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We have calculated cross sections of the radiative electron capture into a projectile K-shell orbit
(K-REC) by using the relativistic impulse approximation, fully incorporating the internal conver-
sion process, that is, e e ™ pair creation and successive e e ~ pair annihilation. The internal con-
version process (ICP) is found to play a vital role with an increase of the projectile nuclear charge,
while contributions to the ICP from an increase of the relative velocity are less pronounced for,
especially, light-ion impacts. Furthermore, the K-REC photon is distributed according to a
cos*(6, /2) rule with respect to a photon emission angle 9, in the laboratory frame in the ultrarela-
tivistic energy domain. This feature is quite different from the conventional sin?6; dependence,
which is valid at most up to an impact velocity below 0.9 of the velocity of light. Calculations are
also carried out for the linear polarization correlation of emitted photons using the same approxi-
mation. A crossover feature, i.e., a sign inversion of the polarization correlation, comes out in the
forward direction relative to 90° with an increase in the impact velocity. This effect is also due to
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the relativistic effect of the REC.

I. INTRODUCTION

Relativistic effects in radiative electron capture (REC)
were first observed in the bombardment of a light projec-
tile ion on a target by Spindler et al.! Their observation
shows that the radiation pattern of K-REC (REC into a
K-shell orbit of a projectile ion) has forward-backward
symmetry, i.e., the angular distribution of photon emis-
sion has a sin’9; dependence with respect to an angle 6,
measured from the incident direction in the laboratory
frame. This is qualitatively understood as the cancella-
tion of the retardation effect of emitted photons by the
aberration effect of the emission angle, i.e., by the
Lorentz-transformation effect from the moving frame
into the laboratory frame. Anholt et al.? also observed a
sin’0, dependence in the case where a Xe**" ion collides
with a Be atom at 197 MeV/u. Hino and Watanabe®
confirmed theoretically such behaviors of the REC pho-
ton angular distributions by employing the relativistic
strong-potential Born (SPB) approximation and showed
that the radiation pattern of photons is slightly enhanced
for the backward direction in the case of 422 MeV/u
U”?* colliding on a Be atom because of a strong Coulomb
distortion between the ion and the active electron.
Furthermore, in contrast to K-REC, L-REC (REC into a
projectile L-shell orbit) is asymmetric because the photon
retardation corrections do not cancel the aberration
effects.*

Aside from the photon angular distributions, the rela-
tivistic effects of the REC are revealed by observations of
the linear polarization correlations of emitted photons as
well.* A polarization vector of a photon induced by col-
lisions with nonrelativistic relative velocity always lies on
the scattering plane constructed by vectors of the photon
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momentum and the incident velocity. This polarization
vector gets to turn its direction from on the scattering
plane to the plane perpendicular to it with the increase of
velocity. Furthermore, the polarization correlation of
the photon shows an inversion of its sign at a certain
emission angle in the relativistic energy region. This is
called a ““crossover” feature. According to the Born cal-
culation,* this feature appears in the forward direction
relative to 90° when v /¢ > 0.8, with v and ¢ being the rel-
ative velocity and the velocity of light, respectively.

Here, we use the words “‘relativistic effects” associated
with the REC process as the combination of the follow-
ing four issues.

(1) An effect of relativistic incident velocity. This plays
an important role to interpret the cancellation effect of
K-REC angular distribution and the crossover feature of
the polarization correlation in emitted photons men-
tioned above.

(2) A high-atomic-number (Zp) effect of highly
stripped heavy projectile ions. Here this item has two
meanings: one is the relativistic Z, effect on a K electron
captured on a high-Z, ion and on an intermediate contin-
uum electron, and the other the effect of a strong
Coulomb distortion on an active electron. These two Z,
influences cannot be separated in principle in relativistic
calculations. The effects are thought to contribute to the
backward deviation of the photon angular distribution
from the sin%6; dependence as indicated on the occasion
of the U%?" bombardments on Be atoms.

(3) The Lienard-Wichert (LW) potentials® associated
with a projectile. The potentials are obtained by taking
the Lorentz transformation on a static projectile potential
from the moving frame into the rest frame. In this sense,
these effects are somewhat related with the relativistic ve-

3373



3374

locity effect of the issue (1). The LW potentials consist of
a vector part (space component) and a scalar part (time
component), while the original projectile potential has
only a scalar part. The vector component of the LW po-
tentials induces spin-orbit couplings of an electron, and
the scalar part is intensified by the Lorentz factor
1/[1—(v/¢)*]*/? in comparison with the static potential
in the projectile frame. Furthermore, the reachable
ranges of a projectile potential are widely extended be-
cause an electric field ascribable to the LW potential has
a component projected onto the direction of the velocity
vector as well as that projected onto the direction of the
position vector turning from a projectile to an electron.
These effects of the LW potentials are expected to be-
come quite pronounced in the relativistic heavy-ion col-
lisions. However, if the reference frame is chosen on a
projectile, apparently the LW potentials are replaced by a
conventional Coulomb potential. Thus the moving frame
is preferred here for simplifying complicated calculations
of a REC cross section to some degree, and at the final
stage the Lorentz transformation is taken into the rest
frame. This transformation introduces all of the effects
based on the LW potentials properly and automatically
into the final expression of the cross section.

(4) An internal conversion process. Hereafter, this
effect is referred to by the acronym ICP. This is herein
used to represent the process depicted in the second
graph of Fig. 1. The first Feynman diagram shows the
conventional REC process. The second diagram indi-
cates the contribution of an intermediate positron. At
the first stage, a pair of an electron and a virtual positron
is created with an emission of a real photon, successively
the positron propagates in the intermediate state, and
finally a pair of this positron and an initial electron is an-
nihilated into a virtual photon associated with the
Coulomb interaction between an active electron and a

(1) (2)

FIG. 1. Feynman diagrams for the relativistic radiative elec-
tron capture process. P, T, e, and e* stand for a projectile
ion, a target nucleus, an electron, and a positron, respectively.
A bold block represents a Coulomb interaction.
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projectile ion. This effect is expected to become very im-
portant with the increase of Zp. This is because the ICP
may be interpreted as follows: The strong electric fields
due to the existence of a heavy projectile will induce the
vacuum polarization cloud around itself. But the time
variation of the projectile will partially break up the vir-
tual pairs in collisions into the real e *e = pairs.® The
electron is converted to a final electron bound on a pro-
jectile and, on the other hand, the positron is annihilated
with an initial electron. The relativistic effects pointed
out in issue (2) should not be separated from the
influences of the ICP.

