
PHYSICAL REVIEW A VOLUME 39, NUMBER 7 APRIL 1, 1989

Modulation instability induced by cross-phase modulation in optical fibers

Govind, P. Agrawal*
A Tdk TEel/ Laboratories, Murray Hill, XelLI Jersey 07974

P. L. Baldeck and R. R. Alfano
Institute for Ultrafast Spectroscopy and Photonics Application Laboratory, Electrical Engineering and Physics Departments,

The City College of New York, New York, New York 10031
(Received 22 September 1988)

When two optical beams copropagate inside a single-mode fiber, the intensity-dependent refrac-
tive index couples the two beams through a nonlinear phenomenon known as cross-phase modula-
tion (XPM). Such an XPM-induced interaction between the two waves can destabilize the steady
state and lead to temporal modulations (self-pulsing) in the presence of group-velocity dispersion.
This phenomenon is analogous to the modulation instability of a single beam occurring in the
anomalous-dispersion regime of the fiber. The XPM-induced modulation instability can occur even
in the normal-dispersion regime. The features of XPM-induced modulation instability are discussed
in detail. This phenomenon may be useful for generating ultrashort pulses ((100 fs) in the visible
region of the optical spectrum.

I. INTRODUCTION

Many nonlinear physical systems exhibit an instability
that leads to a self-induced modulation of the steady
state as a result of an interplay between the nonlinear and
dispersive eA'ects. This phenomenon is referred to as the
modulation instability and has been studied in such
diverse fields as Quid dynamics, ' nonlinear optics,
and plasma physics. In the context of optical fibers,
modulation instability requires anomalous group-velocity
dispersion (GVD) and manifests itself as breakup of
continuous-wave (cw) or quasi-cw radiation into a train
of ultrashort pulses. It has been extensively studied
because of its fundamental nature as well as technological
applications. The physical mechanism behind modula-
tion instability is self-phase modulation (SPM) that leads
to self-amplitude modulation in the presence of anoma-
lous GVD. Although the observation of modulation in-
stability in optical fibers by using cw beams is hampered
by the competing nonlinear effects (such as stimulated
Brillouin scattering), it has recently been observed under
quasi-cw condition. ' ' ' These experiments were per-
formed in the infrared region beyond 1.3 pm in order to
operate in the anomalous-GVD regime of the silica fiber.

It was recently predicted by Agrawal that a new kind
of modulation instability can occur even in the normal-
GVD regime when two or more optical fields copro-
pagate inside the fiber. The physical mechanism behind
this novel phenomenon is cross-phase modulation (XPM)
which refers to the nonlinear phase change of an optical
field induced by other copropagating fields. The
XPM-induced modulation instability has been observed
in an experiment where the second copropagating field
was generated internally through stimulated Raman
scattering. An experiment in which both waves were in-
cident externally at the fiber input has also been report-
ed."

II. COUPLED-AMPLITUDE EQUATIONS

We consider the case in which two optical beams are
incident on single-mode, polarization-preserving fiber.
Both beams are assumed to be linearly polarized along
one of the principle axes of the fiber. The wave-
propagation problem is then considerably simplified since
it can be solved by using the scalar wave equation

1+2E (ir E)=0,
c2 gt~

where E is the total electric field, c is the velocity of light
in vacuum, and the refractive index I is given by

n =n (co)+n2 ~E
~

(2)

The objective of this paper is to extend the theory of
XPM-induced modulation instability given in Ref. 24.
There, the modulation frequencies associated with the
two cw waves were assumed to be the same. This need
not be the case in general, as also indicated by our experi-
mental data. A linear-stability analysis of the coupled-
amplitude equations is carried out in this paper by allow-
ing the perturbation frequencies to be di6'erent for each
wave. The paper is organized as follows. Starting from
Maxwell's wave equation, we derive the coupled-
amplitude equations for the slowly varying envelopes of
the two beams. These equations are readily solved to ob-
tain the steady-state solution in the case of cw beams.
The stability of the steady state is examined in Sec. III
where we carry out a linear-stability analysis. This pro-
vides us with a modulation-instability condition. The
gain and the frequencies associated with the modulation
instability are discussed in Sec. IV for the four cases in
which either the beam 1 or 2 or both beams propagate in
the normal or anomalous GVD regimes of the fiber. The
results are discussed and summarized in Sec. V.

