decreased
by a factor of 10 from Fig. 8. Self-modulation of the pump and
Raman light is caused by phase instabilities in the pump. Pulses
labeled as in Fig. 4.
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the pump amplitude and detuning each by a factor of 10.
Although the Raman gain coefficient remains the same,
the absorption of the pump is quite different. In the
simulation of Fig. 8, T(r7— o )~ 1.8, corresponding to
two-photon Rabi oscillations. Here, T(7— o )~0.18,
and the pump development is marked by phase instabili-
ties. If we were to continue the propagation past z=2.0
cm, eventually all of the remaining pump light would be
converted to Raman light.

An interesting consequence of this type of behavior is
that, as more of the pump light is converted into Raman
light, less and less of the population is transferred from
level 1 and to level 3. The reason for this can be under-
stood from the behavior of the two-photon area, Arp.
As the pump propagates, it develops several phase
changes over its temporal duration. These become more
numerous with propagation distance. Each phase rever-
sal changes the sign of the two-photon Rabi frequency
which occurs in the definition of 4 1p [Eq. (3.32¢)]. Con-
sequently, the two-photon area alternately grows and de-
cays. Since the phase changes occur more frequently at
larger propagation distances, Ap never is able to grow
substantially before it starts to decrease (and vice versa).
The result of this is that the two-photon area never strays
far from zero, and the inversion, given by Eq. (3.32a), al-
ways remains close to 1.

This has an important effect on the Raman light. As
more and more pump light is converted to Raman light,
less and less population is transferred to level 3. Thus,
after a significant fraction of the pump has been convert-
ed in this manner, the Raman light will propagate
through a medium which is almost transparent to it, even
though there are very strong coherent interactions occur-
ring.

C. Interaction of the Stokes components

So far we have described the coherent development of
the fluorescence and Raman components separately. We
have seen some evidence of the interaction of the pulses
and we discuss this now in more detail.

The most important interaction between the com-
ponents occurs when the Raman component grows to
values comparable to the fluorescence. This causes a
suppression of the fluorescence by creating a negative in-
version in the 2-3 transition and, consequently, an ab-
sorptive dipole (see, e.g., z=0.36 cm in Fig. 4 and z> 0.4
cm in Fig. 5). This mechanism also traps population in
the upper state. The suppression of the fluorescence
component by the Raman component will be most impor-
tant at lower pressures since then the fluorescence grows
more slowly and the Raman light more rapidly. It is pos-
sible, of course, for the Raman component to dominate
completely the fluorescence component at low pressures
so that the latter never amplifiers. This type of behavior
has been observed.!®

An additional interaction between the components has
also appeared in the numerical simulations but has not
been commented on. It results from the behavior of the
populations at large propagation distances in the limit of
low input pump energy. When the Raman pulse
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FIG. 10. Enlargement of z=2.0 cm in Fig. 9 showing addi-
tional amplification of the fluorescence component under valleys
in the Raman component. Pulses labeled as in Fig. 4.

amplifies, the population which was transferred by col-
lisions to level 2 becomes trapped in the upper state.
However, as discussed in Sec. IV B above, when the de-
velopment of the pump pulse is marked by phase shifts,
less and less population is transferred to level 3 at large
propagation distances. It is therefore possible that even-
tually the 2-3 inversion will again become positive at
times, leading to additional fluorescence growth. Figure
10 shows an enlargement of z=2.0 cm in Fig. 9, where
this effect is clearly visible: valleys in the Raman intensi-
ty are accompanied by peaks in the fluorescence intensi-
ty. This behavior can lead to a gradual rise in the fluores-
cence after its suppression by the Raman light (Fig. 11).
Although it is usually the Raman component which
affects the fluorescence component, it is possible at high
pressures for the reverse to happen, although somewhat
indirectly. If the fluorescence component grows quickly
enough, much of the pump light can be converted to
fluorescence before the Raman component becomes
stimulated. In effect, the continual depletion of the pump
causes the Raman gain to decrease with distance. Al-
though this effect is possible, we have found it to be rare
in our simulations. The reason is that the fluorescence
must grow to a noticeable fraction of the pump before it
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FIG. 11. Growth of energy in Stokes components for simula-
tion of Fig. 9. Pulses labeled as in Fig. 4.

saturates. However, saturation of the fluorescence occurs
very early in the propagation, usually well before de-
pletion of the pump is noticeable.