The aims of this article are to investigate the K-REC
photon angular distributions, the K-REC total cross sec-
tions, and linear polarization correlations of emitted pho-
tons up to the ultrarelativistic incident energy region by
virtue of the relativistic impulse approximation (RIA) in-
cluding the whole relativistic effects stated in issues
(1)-(4). Above all, we would like to put a stress on the
fact that the ICP has not been accounted for in the REC
process up to the present time.

Next, we refer to a reason why the impulse approxima-
tion (IA) is adopted for the present calculations, not the
SPB approximation’ which was used in our preceding pa-
per.® The difference of the SPB from the IA is the
presense of the Coulomb off-shell factor. According to
Gorriz et al.,? the nonrelativistic REC cross section cal-
culated by the SPB approximation is almost double of
that by the IA (Ref. 9) because of the presense of this off-
shell factor. Following the statements by Jakubassa-
Amundsen et al.,'® the photon angular distribution of
the REC should be, however, smoothly connected with
that of the (two-body) radiative recombination process
(RRP) at the on-shell limit, i.e., when the binding energy
of a target atom becomes zero. The result of the original
SPB approximation does not satisfy this requirement.
Jakubassa-Amundsen et al. settled this difficulty tem-
porarily by renormalizing the SPB wave function, in oth-
er words, by dividing it by a factor ascribable to this
discontinuity between the REC and the RRP at the on-
shell limit so as to satisfy the requirement of the smooth
connection. Further, it is found that the discontinuity of
the REC and the RRP is eliminated by incorporating the
effect of the asymptotic Coulomb tail with the SPB wave
function in accordance with Dollard’s idea,!! and the
resultant REC cross section then agrees with that by the
IA.!? The same statement is applicable to the cross sec-
tion of the relativistic REC. Therefore we do not employ
the SPB approximation in the present article.

As the end of this section, we will summarize the
differences of the preceding formalisms of Refs. 3 and 4
from the present one. First, the RIA formalism is uti-
lized instead of the relativistic SPB approximation be-
cause of the statement mentioned to above. Second, the
ICP is fully incorporated with the REC transition matrix.
The preceding calculation neglected this effect from the
beginning of discussion. Third, the ultrarelativistic
high-energy limit of the radiation pattern is presented,
and, moreover, the linear polarization correlation of an
emitted photon is calculated by employing the present
method. The latter was evaluated in Ref. 4 by use of the
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relativistic plane-wave Born approximation. In addition
to these three, we must refer to a theoretical error com-
mitted in Ref. 3. In our previous work, the appearance of
the Lorentz contraction factor y ~2 [Eq. (2.55) of Ref. 3]
was emphasized, but this should be replaced by unity.
Thus, the results by the relativistic strong-potential Born
calculation I (RSPB-I) and the RIA of Ref. 3 must be re-
duced by y 2. (However, Figs. 1 and 2 of Ref. 3 are
correct because of the normalized values.) For this
reason, the RIA result of Ref. 3 differs from the RIA re-
sults with no ICP effect (see Figs. 3 and 4) of the present
text.

Section II is devoted to formulating the RIA wave
function with full consideration of the second Feynman
diagram of Fig. 1 as well as the first one. Section III con-
tains calculations of cross sections and linear polarization
correlations of emitted photons. Section IV contains re-
sults and discussion. The conclusion is in Sec. V. Here-
after, use is made of the natural unit (Fi=c=1)
throughout. Moreover, we employ the words “an ul-
trarelativistic velocity” to denote a velocity which when
compared to the velocity of light has a ratio that exceeds
0.9. A kinetic energy of an electron at this ultrarelativis-
tic velocity is larger than its rest mass.

II. WAVE FUNCTION OF THE RIA

We assume the collision system consists of a projectile
ion P with an electric charge Zpe, a target nucleus T with

J
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Here, K/ is the recoiling momentum of T and P, is the
relative momentum of the comgosite system ({}e) with
respect to T, respectively. u,(,f” , u(TfT , and u, < stand
for free spinors of particles P, T, and e with their helici-
ties fp, fr, and f,, respectively. The arguments of spi-
nors indicate the momenta of respective particles. @p is
the 4 X4 matrix associated with the wave function of the
final bound electron and has the form
@p(tp)=Np '[1+y,7 V., /Cm)lp(rp)
where @@(rp) is a normalized solution of the
Schrodinger equation for (P,e) at rest. The relativistic
translational effect (the Lorentz contraction) of the atom
(P,e) moving with P, with respect to T has been ?});))roxi-

ma}ted as being incorporated in the spinors up? and
f,)

(2.4)

u,”¢. Np is a normalization constant for ¢p which is
determined so as to satisfy
f,) f,)
Cppu, “lopu, < )=1.

(Even in the case of a hydrogenlike uranium, Np amounts
to no more than 1.05.) The second term of square brack-
ets of Eq. (2.4) represents a relativistic Zp correction to
the nonrelativistic wave function. While we know the ex-
act wave function for (P,e) satisfying the Dirac equation,

(K u " ((1=2p)P,) .
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Z e, and an active electron e with —e for simplicity. The
transition matrix of the REC is given by

TREC= —e (W |y y, 4% ¥ ")) 2.1

by using notations of Dirac’s ¥ matrices that y = —iBa
and y,=p, with a and 8 being the a and 8 matrices with
respect to an electron. The wave function 4 of an emit-
ted photon is provided as follows by Eq. (2.27) of Ref. 3:

A; =(2Tr)v3/2(2w)*1/2e;

—ik-[R+(Mp/M)rtp+(Mp/M)xy]

Xe , (2.2)

where k, w, and e; are the momentum, energy, and po-

larization vector of an emitted photon, respectively, R is
the position vector of the center of mass of the collision
system, and rp and r are the electronic coordinates with
respect to P and T, respectively. Moreover, the masses of
P, T, and e are defined as Mp, M, and m, respectively,
and the reduced masses and the total mass of the system
are given by Ap=Mp/(Mp+m), Apg=My/(My+m),
and M =Mp+Mr+m. The final wave function W)’ is
provided by the framework of the RIA corresponding to
Eq. (2.26) of Ref. 3 as

i(Ky+PpIR idp[Mp+mK MR ep—Arrr) /M

(2.3

r

it is here replaced by the approximated one as Eq. (2.4)
for a reason mentioned later. ¥} (ry) of Eq. (2.3) is re-
lated with the relativistic outgoing Coulomb wave func-
tion mediated by the potential of T and e with the
momentum p’ equal to Ap(1—=Ap)P,—(1—=A7)K,. Itis
given by?