39 3406 1989 The American Physical Society



39 MODULATION INSTABILITY INDUCED BY CROSS-PHASE. . . 3407

The frequency dependence of the linear part n (c0) results
from GVD in optical fibers. The fiber nonlinearity is in-
cluded through the nonlinear-index coeKcient n2 in Eq.
(2). The frequency dependence of nz can generally be ig-
nored. For silica fibers n2 —3.2 X 10 m /W.

The total electric field E can be written in the form

2

E(x,y, z, t) =F(x,y) g A (z, t) exp[i(k, z co—t)],
j=l

(3)

+ +—p,Bz U, dt 2

where co is the optical frequency, k = n co I-c with
n =n(co ), A is the amplitude assumed to be slowly
varying both with z and r, and F(x,y) is the transverse
distribution of the fundamental fiber mode. By substitut-
ing Eq. (3) in Eq. (1) and expending k in a Taylor series
around ~, the amplitudes A; and A 2 are found to satisfy
the following two coupled-amplitude equations:

the fiber loss. This is not a limitation since typical fiber
lengths used in the experiment are smaller than the
absorption length a '. The fiber loss can be included by
adding a term a A~ on the left-hand side of Eqs. (4) and
(5). The two terms on the right-hand side of these equa-
tions are responsible for SPM and XPM, respectively.
Note the factor of 2 in front of the XPM term. It is the
XPM-induced coupling between the two waves that is re-
sponsible for modulation instability in the normal-GVD
regime.

Equations (4) and (5) describe the evolution of two
copropagating optical pulses with nonoverlapping spectra
inside an optical fiber. The XPM-induced interaction be-
tween the two pulses can lead to novel spectral and tem-
poral changes whose investigation often requires a
numerical approach. For the discussion of modulation
instability, however, we need only the steady-state solu-
tion of Eqs. (4) and (5). Under cw or quasi-cw conditions,
the time derivatives in these equations can be ignored.
The resulting analytic solution is given by

=iy, (i A, i'+2i A, i') A, ,

aW, 1 aa, ; a'W,
+ + —p~Bz U dt 2 Br

=iy, ( A, l'+2IA, I')A, ,

(4)
A, (z)=QP, exp(iP ), (10)

where j =1 or 2, P is the incident optical power, and the
phase

P (z)=y (P, +2P3, )z . .

where the group velocity

dk

d ct)
(j =1,2),

the GVD coeScient

d kJ

dc' 2

and the nonlinear coefficient

n 2 COJ' /( C A ff )

The effective core area in Eq. (8) is defined by

f f iF(x,y)i dx dy

F, 4d d
(9)

where the integrals extend over the entire transverse
range. F(x,y) in Eq. (9) is the field distribution associat-
ed with the HE&, mode. The integrals in Eq. (9) can be
evaluated by using the modal distribution or its Gaussian
approximation. Typically A,z is somewhat larger than
the fiber-core area. Strictly speaking, Eqs. (4) and (5) ap-
ply to a polarization-preserving fiber. However, the
modulation-instability experiments' ' ' indicate that the
results can be applied even to fibers in which the input
polarization is not preserved during propagation inside
the fiber.

In obtaining Eqs. (4) and (5) we neglected the terms of
the form A, Az. These terms are responsible for four-
wave mixing and do not contribute significantly unless
the phase-matching condition is satisfied; we assume that
phase matching does not occur. We have also neglected

III. LINEAR-STABILITY ANALYSIS

The stability of the steady state is examined by consid-
ering how weak, time-dependent perturbations evolve
along the fiber. More specifically, if such perturbations
grow exponentially, the steady state is unstable. In the
linear-stability analysis, the perturbed amplitude is of the
form

A~(z, t)=[+PJ+a, (z, t)] exp(iP~ ),
where ia,. i ((PJ. If we substitute Eq. (12) in Eqs. (4) and
(5} and neglect the quadratic and higher-order terms in
a, the perturbations a, , a2 are found to satisfy the fol-
lowing linearized set of two coupled equations:

Ba, 1 Ba& ,- 0 a&
2

+ + —p,Bz U, Bt 2

=i@,P, (a, +a f )+2iy, (P, Pz)' (a&+a& ),
2

+ + —
p~Bz U 2 Bt 2

=iyqP2(a2+a2 )+2iyq(P, P2)' (a, +a*, ) .