V. INHOMOGENEOUS BROADENING EFFECTS

Until now we have ignored the inhomogeneous
broadening which results from the range of velocities of
the atoms of the gas and is described by the Doppler line
shapes [Eq. (A9) in Appendix A]. Although the inhomo-
geneous broadening does not change the fundamental
physical processes which occur in the atom-field interac-
tions, it introduces additional damping in the system
which leads to a delay in the pulse developments.

To discuss the effects of inhomogeneous broadening,
we must calculate the averaged coherences (si;)4,

(f32)a,, and (ry), . We will do this only in the rate-

equation limit. Also, we will confine ourselves to calcula-
tions of the imaginary parts of the dipoles, since these are
responsible for the gain.

To ensure that the Stokes components are well separat-

- ed spectrally, we must assume, in addition to (3.4), that

[ASTSI>>1 . (5.1

Then, using the Doppler line shapes (A9), a simple calcu-
lation shows

>

Im(rs, >A23:__8— T3 —T%
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where H (a,v) is the Voigt function which describes the
contributions of both homogeneous and inhomogeneous
broadening to the absorption line profile:*®

— 2
e x

[ — (5.3)
o (p—x)tal

-2
H(a,v)-ﬁf

A considerable simplification occurs for the pump di-
pole when we employ (5.1). We find

BZ]

1
280y (5.4)

Im<512>A2,=— p -
This same expression results when we ignore the Doppler
broadening. This gives the important result that, when
the Stokes components are well separated in the output
spectrum, the collisional transfer of population to the
upper level is insensitive to inhomogeneous broadening
effects. In other words, inhomogeneous broadening does
not affect the amount of energy which is made available
for the fluorescence growth.

Both the fluorescence and Raman components are
affected by the inhomogeneous broadening. The dom-
inant type of damping which occurs in their growth is
influenced by the ratio of the inhomogeneous and
Doppler linewidths. When B;,T3; >> 1, the fluorescence
growth is dominated by collisional broadening. In this
case, Eq. (5.2b) reduces to our previous result, Eq. (3.8a).
When Doppler broadening dominates collisional
broadening, the gain coefficient for fluorescence growth is
given by Eq. (3.11b), with the replacement B;,—1/T75;.

The effect of inhomogeneous broadening is somewhat
different for the Raman component. This is because
Doppler effects from both the 1-2 and 2-3 transitions are
important since the Raman scattering results from a
two-photon process. The combinations of inhomogene-
ous lifetimes occur in Eq. (5.2¢) because the detunings of
the different transitions are related through a common
velocity:

AP“‘A% _ T3 _ w(z)x (5.5)
As“Ag T3 wgs - .

Since the ratio of Doppler lifetimes is the inverse ratio of
the natural frequencies of the transitions, we see that for
small frequency shifts, inhomogeneous broadening is not
an important effect for Raman scattering copropagating
with the pump beam. This partial cancellation of the
Doppler effect is analogous to the mechanism that occurs
in Doppler-free spectroscopy.

Numerical simulations verify the behavior of the
different field components discussed above. In particular,
when the pump and fluorescence transitions are dominat-
ed by Doppler broadening, the fluorescence still saturates
with approximately the same amount of energy as in the
Doppler-free case, although the spatial fluorescence
growth is slower. In addition, a change in the relative de-
velopment of the Stokes components can occur when
there is a small frequency shift in the Raman transition.
This happens because the Raman component will be rela-
tively insensitive to the Doppler broadening, while the
fluorescence component will be strongly damped. Conse-
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quently, the Raman component can suppress the fluores-
cence component earlier in the propagation, as compared
to the Doppler-free case. This can result in more energy
being delivered to the Raman pulse.