1/’;;1(17)=(21T)"3/2N(VT)eip"rT
X[1+vyy-V, /Q2E,)]
X\ Fi(—ivy, L —il|p'llrp|+prp)),  (2.5)

where E, =(p*+m?)'? and N(VT)Zem'T/ZF(l—ivT)

with vy =ZraE,|p'| (a is the fine structure constant).
F(u,v;z) and I'(z) denote the confluent hypergeometric
function and the I function, respectively.

By following the assumption that the collision is quite
asymmetric (i.e., Zp >>Z;), the initial total wave func-
tion W{ "’ of Eq. (2.1) becomes

W =(1+GL" V), , (2.6)

where G, is a relativistic Green function incorporating
an effect of a strong potential ¥V, between P and e to all
orders and provided by
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Gi"'=[E— 3 Ky—Vp+in|'. (2.7)

N=P,T,e
Here, Ky is a relativistic free Hamiltonian of a particle N
and 7 an infinitesimal real positive value. ®; denotes the
initial free wave function and has the expression

_ (K. +P.)-R
b =2m7) e T

1
i(Mp+m)K, = MpP,1-(Aprp—rp) /M
e

X

(ip) (ig)
XZJPIP (Kl )uTT
X

A rP)er(ry)
Ul ((1=27)P,) (2.8)
where K, is the incident momentum of P and P, is the

relative momentum of the composite system (T,e) with
respect to P, respectively. Superscripts ip, iy, and i,
denote initial helicities of P, T, and e, respectively. The
4X4 matrix @y(ry) related to the initial bound state is
given correspondingly to Eq. (2.4) by

@rirp)=Nr M+yey -V, /2m)ePcr) 2.9)
where ¢'? satisfies the Schrédinger equation for (T,e)
and N is a normalization constant. The effect of the
Lorentz contraction of (T,e) traveling w1th P, w1th
respect to P is included in the spinors of up” and u
the same with the statement on Eq. (2.4).

Inserting in Eq. (2.6) the complete set {x}, given by

x= I (@m 2% ™" (K, (2.10)
N=PT,e
W't becomes
\P5~+)=2¢(+)<qu)i> , (2.11)

where the sum is over intermediate states. Here, Ky is
an intermediate momentum of a particle N and x its po-
sition vector defined by '

=R+[MTI'T_(MT+m)rp]/M s

xr=R+[M,r,— (M, +m)r;1/M ,

and
x,=R+(Mprp+Mprp)/M ,

(K ) with a helicity n,

respectively. A free spinor w )
e (K,) for a positive

and a momentum K, is equal to u,

e .
energy state (an electron) and u (K ) for a negative en-

. (np)
ergy state (a positron), respectively. Spinors )wP"” (Kp)
ar(ld )wT"T(KT) are assumed equal to up” (Kp) and

"T

(K ), respectively, because the contributions of an-
tlpartlcles of P and T are completely negligible in the
present intermediate states. A summation of Eq. (2.11) is
taken with respect to all of the intermediate momentum
Ky, the helicity ny, and the sign of the intermediate en-
ergy state. {x|®,) of Eq. (2.11) is given by
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(np )+
wA

(x|®,)= (Ky) |up? (K)uy(A,P,)

N

X @r(qhu,* (1—A;)P))

xX8Kp—K;)8 (K, +K,—P;), (2.12)

where @(q) is the momentum-space wave function asso-
ciated with @r(ry) with q=A;K,—(1—A;)K,. Fur-
thermore, the wave function ¥' " is expressed as

1 i Kax+ K, +K ) [Apx,+H(1—A,)x
‘(IJ(+):(27T) 3e T T P e [P P px 1l

(n, )(Ke) i

(2.13)

(ng)

Xup? (Kpur (K W) (rp)w,

where ') (rp) and ¢'*)_(rp) are matrices associated
with the relatlvxstlc incoming Coulomb wave function of
an intermediate electron and that of an intermediate posi-
tron with a momentum —p equal to ApK, —(1—24,)Kp.
These are provided by

+
{ p)+(rp)

=1+ [+E,~(—ia-V, +mB+Vp)+in]" 'V}

X (27) 32 PP (2.14)

where an off-shell energy in the Green function has been
replaced by the on-shell energy tE, with
E,=(p*+m?*)!/? according to the framework of the IA.
If the moving coordinate is chosen as a frame of refer-
ence, the potential V' is nothing but the Coulomb poten-
tial without including a spin-orbit coupling as stated in
Sec. I. (We will explicitly designate the choice of a pro-
Jectile frame in Sec. III.) Thus Eq. (2.14) can be further
reduced to the form'3

(217)“3/2N(ivp)e_iplr”

X[1+y4y-V, /(2E,)]

¢'( +(rp

X\ Fi(xivp, Lillpllrpl+perp)) (2.15)

where N(tvp)=e "?’T(1%ivy) with vp=ZpaE,/
Ipl. The relativistic pure Coulomb wave function satlsfy-
ing [fE,—(—ia- VP+mB+ Vp)l (+)+(rp =0 can-

not be obtained in a closed analytic form because of im-
possibility of separating this Dirac equation in the para-
bolic coordinates.'* Its exact expression is known only in
the form of the infinite series with respect to partial
waves but it is difficult to use for practlcal calculations.
For this reason we have replaced 7 p 4 approximately by

the wave function 1!1( L+ W, "’ This type of the approxi-
mate wave function is called the Sommerfeld-Maue wave
function.”> In addition, the relativistic discrete wave
function @p(rp) has been reduced into the form of Eq.
(2.4) for the reason of retaining the same precision of ap-
proximations with that of Wfp’,i(rp ).

