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The mini-max principle is extended to work for the approximations to resonances in the square-
integrable function space. The hole-projection (or saddle-point) technique for Feshbach resonances,
introduced previously by Chung [Phys. Rev. A 20, 1743 (1979)], is derived from the mini-max prin-
ciple. Limits of applicability of the method are discussed and its generalization based on the
Feshbach-type projector technique is given. The generalized method is applied to the case of the

152s2p *P° resonance of He ™.

I. INTRODUCTION

The main obstacle in the application of variational
methods to resonances in many-electron systems is the
existence of an infinite space of states having the same
symmetry as a resonance and lying below it. In general,
the variational manifold should not contain these states.
In order to remove them, the variational space is usually
made orthogonal to some approximations of these states.
Projection is the best method of orthogonalization. It is
used in Feshbach-type projection-operator methods.' 3
There exist also less accurate techniques such as the
quasi—projection-operator method* and the one-particle
projection-operator technique. In the latter one, intro-
duced by Nicolaides,> the orthogonality of a trial func-
tion to the one-configurational approximations of lower-
lying states is obtained by an appropriate orthogonaliza-
tion of orbitals.

One-particle projectors of the same type have been
used also by Chung®~8 within his saddle-point, or hole-
projection, technique. Chung’s method originates from
the physical intuition that vacancies should exist in the
wave functions describing resonances. His papers are
concerned with how to build these holes into a trial func-
tion and how to optimize them. The hole-projection is
treated by him as a way of building-in the vacancy and
not a method of orthogonalization. The presence of the
vacancy is believed to stop a variational breakdown.
That is why that method is reputed to be of a general na-
ture. ® However, there are many instances in which it
does not work. Some of them are discussed in Sec. III of
this paper.

A novelty introduced by Chung is that the energy of a
resonance is maximized with respect to variations of the
function describing a hole. An appropriate theorem was
precisely proven for a one-particle system only.® One
should realize that in this case the function describing a
vacancy and total wave function of the system belong to
the same one-electron space. Therefore the one-particle
projector is a good projector operating in the Hilbert
space of states of the entire system. Moreover, there are
no autoionizing states in such a system. Hence the
prescription for the energy of an excited state given by
Chung’s theorem® follows directly from the well-known
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mini-max principle.’ The proof of Chung’s theorem for a
many-particle system® is unsatisfactory.

The main aim of this work is to properly interpret the
saddle-point technique. Thus the prescription presented
in Sec. III is strictly the same as that given by Chung.
However, it is derived in a quite different way, starting
from the mini-max principle.® This new derivation is
simpler and more rigorous than that of Chung. More-
over, limitations of the method are clearly visible. It is
indicated that the saddle-point technique should be gen-
eralized to avoid these limitations. Such a generalization
consisting in the application of the Feshbach-type projec-
tors within the mini-max principle scheme is presented in
Sec. IV. Some numerical results obtained using this gen-
eralized method are given in Sec. V.

The mini-max principle is valid for a discrete spectrum
only.’ It is not applicable to resonance states because of
continua of states which are not square integrable and lie
below resonance levels. In Sec. IT the mini-max principle
is extended to work for the square-integrable approxima-
tions to resonances.

II. MINI-MAX PRINCIPLE FOR RESONANCES

We are interested in resonant states of an N-electron
system autoionizing via Coulomb interaction between
electrons. The Hamiltonian #f is taken to be nonrela-
tivistic and Hermitian. The domain of # can be divided
into subspaces corresponding to distinct eigenvalues of
operators commuting with #, as, e.g., parity, total spin,
and total orbital angular momentum. In this work we
consider one such subspace. Furthermore, we want to
describe the resonance by a square-integrable function
and therefore instead of # we consider an operator H
which is the representation of # in a space D of square-
integrable N-electron functions of a given symmetry.

The best square-integrable approximations E, and ¢,
to the energy and to the wave function of the resonance
are a solution of the equation

Hy=Ey . (1)

The spectrum of H consists of eigenvalues corresponding
to truly bound states and resonances and also to some
scattering states, which are simulated in D.
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Let I_ and I, denote sets of indices of eigenvalues
which are less than E, and equal to or greater than E_,
respectively. It means that

E,<E, foriel_ (2a)

and
E,ZE, foriel, . (2b)

We define two subspaces D _CD and D, CD which are
spanned by the sets of eigenfunctions {4;},c; and
{¢i}[61+, respectively. They are orthogonal comple-

ments of each other; in particular, D, =D .
For any normalized ¢ €D we have

E=(¢|H|¢p)=E,+AE_+AE_ , (3)
where
AE_= 3 (E,—E,){¢;l¢)|*<0 (3a)
el _
and
AE. = 3 (E;—E,){(¢;l$)*>0. (3b)
ier,

If ¢ was orthogonal to D _, one could have AE _ =0 and

[ (elHI®)
Ea Jééii Bl8) | @

Unfortunately, one never knows the exact v¢,;, i€J_.
Thus, in practice, ¢ can be orthogonalized only to ap-
proximate wave functions ¥;, i €I_. Let ©_ denote the
space spanned by these functions. If D_=D_, then
there exists €D - ND_ different from zero. For this ¢
we have E=E,+AE_ <E,. The above consideration
yields the following theorem:

- : (¢|lH|¢)
Eq @S“é’.mé’}i{ (blo) | ®

This means that E, is equal to the maximal, as far as all
the possible subspaces D _C3D are considered, value of
the minimum of the energy functional

_ (slHIS)
KI$1="C40y

provided that €D L.