VI. DISCUSSION

It is apparent from our analytic and numeric work that
the individual development of the Stokes components and
their interaction depend in a complicated but understand-
able way on the physical parameters of the problem. We
have seen an example where an appropriate change of pa-
rameters has led to a negligible change of one component
and a strong suppression of the other (Fig. 7) or where
different parameters which give the same steady-state
gain coefficient result in a complete change of behavior in
the saturated regime (Fig. 9). Although the full descrip-
tion of the propagation depends on several independent
parameters, general features of the pulse developments
can be understood from the relationships between
different times scales and the pulse amplitudes.

The initial (exponential) growth of both pulses depends
on the amount of population available for the two pro-
cesses. Population transferred by collisions to level 2
serves as the source for the fluorescence, while a
“coherent population™ of the virtual level set up by the
pump is the source for the Raman scattering. Because
the fluorescence amplification results from a one-photon
transition, it will in general amplify more quickly than
the two-photon Raman process when there is a significant
collision-induced population transfer to level 2. The pop-
ulation transfer is also time dependent so that both long
pump pulses and rapid collisions will favor fluorescence
growth.

Under these conditions, the amplifying fluorescence
will quickly saturate due to coherent interactions (Rabi
oscillations) which develop in the 2-3 transition when the
fluorescence has grown to an area of approximately 7.
The saturation limits the rate at which the fluorescence
can amplify. Since the population transferred by col-
lisions is generally much smaller than the ground-state
population, the fluorescence usually has little effect on
the amplification of the Raman light. The opposite is not
true, however, for when the Raman pulse is amplified, it
transfers population directly to level 3, creating a nega-
tive 2-3 inversion and, consequently, an absorptive
fluorescence dipole.

The coherent development of the fluorescence shows
some interesting features after saturation. As the propa-
gation proceeds, the fluorescence advances underneath
the pump pulse, the leading edge of the fluorescence en-
countering undepleted population of the upper level until
the fluorescence reaches the beginning of the pump pulse.
This can be likened to the interaction of a field with a
two-level atom whose upper-state population is continu-
ally replenished. This results in the development in the
fluorescence of a train of quasistable 27 pulses whose pas-
sage leaves the atom undisturbed.

The Raman component, too, can exhibit coherent
effects after sufficient amplification. In a manner analo-
gous to the saturation of the fluorescence, the Raman
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light can induce two-photon coherent Rabi oscillations in
the 1-3 transition. Although the Raman light cannot ex-
hibit the development of a train of 27 pulses, another
coherent effect can manifest itself due to the fact that the
virtual population is affected by the development of the
pump pulse. For a low-energy input pump pulse, phase
instabilities in the pump can develop during propagation
which drastically change the coherent atomic dynamics.
This effect results in a complete transfer of energy from
the pump to the Raman pulse while the population ulti-
mately remains in level 1.

The two Stokes components interact with each other
through the 2-3 inversion. By far the most important
effect is the suppression of the fluorescence component by
the Raman component after the latter transfers popula-
tion directly from level 1 to level 3. However, the fluores-
cence component can still amplify gradually when phase
instabilities occur in the pump pulse, due to the propensi-
ty of the population to return to the ground state at
longer propagation distances.
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APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION

Our working set of atomic equations (2.8) has been de-
rived from the usual three-level optical Bloch equations.
The reduced Maxwell equations (2.11) were obtained
from the one-dimensional propagation equation. Here
we supply the details of the derivations of these equations
which were omitted in Sec. II.