Combinating Eq. (2.11) with formulas from Egs.
(2.12)—(2.15) yields the RIA wave function as follows:
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372, (K AP)R UM+ m)K, = MpP, ] ep —Aprp) /M

X[ (rp)AL (I =Ap)P)+ ¢ (rp)AT(1—=A7)P;)]

X@r(rr)up” (K up (AP )u,

where A/*)(K) is an energy projection operator defined
as

(K" (k)

(n,)
AP(K)= u,
ne=¢1
and
(n,)
ALT(K)= v,

n,=xtl1

(n,¥

(K, " (K) .

In deriving Eq. (2.16), we have used the peaking approxi-
mation justified in the REC that contributions of a
transferred momentum q are neglected except for $(q),
a momentum-represented wave function of @ (ry), on
account of a sharp peak of an initial momentum distribu-
tion of a bound electron. The first and the second terms
of square brackets of Eq. (2.16) indicate the effects of an
electron and a positron propagating in the intermediate
continuum states, respectively, as depicted in Fig. 1. In
our previous paper,’ the intermediate positron contribu-
tion (the ICP effect) within the square brackets was
neglected and the projection operator A\’ was set equal
to unity. The presence of A'*’ originates from {y} of Eq.
(2.10). Because A'Y’+A!7'=1, {x] forms a complete
set. In Eq. (2.7) of Ref. 3, however, {x,} does not include
positron contributions, and hence it does not construct a
complete set in principle. The difference between Eq.
(2.25) of Ref. 3 and Eq. (2.16) above is attributed to such
a situation.

III. CROSS SECTION AND LINEAR
POLARIZATION CORRELATION
OF AN EMITTED PHOTON
In this section, we derive an expression of a photon an-
gular distribution for the K-REC with consideration of
photon polarizations. The desired differential cross sec-
tion is of the form

3
1+ 3 £Pi(6,)

i=1

do/dQ; =2"do /dQ )yl , (3.1

where Q; is a solid angle associated with an emission an-
gle 6; of a photon in the laboratory frame, and a quanti-
ty P;(6; ) denotes a polarization correlation function of a
photon satisfying |P;(6,)| <1. (do/d Q)0 stands for
the differential cross section of an unpolarized emitted
photon, i.e., the cross section that is averaged over with
respect to polarization directions of photon and is
weighted with the degree of freedom of photon polariza-
tions by a factor of 2. Photon polarizations are described
with three Stokes parameters £;, i =1,2,3, defined as'®

J— * *
§1=aja,—aja,,
§,=aas +ajay , (3.2)

&y=i(a,a¥ —a,at),

((I_A'T)Pl) y

(2.16)

f

where a, represents a component of a photon polariza-
tion vector e which is projected onto the scattering plane
constructed by vectors of the incident velocity v and the
momentum k of the emitted photon, a, stands for a com-
ponent perpendicular to this plane along kXv. Thus,
e=a eV +a,e'? and (e'",e'?,k) form a right-hand set as
depicted in Fig. 2, where e'!’ and e'® are unit vectors
along the x and y axes, respectively, and hence k is along
the z axis. The parameter £, describes the linear polar-
ization of the photon along the x or y axis. The parame-
ter £, represents the linear polarization along directions
rotated by +/4 from the x axis. Finally, the parameter
&, stands for the degree of circular polarization. For an
unpolarized photon §;,=§,=§;=0, and for a completely
polarized photon &2+ &3+ £2=1.

In fact, the symmetrical invariance considerations!’
permit only one nonvanishing polarization correlation,
P,(6;). Thus, the allowed polarization correlation of a
REC photon represents only the effect of the linear polar-
ized photon. Replacing P,(8,) by P(6,), Eq. (3.1) be-
comes

do/dQ; =2""do /dQp )ypal 1 T P(6, )c0s24] ,  (3.3)

where the polarization angle ¢ is an angle between the
scattering plane (the x -z plane) and the polarization plane
constructed by k and e. At this stage, e has been written
by e=e'’cosp +e'?’sing and then &, =cos2é.

Next, formulations are made for the differential cross
section of the REC photons. At first, we calculate it in
the moving frame (i.e., P,=0) and finally Lorentz trans-
form it into the laboratory frame (i.e., P,=0). The pho-
ton angular distribution in the moving frame reads

FIG. 2. Coordinate system for vectors k, v, and e. The plane
spanned by k and v is the scattering plane, and that by k and e
is the polarization plane.



3378

do/dQy=Q2m)v|™!
XEfdemﬁ,,qu< |t REC|2)
X8y —o'F—yv-q),
(3.4)

where o) indicates the peak position of the photon ener-
gy wy; in the moving frame and is given by
wM m(?’gr £p) with y= 1_|V\ )72 Ep=]1

—(Zpa)*]'? and &7 =[1—(&ra)?]'/?, with &4 being the
optimized { exponent of an active electron. The summa-
tion is taken with respect to {4 values, i.e., initial states
of bound electrons participating in the REC. Here 6,, is
defined as an emission angle of a photon in the moving
frame, and €, is a solid angle associated with this. The
last term in the energy-conserving & function represents
the Doppler-broadening effect of the REC photon spec-
trum. Moreover, tREC and (|¢REC|2) have been defined
as

TREC=REC§O K, +P, — K, —k) (3.5)

and

(|¢REC]2) =8~ 13 [¢REC|Z | (3.6)
with the sum being over the helicities, where we have tak-
en the average with respect to the initial helicities and the
summation with respect to the final ones of all three par-
ticles P, T, and e.

Incorporating Egs. (2.1)-(2.5), (2.16), and (3.5), we get

tREC=—(2cu )‘1/2(27T)43/2eu;fp>+(0) “P)(p+k)
i
< ud T P w0 P u 0)

Xe,’jQ#ue‘ (—p) , (3.7)
where use has been made of kinematic relations of
K,=p+k, K, =A;P;, (1=A;)P,=—p, and p'=p.
Here, the relative velocity v of the present system is given
by v=—P,/[P?+(M;+m)?]'"? and then p=myv. The
quantity Q is defined as being equal to the sum of Q( *)

and Q( , Wthh are defined by
—ikrp iq _
Q;f’=f fdrpdrre re'd rT(pI)(rP)v,lJ(pgr”(rT)y,l
XY ) (rp) AL (—plpr(ry) . (3.8)
|

(p,k,q)=[(1—y " /2][v-(U+V)]/(1—y~

+{(1+y~

U, V, W, and X have been defined as U=B\" 4, + 457'Cp, V=

X= A}f ' A1, respectively, where
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Effects of Q") to the REC are visualized as in Fig. 1.
Especially, attentlon should be paid to Q ""because it is
related with the ICP effect.