(13)

Equations (10} and (11) show that the two cw beams
would propagate through the optical fiber unaffected ex-
cept for acquiring a phase shift which increases linearly
with distance and depends on the powers of both beams.
Further, the phase shifts are different for the two beams if
their powers are different. Before reaching this con-
clusion, however, one must ask whether the steady-state
solution (10) is stable against small perturbations. We
answer this question in the next section by performing a
linear-stability analysis of the steady-state solution.
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The last term these equations is due to XPM and van-
ishes if only one beam is incident at the fiber.

Equations (13) and (14) can be easily solved because of
their linear nature. We assume a general solution of the
form

A, =U, cos[Kz —Q, (t —z/u . )]

+i V sin[Kz —0 (t —z/u )), (15)

where j = 1 or 2, 0, is the frequency of perturbation, and
K is the wave number. For a perturbation moving with
the group velocity v, the effective wave number
K =K+II /v . The substitution of Eq. (15) in Eqs. (13)
and (14) provides a set of four homogeneous equations for
U] U2 V& and Vz. This set has a nontrivial solution
only if the determinant of the coefficient matrix vanishes.
By expanding the determinant, we obtain the following
dispersion relation:

(K' —h, )(K —h2)=C (16)

where

h~
=

—,'p, Q, [Q + sgn(p, )0„],
C =20,$1,(P,P,y, y2P, P~ )

'~

(17)

(18)

The dispersion relation provides a quadratic algebric
equation in K whose solution is

K =
—,'[(h)+h~)+[(h, +h~) +4(C —h, h2)]' ) . (20)

The stability of the steady state is governed by Eq. (20).
If the wave number K has an imaginary part, the pertur-
bation grows exponentially, as is evident from Eq. (15).
This unstable growth of weak perturbations is referred to
as the modulation instability since is implies that the
stable state of the system is a modulated state. In the
literature on quantum optics such instabilities are often
called self-pulsing instabilities for the same reason.
The necessary condition for modulation instability to
occur from Eq. (20) is

h, h2 (C2, (21)

since K then becomes negative resulting in a purely
imaginary value of K.

The modulation-instability condition (21) can be writ-
ten in a more transparent form by using Eqs. (17) and
(18). The result is

[f, + sgn(P, )][f&+sgn(P2)] &4, (22)

where f, and fz are the normalized modulation frequen-
cies defined by

f, =0, /II, (23)

Equation (22) is the main result of this section. It shows
that modulation-instability condition depends on the
signs of the GVD coefficients P, and P2. Both of them

and we have defined a characteristic frequency Q, asso-
ciate with each beam by using the relation

(19)

g =21m(K) = ~P, n, ~(n'„—n', )'" (25)

This is a well-known result. ' It shows that fluctuations
at frequencies 0, ~ 0, &

are amplified as a result of modu-
lation instability and their power grows as exp(gz) along
the fiber length. If we use Eq. (23), the gain can be writ-
ten in terms of the normalized frequency f, as

(26)

The gain is maximum for f~ = I/&2, and the maximum
value is given by g,„=2@&P,. Note that the maximum
gain does not depend on the GVD coefficient.

How does the modulation instability manifest in prac-
tice? If a perturbation is imposed externally by sending a
weak probe together with the strong-cw beam at a fre-
quency co, +0, , the perturbation would grow along the
fiber with the gain given by Eq. (26). The situation is
analogous to the four-wave-mixing configuration. In
fact, modulation instability can be interpreted as a col-
inear four-wave mixing process phase matched by SPM.
In this interpretation, two photons of frequency cu& are
annihilated to create two different photons at the fre-
quencies co, +A, and co, —0, . Thus, not only the probe
would be amplified by the modulation-instability gain,
but at the same time a new wave at cu, —0& would be gen-
erated. The case in which a perturbation is imposed
externally is referred to as induced modulation instabili-

Modulation instability can also occur spontaneously.
In this case quantum noise serves as a weak perturbation
imposed on the steady state. In general, spontaneous
noise at all frequencies such that co =co, +0, with

~ 0, ~
& II,

&
is amplified but different frequency com-

ponents are amplified by different amounts. The frequen-
cy component corresponding to the maximum value of
the gain becomes most intense. Such a selective growth
of vacuum noise manifests as spontaneous generation of

can be positive or negative depending on whether the
wavelengths A, , and A, ~ (A, =2nc/co ) are shorter or longer
than the zero-dispersion wavelength X~ of the fiber. For
silica fibers typically A,~ =1.3 pm, although it can be
tailored to be in the range 1.3 —1.6 pm through design
modifications in the so-called dispersion-shifted fibers.