The equations of motion for the atomic operators are
obtained from the Heisenberg equations of motion

lﬁaﬁ

5,0 =10.H1,

(A1)

where the atomic Hamiltonian, in the dipole approxima-
tion, is given by

A=H,+H,

3
=3 #w,0,,—dE

n=1

(A2)

The OBE are derived through the use of the commuta-
tion relations
[8k:8im1=8 j;nbi1 =8 b .m; (A3)
and application of the rotating-wave approximation. The
resulting equations for the averaged atomic operators are

i
ES”:'E(QPSIZ QP321)+ A21322 > (A4a)
d i
ESZZ E(QPSZI Q;S12+stz3—Q§S32)_(A2]+A23)S22 N (A4b)

i
E 33=E(QSS32 QSS23)+ A23522 y (A4C)
56; —(By—ilBplsy — [9;(511—522)"’9;531] ) (Add)
d . i
ES}Z = ‘_(B3z+lAs )532 - E[QS(SZZ —S833 )_QPSSI ] ’ (A4e)
d . i
PYREL =—[By+i(As—Ap)]sy _E(‘QSSZI —Qps3), (A4f)
a _ 0
PRl ES"*’ , (Adg)
f
where the Stokes Rabi frequency is defined as where P(z,¢) is the polarization in the medium. The
2 atomic polarization is given by

Q5= ;dzs’esgs (AS)

and the definitions of the other variables and parameters
can be found in Sec. II.

Propagation of the electric field is described by the
one-dimensional Maxwell equation

- 1 9
dz? 82

1 3

t)=—75—5P(z1), (A6)
ec? Ar?

P=N(d),, (A7)
where d=(d) is the quantum-mechanical expectation
value of the dipole moment operator:

d=d,,5,,+dy6,+H.c. , (A8)

and ( ), indicates an averaging over detunings. The

Doppler weighting is described by the line shapes
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gZI(AZI):gﬂ(AP—A(I)’)

Tt (A _AO)T# 2
_ Zlexp _[ P P T3] ’ (A92)
T
323(A23)=gz3(As_Ag)
T (Aq—ANTHT
— 23exp _Ls—ui , (A9b)
™ T

where T =mg; (0) is the inhomogeneous lifetime of the
J-k transition and the Doppler detunings are measured
from line center:

(A10a)

(A10b)

©3, and w3y are the transition frequencies of the station-
ary atom. The inhomogeneous lifetime Ty is related to
the Doppler width [half width at half maximum
(HWHM)], A, by T3 A, =(m1n2)!/2

The reduced Maxwell equations (2.11) are obtained by
substituting the assumed forms of the electric field, Eqgs.
(2.2a) and (2.4), into Eq. (A6) and employing the slowly-
varying-envelope approximation.

0—__0
Ap=w; —wp ,

00— 0 __
As—w23 g -

APPENDIX B: THE THALLIUM ATOM

Raymer and Carlsten used atomic thallium in their in-
vestigations of SRS and stimulated collision-induced
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m =-1/2 /2
J

m’ ==-3/2 -1/2 1/2 3/2

m =-1/2 /2
)

FIG. 12. Electronic transitions of atomic thallium used in the
experiments in Refs. 13-16. Arrows show allowed dipole tran-
sitions for linearly polarized pump and Stokes light.

fluorescence.'* "'® We have chosen to use this atom to

provide physical parameters for our numerical simula-
tions. Due to level degeneracies the atom cannot be de-
scribed by a simple three-state model. However, if we
take both the pump and Stokes light to be linearly polar-
ized, we can concern ourselves only with Am ;=0 transi-
tions. These transitions are shown in Fig. 12. It is then
easy to show that the definition of the Rabi frequency is
independent of the initial spin of the electron since the
electron-spin states do not mix. The atom then can be
accurately modeled by three (nondegenerate) states in
this case. The physical parameters which describe the
thallium atom are taken from Ref. 36. They are
0,1 =4.99X10"%, 0,;=3.51X10", 4,,=6.25X10, and
A,3=7.05X 107, in units of rad/s.

*Present address: Lockheed Palo Alto Research Laboratory,
3251 Hanover Street, Palo Alto, CA 94304.

TAlso at the Institute of Optics, University of Rochester, Ro-
chester, NY 14627.
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