By using Eq. (3.7), Eq. (3.6) becomes

< 'tREC‘Z) :(zﬂ)*zaw;llpﬁ;)

X2 ' Tr[AT(0)Q, A (—p)0,],  (3.9)
where the fine-structure constant a has been deﬁned in
the Heaviside unit as a=e?/(47), 0, =7,0. v, and
ALTAK) is a Casimir operator defined as A'"'(K)
=A,"(K)y, In Eq. (3 9), we have neglected effects of
P fp) g fr
the nuclear spinors uP ,up '’ uTT , and uy " because
they contribute to Eq. (3.9) by a factor comparable to the
order of unity. A densxty matrix pl“ for a photon polar-

ization is given by'®

2

(y)— — (a),(b)
va_eue\ 2 pabey e,
a,b=1

(3.10)

Here p,, is a photon polarization tensor defined by

1 1+& &—i&; ) .
= — . 3‘1
Pab™7 §;tig; 1-§, ( )
and e{’=(e'”,0) for i =1,2 and A=p, v
After lengthy and complicated calculatlons of the trace
in Eq. (3.9), we obtain
(|tRECI12) = (27m) " 2awy ' [(1+ &) V(p,k,q) /2
+1%(p,k,q)] . (3.12)

We have expanded Q, with respect to V,P/(ZED),
V,p/(Zm ), V. /(2E,), and V,T/(2m) up to the first or-

N42(v-W)—ix |2
N2IU+VE=[[v-(U+V)1/Iv][?].

der to evaluate Eq. (3.9) into the form of Eq. (3.12).
Here,

I'V(p,k,q)=—2(1+y HRe[(e'"-U)*(e'"-V)]
—4Re[(e"V-U)*(v-W)](e'V-v)
—2Im[(e'"V-U)*X (e (3.13)

and
(3.14)
Cot'Ar+ A By, W=(4}," —A4,7)B1/2, and

AR =) AN (vp) [drpe PTG O% (1) FEr,)

B, =(2m)"'2m) N (v,) [drge P,

— — —i(p+k)-
C(P-H:(zEp) 1(27) 3/2N(vp)fdrpe p qu)&Q)*(

(0)*(

rp)JF ™ (1p) (3.15)

I'p )[VrPF(+)(rp)] »
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and
Ar=Q2m) 7 N(vy) [drpe @O r ) F(ry)
Br=02m) (27) 732N (vy)

X [drre' TV, ¢®rp)IF(rp)

(3.16)
Cr=(2E,)"'(2m)*"*N(vr)

X fdrTeiq'rrqa(TO)(rT)[V,TF(rT)] )

In Eq. (3.15), 45%), BEt), and C%'’ denote contributions
of an intermediate electron, and A}~ represents an effect
of an intermediate positron. We have used the abbrevia-
tions for the hypergeometric functions that

F®rp)= F|(xivp, Li(lpllrp|+p-1p))
and
F(rp)=F(ivy, Li(lpllrp|+p-rp)) .

Integrations of Eqgs. (3.15) and (3.16) are performed by us-
ing the Nordsieck integrals.>!® In Eq. (3.13), Re[ - - - ]
and Im[ - - - ] denote real and imaginary parts of [ - - - ],
respectively. Furthermore, in obtaining Egs. (3.13) and
(3.14), we have employed the fact that the vectors U, V,
and W lie on the scattering plane of Fig. 2 and then
(e?-U)=(e'?-V)=(e'”-W)=0. At the sight of Eq.
(3.12), it is found that there are no terms proportional to
the Stokes parameters &, and &;. This property leads Eq.
(3.4) to the same form with Eq. (3.3), except that the
former is defined in the moving frame and the latter in
the laboratory frame.

Inserting Eq. (3.12) into Eq. (3.4) and utilizing the
Lorentz transformations,

sinfy, =y " 'sinf, /(1—|v|cosd, ) ,
(3.17)
cos8y, =(cosO; —|v|)/(1—|v|cosh, ),
and
do/dQ; =(1—v*)(1—|v|cos8, )" Udo/dQ,), (3.18)

we get the photon angular distribution in the laboratory
frame,

do/dQ; =2m)%alv| (1—v2)(1—|v|cosh, )2
X (1+4cos2¢)I'V(p,k,q) /2
+I1'%p,k,q) ), (3.19)

where the symbol (( - -- )) has been defined by the in-
tegrations

<< e ))=2fdewMquS((oM—wgg)_'}’V'q) T,
(3.20)

where the sum is over the initial electron states. Here, we
must replace the peak position of photon energy o' in
the moving frame by that in the laboratory frame given
by 0=y "11—|v|cos8; )" 'w}y. The peaking approxi-
mation with respect to |@(q)|* is used for evaluation of
the integral of Eq. (3.20). Comparing the resultant
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differential cross section of Eq. (3.19) with Eq. (3.3), the
angular distribution for unpolarized emitted photons and
the linear polarization correlation of REC photons are
obtained as

(do /dQp) ynpor=2m)alv| " (1—=v*)(1—|v[cosf, )2
X I p,k,q)+21'"(p,k,q)) ,

(3.21)
and .
P(6,)=Ip,k,q)» /I (p,k,q)+2I'%(p,k,q) ) .

(3.22)

If a term AL~ is dropped in I'V and I'? of Eq. (3.21),
this result corresponds to the expression of a cross sec-
tion of Ref. 3. It is easily shown that by taking the limit
of the relativistic Born approximation, i.e., vp,v;—0,
leads Egs. (3.21) and (3.22) to just the same with the
Sauter formula'® for unpolarized REC photons and the
expressions of Eq. (9) of Ref. 4, respectively.

IV. RESULTS AND DISCUSSION
A. Total cross section

Total cross sections have been calculated by integrat-
ing Eq. (3.21) with respect to the solid angle Q;. They
include all of the relativistic effects explained in Sec. I:
the relativistic velocity effect, the high-Z, effect, the
spin-orbit coupling, and the ICP effect. Especially, pay
attention to the last new effect. K-REC cross sections for
collision systems of Xe***-Be and U®?"-Be are shown in
Figs. 3 and 4, respectively. In practical calculations, we
have used the Slater rule to estimate optimized § ex-
ponents £ of Be electrons as 3.7 for the ls state and
0.975 for the 2s-state. Both Figs. 3 and 4 contain two
theoretical curves: one is the result by the RIA with con-
sideration of the ICP, i.e., in accordance with both of
graphs of Fig. 1, and the other by the RIA irrespective of
the ICP effect, i.e., with considering only the first dia-
gram of Fig. 1. The differences of the respective two
curves indicate magnitudes of the ICP effect to the K-
REC. In Table I we show the degree of the ICP with
respect to electric charges of projectiles as well as veloci-
ties.