In Sec. IV we consider the implications of the
modulation-instability condition (22). Before considering
the general case, it is instructive to discuss briefly the
features of single-beam modulation instability. If only
beam 1 is incident, P~=0, and from Eq. (18), C =0.
Equation (16) then yields the dispersion relation K =h, .
Modulation instability occurs if K is negative or h, (0.
The necessary condition for this to occur is obtained
from Eq. (17) and is given by

f, + sgn(P, ) &0 . (24)

This condition should be compared with Eq. (22). The
most notable aspect of Eq. (24) is that modulation insta-
bility cannot occur unless p& &0, or the input beam is
launched with a wavelength k, & k~ to propagate in the
anomalous-GVD regime. When p& &0, the gain spec-
trum of the modulation instability is obtained by using
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two side bands located at ~,+Q& in the optical spectrum
centered at co&. The frequency 0& is obtained by using

f, = I/~ 2 in Eq. (23). The use of Eq. (19) then gives the
following expression for the modulation frequency:

3.0

2.5

0, =(2y, Pi /~Pi ~

)' (27) 2.0

IV. XPM-INDUCED MODULATION INSTABILITY 15

The gain associated with the XPM-induced modulation
instability is obtained from Eq. (20) by using the
definition g =21m(K), where the factor of 2 implies that
g is the power gain. Using the modulation-instability
condition (21), together with the choice of the minus sign
in Eq. (20), we obtain

1.0

0.5

g =i/2[[(h, —h2) +4C ]' —(h, +h~)]' (28)
0

0 0.5 1.5
f1

2.0 2.5 3,0

where h, (j =1 or 2) is given by Eq. (17). By using Eqs.
(19) and (23), h can be expressed in the form

h =4y JPJf [f + sgn. (P )], (29)

where the normalized modulation frequency f, =0, /0„
and 0, is given by Eq. (19). Modulation instability
occurs only when f i and f2 satisfy the condition [see Eq.
(22)]

FIG. 1. Domains of modulation instability in the four cases
of practical interest: (a) normal GVD for both beams (P, &0,
P2&0), (b) normal GVD for beam I and anomalous GVD for
beam 2 (P, & 0, Pi &0), (c) anomalous GVD for beam I and nor-
mal GVD for beam 2 (P, & 0, P, & 0) and (d) anomalous GVD for
both beams (p, &0, pi &0). In each case modulation instability
occurs only for normalized frequencies f ~

and f2 lying below
the curve.

[f', + sgn(p, )][f',+ sgn(p, )] &4 . (30)

Equation (30) provides the domain of modulation insta-
bility in the f, fz plane. Th-ere are four cases of practi-
cal interest depending on whether none, one, or both
beams propagate in the normal-GVD regime of the opti-
cal fiber. These cases are governed by the four possible
combinations of the signs of P, and P2 in Eq. (30). Figure
1 shows the modulation-instability domains for the four
cases. In each case modulation instability can occur only
for frequencies f, and f2 lying below the curve that
marks the boundary of the instability domain. Only one
quadrant in which both f, and f2 are positive is shown
in Fig. 1. The most notable feature is that modulation in-
stability can occur even when both beams propagate in
the normal-GVD regime of the fiber. This case is of par-
ticular importance since each beam is stable against small
perturbations in the absence of the XPM-induced cou-
pling between the two beams.

How does the XPM-induced modulation instability
manifest itself' Similar to the case of single beam rnodu-
lation instability, each beam develops modulation side-
bands in its spectrum separated from the center line at co

by the modulation frequency 0, =f~Q,J (j =1 or 2). In
the time domain, the beams develop temporal oscillations
(or self-pulsing) at these modulation frequencies. The
amplitude of the modulation sidebands or the temporal
oscillations depends on the fiber length and the amount of
gain given by Eq. (28). The modulation frequencies f i

and f2 depend on whether the modulation sidebands
grow from vacuum noise or from an external perturba-
tion imposed on the beams. Three cases are possible.
First, both beams may be launched with a weak perturba-
tion imposed on them. If the frequencies f, and f2 of
the perturbation lie within the modulation-instability

a = ag =0 and g =0.
~fi ~fz

(31)

We then obtain two algebraic equations for f, and fz
whose solution satisfying the inequality

2
2g $2g Q 2g

aj', aj', ~f, ~f, (32)

determines the frequencies f, and f2. The maximum
gain can then be obtained by using these values in Eq.
(28). In the following we discuss the modulation frequen-
cies and the gain for the four cases shown in Fig. 1.

Case (a): p, )0, pz & 0. As mentioned earlier, this case
is of particular importance since modulation instability
does not normally occur in the normal-GVD regime of
the optical fiber. Equations (28)—(30) with the choice of
positive values of P, and Pz determine both the modula-
tion frequencies and the gain g. Figure 2 shows the varia-
tion of g with f, for several values of fz for the case
yiPi —y2P2=2 m '. Typically y, =0.01 —0.03 W
the visible and near-infrared regions for a single-mode
fiber of core diameter 4—6 pm [see Eq. (8)]. Thus, the re-

domain of Fig. 1, the perturbation grows exponentially as
exp(gz), where g is determined by Eq. (28). Second, an
external perturbation may be imposed on only one beam.
Then, the modulation frequency of the other beam corre-
sponds to one that maximizes the gain g. Third, none of
the beams has an external perturbation imposed on it. In
that case f i and f2 are determined by the requirement
that g be maximum for both beams since those noise-
frequency components experience maximum growth.
Mathematically, we set



34]O

E
2

C3

0
0

I I I 125

Z'
IJJ

LLJ
cr 1.00
IX
IJ

C) p7

Ci

~ 050—
IJJ

0.25
CC
O

OVIND p . AGRAWAL p . BALDECK , ANDR ~ ALFANO

I I I 5

2

39

0
0

1.0

FIG. 2 V
.

FREQUEN

20
MOPULAT

qu

' ariation of .

C'(

uency f'
o gain w

~
for severa

'th norm

mal GVD
al values of

alized mod l

d their pe k
2 Both be

at&on fre-

ea powers are such th
nce nor-

&,p, =y p

I l

0.2 04

Pz p

o.80.6
P„

0
1.0

FIG 3

fi and
&f the n

2 with ~ p ~
ormalized

aneous d
2 j & Pl for p

modulatio f

C2 actually d
ases wit}

gain is

=f,n
2 inCre

axl mum

oth bearns ex
.

ases and
eduction

ecre
a r

.
so

perience n

ecome
n in p

normal GVD
es zero for

2

)0, P )0)
~ =0.

lation at the
values are iden os

e frequen 2 pose

to the

pose . 11 parameter

e queilc

with case

y

the

e a csin Fig. 4. W

bo
ion f ies, and f

ig. 1

odu-

i t ebeam

~

y lar

ttributed
h

e modulat'

ma ous GVDma ex-

um gain
quencies

gmax h
and

~ -"h.- e max-
d

's gure should be

10 I I I I I I I I
I

I I I I I

P„&0

6
E

Z'

4—

0
0 2.0

ULATION F

1.5
FREQUEN CY

2 except th at beam
'

nces ano
r-

omalous GVD

MOD

FIG. 4.
mal GVD ( )Same as

(,) 0) while

suits of F
}lb I

Their values
m. It is n

a power 1evel —100 W

ues set a fre
sary to specif

q y

ify P, and

requencies. If we us

um at a
or a fi

that decreas
tern ally

es with a a

m would d
modulated a

ase in

h knin t
re to as in

,.l...f the gai . Thi

ion of beam 2.
'd dbe y the external m

ihth b d 1

s to the case in

nside th fiber. Th

res

s as

pect to both z~

d i db

ure 3 s

Noting th

the two beam

at

power rat'
scissa c

pe tc, g
ch other A

re s f, and f2 ch
t these 1 1 iso cli

2

2

ences norm
this case th

b
e beam 1

sho
Drei

e earn 2
experi-

ows the g
'

p p g
p cal fiber. Fi

es in th

case of ind d
h as a weak modu-



341139 MODULATION INSTABILITY INDUCED BY CROSS-PHASE. . .

2.0

Z'.
bJ

(3
lK
4
Z',
O
I—

CI
O

1.0—

CI
LIJ~ 0.S

X
O

0
0

FIG. 5.
mal GVD
(P, &0).