The ICP has little effect on the cross section of the
Ne!®*.Be system over all velocity regions. In contrast
with this, the U%2*-Be system is much influenced with
the ICP, above all, on the occasion of high-impact veloci-
ties. At the velocity of 0.99, this effect gives no less than
2.4 times greater contributions in comparison with the re-
sults without consideration of the ICP. As stated in Sec.
I, the ICP is physically interpreted as an effect based on
the breakup of virtual e Te ™ pairs (vacuum polarization
cloud around a projectile ion induced by the presence of
its strong electric fields) into real pairs due to the projec-
tile motion. Thus we come to the conclusion that as long
as a projectile charge is very large, an intermediate posi-
tron has nearly the same degree of contributions to the
K-REC with that of an associated electron. The velocity
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o (b)
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0.4 0.6 0.8 1

v/e

FIG. 3. REC total cross sections for a Xe**"-Be collision sys-
tem. ICP and no ICP mean RIA calculations with and without
including the internal conversion process, respectively. Experi-
mental values are cited from W. E. Meyerhof, R. Anholt, J.
Eichler, H. Gould, Ch. Munger, J. Alonso, P. Thieberger, and
H. E. Wegner, Phys. Rev. A 32, 3291 (1985).

dependence of the ICP is less pronounced than expected
at the outset. For relativistic heavy ion-atom collisions,
not to speak of the present REC, in general, it might be
improper to neglect the effects of the ICP fully from the

U92+_ Be
10% 1
ICpP
- + -
— 1
=10+ NO ICP
-}
10°t
0.6 0.8 1
v/e

FIG. 4. Same as Fig. 3 except for a U°?*-Be collision system.
The experimental value is quoted from Ref. 2.
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TABLE I. Ratios of K-REC total cross sections calculated by
using the RIA with incorporating effects of the ICP to cross sec-
tions by the RIA without the ICP. Numbers in parentheses
denote digits of the third decimal.

Collision Incident velocity |v|

system 0.70 0.80 0.90 0.99
Ne'°*-Be 1.00(6) 1.00(7) 1.00(8) 1.00(9)
Xe>**-Be 1.21 1.22 1.25 1.32
U°?*-Be 1.82 1.90 2.02 2.40

beginning as, for example, in the discussion of our
preceding article.’

We are somewhat concerned with a simple velocity
dependence of a REC total cross section. In the nonrela-
tivistic energy region, as indicated by Briggs and
Dettmann,? this is proportional to |v| >, It is difficult to
deduce such a simple rule from the present RIA method
because a total cross section by this method is given nu-
merically and is dependent on terms providing the ICP
and the Z, effects in complicated manners. Then, for
simplicity, we evaluate a simple dependence of velocity
by applying a least-square method to some calculated
values at velocities |v| ranging from 0.1 to 0.8 for Ne!°"-
Be, from 0.4 to 0.8 for Xe’**-Be, and from 0.6 to 0.8 for
U”2"_Be, respectively. In these velocity regions, logarith-
mically scaled cross sections show almost straight slopes
as in Figs. 3 and 4. As a result, a semiempirical rule is
obtained as |v| "7 with p equal to 4.98, 5.19, and 5.59 for
respective collision systems. A slope of a total cross sec-
tion with respect to ultrarelativistic velocities is steeper
than that in the relativistic velocity region considered
above.

Next, we evaluate the number of ‘“‘available” target
electrons® participating in the REC process. In accor-
dance with the model of the quasifree target electrons,
this effective number is approximated as Z,. In other
words, calculations for a valence electron yield the same
cross section as for an inner-shell electron. Here, a dis-
cussion will be made on the criterion for the validity of
the quasifree target electron model. From Eq. (3.20) by
employing the peaking approximation, we get

€ W=Ngolw[dq -, (4.1)
where w(ﬁfva, is the peak energy of a photon associated
with a target valence electron and the effective number
N of electrons has been defined as

Neg=22v&r—8p)/(Yérva—&p) - 4.2)

Erva stands for [1—({7 ,a)?]'/? with {7, being the &
exponent of a valence electron and the summation is tak-
en with respect to all of the active electron states satisfy-
ing the restriction

v&rR&p - (4.3)

In deriving Eq. (4.2), the {; dependence of the integrand
- of Eq. (4.1) is neglected for simplicity.
Letting the cross section from a valence electron be
0. then we obtain the expression
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[0} ’zNefova] . (4.4)
The restriction of Eq. (4.3) reads
ErSZply 2+vph'2, 4.5)

where the argument of a square root is always greater
than unity. Thus, as long as {; <Zp, all of the target
electrons take part in the REC. Furthermore, if
Zra<<l,ie., Er=1, Ny is nearly equal to Z;. As a re-
sult, the criteria for the validity of the quasifree target
electron model become {;<Zp and Zra<<1. In the
case of Xe***- and U?*-Be system, the criteria hold
true, and hence N 4~4 is obtained. However, in the case
of the near symmetric collisions, e.g., U?"-Ta, this cri-
teria is partially broken down and N is somewhat re-
duced from Z;. The latter case might be important for
calculations of charge equilibrium states of relativistic
heavy ions passing through high-Z, matter.?!

Finally, we mention to comparisons of theoretical re-
sults with experimental values cited in Figs. 3 and 4. For
a Xe>*.Be system, the present calculation reproduces
the experimental values fairly well. Thus, it is thought
that the ICP effect can compensate to some extent
discrepancies of the experimental results with the calcula-
tions neglecting the ICP effects.??> For a U”2"-Be system,
however, the theoretical prediction is too high compared
to the experiment. This disagreement might originate
from the employment of the Sommerfeld-Maue wave
function [Eq. (2.15)] instead of the exact relativistic
Coulomb wave function. The Sommerfeld-Maue wave
function holds correctly only in the high-energy domain
and for a projectile charge satisfying Zpa << 1. Thus, the
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full employment of the exact Coulomb wave function
might reduce the theoretical result of Fig. 4 to some de-
gree. Further comparisons are not thought to be
worthwhile because there are little experimental data on
the relativistic REC at the present time except for those
cited here.

B. Photon angular distribution

We show normalized photon angular distributions
on(0;,¢4) at the polarization angles ¢ =0°, 45°, and 90°
for a Ne!®*.Be system in Fig. 5 and for a U2"-Be system
in Fig. 6, respectively. They are normalized by respective
maximum values and given as follows by using Eq. (3.19):

on(0,, =0« (1—]|v|cosf, ) "AK'V+K?) (4.6)
on(8,, d=45)« (1—|v|cos, ) AKV/2+K?), (4.7)
o0, $=90°) < (1—|v|cosh, ) K2, (4.8)

where K'Y and K‘® stand for (7'"(p,k,q))) and
«1%(p,k,q))), defined as Egs. (3.13), (3.14), and (3.20).
Maximum values normalizing respective cross sections
are designated in Table II. A normalized photon angular
distribution at ¢ =45° is the same with that for unpolar-
ized emitted photons [see Eq. (3.21)] because &, =0.
Firstly, we take the cross sections at $=45° in Fig. 5
into consideration. Photons induced by collisions of
Ne'®* on Be distribute symmetrically as sin’0;, at the in-
cident energy up to 1 GeV /u (|v|=0.87). This is mainly
due to the cancellation between a photon-retardation
effect and an aberration effect as referred to in Sec. I. As

TABLE II. Maximum values (in units of barns) of photon angular distributions for collisions of (a)
Ne'* and (b) U*?" ions on Be atoms. Absolute photon angular distributions are obtained by multiply-
ing normalized values of Figs. 3 and 4 by these quantities. Numbers (in units of degrees) within
parentheses mean the associated emission angles of photons. Numbers in square brackets denote

powers of ten.

(a) Ne'°*-Be

Polarization angle

Incident energy (GeV/u)

(deg) 0.1 1 10 100
0 0.984[—2] 0.453[—4] 0.132[—5] 0.162[— 6]
on (93) (36) (8)
45 0.494[—2] 0.261[—4] 0.142[—5] 0.163[— 6]
on (90) 27 (8)
90 0.284[—4] 0.960[— 5] 0.153[—5] 0.165[ — 6]
amn (54) (23) (8)
‘ (b) U”?*.Be
Polarization angle Incident energy (GeV/u)
(deg) 0.5 1 10 100
0 0.276[+1] 0.740([0] 0.209[—1] 0.252[—2]
(93) (93) (27) (7
45 0.143[+ 1] 0.410[—0] 0.227[—1] 0.255[—2]
(92) 91 (22) (7
90 0.166[0] 0.138[0] 0.247[0] 0.258[—2]
(180) (45) (20) (7
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FIG. 5. Normalized photon angular distributions of K-REC induced by collisions of a Ne'°" ion on a Be atom. ¢ means the polar-

ization angle of an emitted photon. @, incident energy 0.1 GeV/u; A, 1 GeV/u; B, 10 GeV/u; ¥, 100 Gev/u; respectively.



39 THEORY OF THE RELATIVISTIC RADIATIVE ELECTRON . .. 3383

0.5

o

-

normalized photon angular distributions
o
o

0 1 1

0 45 90 1315 180
f.(deg)

FIG. 6. Same as Fig. 5 except for a U?"-Be collision system. Here, the curves @ represent the theoretical results at an incident en-
ergy 0.5 Gev/u.
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the energy becomes larger, however, the radiation pattern
comes to exhibit asymmetry. Such a tendency means the
breakdown of this cancellation effect. At the ultrarela-
tivistic energy of 100 GeV/u (|v|=1), the photon angular
distribution gets to follow cos?(@; /2).%* This behavior is
much different from the conventional sin’8; dependence.
This cos?(6, /2) dependence is ascribable to an ultrarela-
tivistic effect that an electron moving at semilight veloci-
ty mainly emits photons in the forward direction relative
to its trajectory. In the case of U*?" ion bombardments
shown in Fig. 6, the radiation patterns are roughly the
same with those induced by Ne!°" jon bombardments,
and also indicate asymmetrical photon distributions in
the ultrarelativistic energy domain. A remarkable
feature of a U®?*-Be system is that a photon angular dis-
tribution is slightly enhanced in the backward direction
relative to 90° in comparison with that of a Ne!°"-Be sys-
tem. This enhancement does not vanish even if the rela-
tive velocity approaches light velocity. It is mainly be-
cause of a strong Coulomb distortion effect between a
U%?% ion and an active electron as mentioned in Sec. I. A
Coulomb distortion effect is evaluated by a parameter
vp=Zpa/|v| [see the statement below Eq. (2.15)]. At the
velocity of light, this amounts to no less than v, =0.67
and hence the strong distortion effect still survives.
Moreover, it is thought that a relativistic high-Z, effect
of a K electron finally captured on a U%?" jon also par-
tially contributes to the backward deviations of the pho-
ton angular distributions.

Radiation patterns at ¢ =0° for both collision systems
are almost the same with those at ¢ =45°. On the con-
trary, photon angular distributions at ¢=90° exhibit
quite different radiation patterns from the above two. As
shown in Eq. (4.8), distributions of photons at $=90° are
determined only by a quantity K ‘?’. In the ultrarelativis-
tic velocity region, this predominates a quantity K ' and
provides the cos?(8; /2) dependence. On the other hand,
KV is effective to a K-REC cross section only up to |v|
below 0.8. Radiation patterns of a U’"-Be system at
¢=90" are discriminated from those of a Ne!°"-Be sys-
tem. This discrepancy is also due to high-Z, effect of a
projectile. Especially, the curves for a U>"-Be system at
incident energies 0.5 and 1 GeV/u indicate the maximum
values at 8; =49° and 45° and the minimum values at
6; =109° and 124°, respectively. Such a feature is absent
in a Ne'°"-Be system.

In the case of a bombardment of a U%?% ion on a Be
atom, the ICP have nearly the same degree of contribu-
tion to an absolute value of a photon angular distribution
with that to a total cross section in Table I. However,
there is little ICP effect to a normalized photon angular
distribution even if an incident velocity is nearly equal to
unity. An order of its effect is no more than 0.1-1.0 %.