I I
f

I I I I
J

I I I I
/

I I I I
/

I

9
E

Z'

C9

X

2
I I ! I I I I I I I I I I I 0I I I I I I I I I I I ! I I

1.00.2 0.4 0.6 0.8

y2 2
Pl P

Same as ig. exF 3 except that beam 1 experiences nor-
(P, )0) while beam 2 experiences anomalous

Z',
QJ

C3
UJ

U

O

CI
O
X

4 I ( I I I I
f

I I I I ) I I I [ I I

Is &0

9
I

E

C)
4J
N

O2
0

0
I ! I I I I I 1 I I I ! I I

0.2 04 06
y P/yP

0.8
! I I 0

1.0

at beam 1 experiences anom-FIG. 7. Same as Fig. 3 except that b p
eriences normal GVDalous GVD (P~ &0) while beam 2 experien

m. ared with ig. o se
'

h F 3 t see the differences resulting from
2

'
the anomalous-GVD re-

' =1 or 2) are larger in case (b)
ro a ation of beam in e a

ime. Both g,„and f j = or a
( ) but the qualitative behavior is thecompared with case a u e

:~ (0, & &0. This case is complimentary to
case in e(b) the sense that the beam 1 now exp

us GVD while the beam 2 experiencess normalanomalous w i
suits usin the sameGVD. Fi ures 6 and 7 show the resu s u

'
g

eter values as in case a
ig

(b) and should be comparedpar amete
. Th litative behavior'g pand 5 res ectively. e qua

'

is e sath arne in both cases. In act, Eqs.
d r the interchange of the subscr'pi ts landvariant un er e

'

cases. Thus the re-showing the equivalence of the two cases.
f F' s. 4 and 5 also apply to case (c) if f, and f2 assuits of Figs. an

arl the resultswell as i anP d P are interchanged. Similar y,
of Figs. 6 and 7 can apply to case (b).

CaSe (d): PI &:p 0 19 (0. In this case both beams propa-

1 -GVD region of the fiber. This caseate in the anoma ous-
~ ~

tin since each beam can develop modulation in-

. Fi ures 8 and 9 show the gain in the case
o in uce ar

'
d d and spontaneous rnodu ation ins a i
ivel . These figures should be compared 'g .with Fi s.spective y. ese

hich both beams experi-2 and 3 drawn for the case in w ic o
1 GVD. The gain is larger by a factor ofence norma

about in e ca4
'

th case of anomalous dispersion. n
n P =P fromgain is arger y1 r by a factor of about 3 when

seeE .d
'

the absence of the second beam [see q.
(26)]. This can be seen in Fig. 9 where t e imi 2—

am modulationds to the conventional single-beamcorrespon s o
beam facilitatesb'1 . The presence of the secon beaminsta i ity. e

n on both beams. This isthe development of modulation on o e
risin if we note that both SPM and XPM con-

at is converted totribute to the nonlinear phase shift t a is
intensity modulation in the presence of GVD.

10 I I I I I I I
I

I I I I
I

I I I I
12.5— I I I I

I
I I I1 I I I

/
I I I I

/
I

10.0

7.5
E

5.0

2.5

0
0 2.0

I I I I

0.5 1.0 1.5
MODULATION FREQUENCY f)

t that beam 1 experiences anom-FIG. 6. Same as Fig. 2 excep a
alous GVD (P, &0) while beam 2 experiences norma

0
0 0.5 1.0 1.5

MODULATION FREQUENCY f)

2.0

t that both beams experienceFIG. 8. Same as Fig. 2 except tha
anomalous GVD (P, & 0, Pz & 0).



3412 GOVIND P. AGRAWAL, P. L. BALDECK, AND R. R. ALFANO 39

4

LLJ

(3

CO

0
O

C)
LIJ
N

lZ0
0 I

0

I I I [ I I I I
f

I I I I [ I I I I j I I I

P„&0

I I I I I I I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8
y P/yP2 2

12
I

E

K

8 (9

X

0
1.0

FIG. 9. Same as Fig. 3 except that both beams experience
anomalous GVD (P, & 0, P2 & 0).

V. DISCUSSION AND CONCLUSION

The results of this paper show that propagation of an
optical beam inside the single-mode fibers is influenced
substantially by the presence of a second copropagating
beam. The wavelength difference between the two beams
is immaterial and can be quite large. The coupling be-
tween the two beams results from XPM and has its origin
in the intensity dependence of the refractive index. Even
though such a coupling affects only the phase of cw
beams, it can lead to dramatic changes in the stability of
the cw beams in the presence of GVD. The most notable
change occurs when both beams propagate in the
normal-GVD regime of the optical fiber. Even though
each beam is expected to propagate stably by itself, the
two beams develop temporal modulations (self-pulsing)
when propagated simultaneously. The modulation insta-
bility in this case is solely due to XPM. In other cases in
which one or both beams propagate in the anomalous-
GVD regime XPM affects significantly the characteristics
of modulation instability. In particular, it enhances the
gain experienced by the modulations imposed on the cw
beam. As a result, the modulation-instability side bands
grow at a faster rate and can be observed for shorter fiber
lengths.