C. Linear polarization correlation
of an emitted photon

It is possible that a direction of a photon polarization
vector e varies in the relativistic velocity region, while it
mostly remains lying on the scattering plane in the nonre-
lativistic velocity region. This nature is reflected by a
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linear polarization correlation function P(6; ) defined in
Eq. (3.22). According to Eq. (3.3), this is rewritten as

P(6,)=[(do /dQ; )y—q

—(do /dQ )y—o]/(do /d Q) (4.9)

unpol *

Utilizing expressions of Egs. (3.19) and (3.22), we can

show that P(6,)=1, 0, and —1 mean (do/
dQ; )= A(6,)K'V(1+cos2¢)/2, A(6,)K'?,  and
A(6,)K P (1—cos24)/2, respectively, with A(6,)

=(2m)%a|v| "' (1—v?)(1—|v|cosh, ) 2. Thus, e predom-
inantly lies on the scattering plane spanned by k and v
for P(6;)=1 and mostly turns to the direction perpen-
dicular to this plane for P(6; )= —1. (See Fig. 2.) It is
possible that e points to all polarization directions with
just the same rate as for P(6, )=0.

For an impact of a projectile ion moving with a nonre-
lativistic velocity or an intermediate relativisitic velocity
(below 0.6), a direction of e predominantly remains
frozen onto the scattering plane, that is to say, P(6, )=1
at all emission angles except for 6; =0° and 180°. With
increasing incident velocity, the polarization vector is
gradually changing its direction from on the scattering
plane. At both the forward angle (6; =0°) and the back-
ward angle (6, =180°), the polarization correlation
should be zero for all impact velocities. (This require-
ment is not satisfied by a polarization correlation given
by the relativistic Born approximation.?) From the phys-
ical point of view, this zero behavior is interpreted as fol-
lows: The scattering plane is formed by two vectors v
and k and the emission angle of photons is defined as the
angle between the two. Thus, the scattering plane cannot
be uniquely defined in the case that v and k are parallel
(6, =0°) and antiparallel (6, =180°), respectively. At
these angles, it is possible that the polarization vector
turns to all directions and hence the polarization correla-
tion must become averaged to zero. This is because
P(0°)=P(180°)=0.

In Fig. 7, we show the linear polarization correlations
of REC photons induced by collisions of Ar'¥*, Xe*t,
and U®?" on a Be atom for several relativistic velocities
ranging from 0.7 (376 MeV/u) to 0.99 (5.72 GeV/u). For
collisions of Ar'®* on Be, it is expected that the Born
prediction holds true except for the forward and the
backward angles. In this collision system, it is found that
the crossover features appear for velocities above 0.8 and
the crossover angle, at which a sign of a polarization
correlation is changed, become larger with increasing ve-
locity. Following the Born prediction,* the crossover an-
gle finally reaches 60° at the velocity of light. The polar-
ization correlation tends to be flat, that is, P(6, )=0 for
all emission angles in the ultarelativistic velocity region.

The tendency of P(6, ) for Ar'®* ion impacts also ap-
plies on the whole to the cases for Xe*** and U*?* ion
impacts. Comparing these three cases, the respective po-
larization correlations exhibit nearly the same depen-
dence on emission angles from 40° to 120°. In this region
of an emission angle, high-Z, effects of heavy ions have
little influences on polarization correlations. Thus, the
Born approximation is almost valid in spite of heavy ion-
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FIG. 7. Linear polarization correlations for K-REC photons induced by collisions of Ar'®*, Xe***, and U*?* ions on a Be atom.
@, the incident velocity in the unit of the light velocity 0.7; A, 0.8; B, 0.9; ¥, 0.99; respectively.
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TABLE III. Crossover angles (in units of degrees) of linear polarization correlations of K-REC pho-
tons induced by collisions of several projectile ions (Ne'°*, Ar'®* Kr**, Xe**" Ta”**, and U**") on

Be atoms.

Incident velocity

Projectile ions

vl Ne!0+ Ar'8+t Kr* XeSt Ta*+ U+
0.85 26 26 25 24 22 20
0.90 37 37 36 35 34 32
0.95 46 46 45 44 43 41
0.99 55 55 54 53 51 49

atom collisions. Nevertheless, this simple prediction is
destroyed in the vicinity of the angles at 0° and 180°. At
these angles, high-Z, effects play significant roles to
determine a direction of a photon polarization vector.

Finally, we consider a Z, dependence of a crossover
angle, which is shown in Table III. Contrary to the first
expectation, a crossover angle varies just slightly with in-
creasing Zp. Hence, the Born prediction holds approxi-
mately true for all projectile element.

V. CONCLUSIONS

We enumerate the conclusions of the present article as
follows.

(i) The relativistic formalism of the impulse approxima-
tion has been applied to the K-REC process by incor-
porating the internal conversion process (ICP).

(ii) The ICP is thought to be associated with the break-
up of virtual e e pairs induced by the presence of
strong electric fields into real pairs. Thus this contribu-
tion becomes dominant with an electric charge of a pro-
jectile ion being larger. This effect is very pronounced on
the occasion of a U”?* ion bombardment.

(iii) While the theoretical total cross sections by the
present method reproduce experimental results fairly well

in the case of a Xe>* " -Be system, it is not in good agree-

ment with the experimental datum of a U%?"-Be system.
This discrepancy is thought due to the employment of the
approximate relativistic Coulomb wave function (the
Sommerfeld-Maue wave function) instead of the exact
one.

(iv) Normalized photon angular distributions have been
calculated up to the ultrarelativistic velocity domain
(lv] ~1) with consideration of a photon polarization an-
gle ¢. Emitted photons distribute asymmetrically as
cos’(@, /2) at the very-high-velocity limit. This tendency
is quite different from the conventional sin’f, depen-
dence which holds correctly at most up to |v|~0.9. The
radiation pattern at ¢=90° differs much from that at
¢=0°and at ¢ =45°.

(v) Calculations have been also made on a linear polar-
ization correlation P(6;) of a photon. This quantity
reflects the polarization direction of an emitted photon.
The polarization direction tends to turn from on the
scattering plane into the plane perpendicular to it with
increasing velocity. Above |v|=0.8, the crossover
feature, the sign inversion of P(6; ), comes out. Aside
from both the forward and the backward emission angles,
P(8,,is influenced little by the Z, effects.
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