The experimental observation of the XPM-induced
modulation instability would require the use of pulsed
beams rather than cw beams to avoid the competing non-
linear effects such as stimulated Brillouin scattering. The
analysis of this paper can still be applied as long as the
pulse width is much larger than the modulation period or
0, T »1, where j =1 or 2, and T, and T2 are the pulse
widths for the two beams. Since 0 /2m ~ 2 THz in most
cases of practical interest, this condition is easily satisfied
for T & 10 ps. A second limitation on the pulse width re-
sults from the group-velocity mismatch between the two
pulses. Because of their different speeds, the two pulses
separate from each other after a distance z-L~, where
L~ is the so-called walk-off length defined as
Lii =

T~ l~vg
' —vs2' j. The walk-off length depends not

only on the pulse width but also on the wavelength sepa-

ration between the two pulses. For the 10-ps pulses and
10-nm wavelength separation in the visible region,
L ~ =2 m, but can reduce by an order of magnitude for a
wavelength separation —100 nm. The XPM interaction
occurs as long as the two pulses physically overlap.
Thus, L~ should be large enough for the modulation to
build up from the noise. The results shown in Figs. 2 —9
show that small-signal gain g =5—10 m ' is expected for
pulses with peak powers —100 W. If we use gL~ = 16 as
a rough criterion for the significant growth of modulation
instability, ' L ~ -2 m is needed. This can be easily
achieved for pulses as short as 10 ps if the wavelength
separation is about 10 nm.

This paper has considered the case in which both
beams are incident externally on the fiber. An interesting
situation occurs when only one beam is incident and the
second beam is internally generated through stimulated
Raman scattering. In fact, the first observation of XPM-
induced modulation instability in the normal-dispersion
regime has been made in this configuration. In this ex-
periment, the 25-ps pulses at 532 nm, obtained from a
mode-locked Nd: YAG laser, were propagated through a
fiber whose length was varied in the range 0.5 —10 m.
The peak power of pump pulses was large enough to
exceed the Raman threshold and to generate a Stokes
wave at a wavelength of about 544 nm. The spectra of
both the pump and the Stokes pulses developed modula-
tion side bands at the fiber output, a clear signature of
modulation instability. Furthermore, the shift of the
modulation side bands from the center wavelength was in
agreement with the theoretical prediction as Sec. III. A
detailed comparison is not feasible because of the compli-
cations resulting from pump depletion and the Raman
gain that leads to power changes for both beams.

Recently modulation instability has also been observed
for the case in which both beams are incident external-
ly. In this experiment, a strong 500-ps pulse at 1.06 pm
was copropagated with a weak 100-ps pulse at 1.32 pm in
a fiber with a zero-dispersion wavelength near 1.27 pm.
This configuration corresponds to case (b) of Sec. IV. the
weak 1.32-pm pulse developed modulation side bands
separated from the center frequency by 0.29 THz. The
autocorrelation measurements confirmed the 3 ~ 5-ps
modulation superimposed on the 100-ps pulse as a result
of modulation instability.

This paper considered the XPM interaction between
two beams of different wavelengths. The XPM interac-
tion can also occur when two spatially separated beams
in a nonlinear directional coupler are coupled through
evanescent waves. An example is provided by a dual-
core fiber that can act as an ultrafast all-optical switch.
Modulation instability can occur in such nonlinear
couplers and may influence their characteristics. Anoth-
er interesting case corresponds to the XPM interaction
between the two polarization components of the same
beam in a birefringent fiber. The XPM-induced modula-
tion instability leads to the temporal modulation of both
polarization components. ' Similar to the case discussed
here, such instabilities can occur even in the normal-
GVD regime of the fiber. The results of this paper show
that optical beams at different wavelengths do not propa-
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gate independently in the presence of fiber nonlinearities.
This can have important ramifications when optical fibers
are used as a nonlinear coupler or switch. On the practi-
cal side, the XPM-induced interaction may be useful for
generating ultrashort (&100 fs) pulses in the visible re-
gion.
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