The essential problem in practical implementation of
the mini-max theorem is how to represent D _, which is
infinite, and how to find its orthogonal complement D* .
Sections III and IV are devoted to these questions.

III. HOLE-PROJECTION METHOD

In this section the prescription introduced originally by
Chung?® is derived from the mini-max principle.

The crucial point of the hole-projection method is the
orthogonalization via the projection of a hole, in other
words, via building a vacancy into the trial function. In
order to perform the hole projection it is enough to con-

3317

sider an electronic configuration only. That is why in this
section we neglect the symmetry of total wave function.
It is assumed that antisymmetrization and coupling of
spin and orbital angular momenta are to be performed
after the hole projection.

Let FV be a Hartree-type product of N abstract orbit-
als which are ordered with respect to the principal and
orbital quantum numbers. Such a product corresponds
to an electronic configuration of an N-electron system. In
this paper the configuration is identified with the corre-
sponding Hartree product.

A. Model

Let the autoionizing state that we want to investigate
be a Feshbach resonance connected with the first excited
state of the (N —1)-electron target. Thus the config-
uration corresponding to it can be written as

FY=FY'¢,, 6)

where @, is an orbital and F¥ ! is the configuration
describing the first excited target state. Then let us sup-
pose that all the states lying below our resonance are as-
sociated with the ground state of the target and their
configurations can be written in the form

FN=F)"l¢, iel_, (7

where the configuration F(},\"1 describes the ground state
of the target. Moreover, we assume that configurations
FY~Vand FY ! differ by at least one orbital, e.g.,

F{ '=F{2¢, (8)
and
FYTI=F§ ey, ©)

where @,7%@,. Hence, if @, occurs p times in F) ~2, then
it occurs at least p+1 times in configurations F[¥

(i €I_), whereas in FY it is occupied by p electrons only.
In this sense the @, hole is present in F.

B. Derivation of the method

Let us express the above considerations in terms of the
mini-max theorem. We approximate 2)_ by a space 2)_
spanned by all the configurations in which ¢, is occupied
by at least p +1 electrons. Then DL includes all the
configurations in which no more than p electrons occupy
orbitals nonorthogonal to ¢, This means that in any
configuration belonging to £)_ at most p orbitals of the
same symmetry as ¢, may remain arbitrary while all the
others have to be orthogonalized to ¢,. This orthogonali-
zation is called the hole projection.

Let us note that DL is orthogonal to the approximate
scattering states in which the target is in the FY !
configuration. The scattering states lie below as well as
above the considered resonance. Hence the £ _ space is
too large in the context of the mini-max principle. Since
there is no simple way to distinguish between the scatter-
ing states lying below the resonance and those lying
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above, we can only believe that the influence of the latter
ones is negligible. _

One can vary 2 _, changing the hole function ¢,. Let
@, be parametrized by a set of parameters g. Then a trial
function ¢EZ~)1_ depends on its own parameters o and,
due to the hole projection, also on ¢g. In order to carry
out the prescription given by the mini-max theorem, Eq.
(5), one should minimize the energy expectation value,

E=(¢|HI¢p)/{(l¢) ,

with respect to parameters a and simultaneously maxim-
ize it with respect to q.

This prescription is valid for the lowest Feshbach reso-
nance lying in the elastic scattering region. Approximate
energies of resonances lying just above the lowest one can
be obtained by means of the Ritz method (applied to the
linear parameters in a) as consecutive roots of the corre-
sponding secular equation. Solutions obtained in this
way are orthogonal to one another. Moreover, since the
basis functions belong to D -, all of them are orthogonal
to configurations describing the lower-lying states. Thus
the consecutive roots given by the Ritz method approxi-
mate energies of the corresponding resonances. There
are at least two possible ways of optimization with
respect to ¢: the maximization of each root individually
or the maximization of the lowest root only.

C. Resonances in inelastic scattering regions

Now let us deal with a case of autoionizing levels lying
in the inelastic scattering region. As an example we con-
sider resonances lying between the two lowest excited lev-
els of the target. Let us assume that the electronic
configurations describing these states are of the form

FN=FY"l¢, (10)

where the core FY ~!is a configuration corresponding to
the second excited state of the target. Suppose that

FY '=F) ¢, (1)

and that it is different from both F{ "' and F} ~' defined
by Egs. (8) and (9), i.e., that ¢,54¢, and ¢@,5~¢, (the con-
dition @,5¢, is not necessary now). Thus one can say
that the @, and @, vacancies are present in F". The va-
cancies should be built into the trial function in the same
way as before. Since ¢, and ¢, describe the space of
states lying below the investigated resonances, the expec-
tation value of the energy should be maximized with
respect to parameters in these orbitals. When consider-
ing higher autoionizing states one should remember that
they must be assigned to configurations containing more
holes than the ones associated with the lower-lying states.

The hole-projection technique can treat also more than
doubly excited resonances,’ i.e., the ones lying above the
multiple ionization thresholds. Although the number of
open channels is then infinite, the number of vacancies
needed to orthogonalize the trial function to all of them
may be quite small. That is because the target states re-
lated to our resonances are one time more excited than
the ones corresponding to the open channels. Therefore
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the vacancies appear in deeper shells and are filled in all,
or almost all, the open channels. For example, a triply
excited resonance of the lithium atom lying just above the
1s state of Li>* can be approximated by the configuration
2sn 1l n,l,, whereas the configurations corresponding to
states lying below this threshold are 1sn|l/injl;. There-
fore, in order to orthogonalize the trial function to the
lower-lying states, we should build the 1s vacancy into it,
that is, all the orbitals in the trial function should be or-
thogonal to 1s.

D. Discussion

In real systems, especially in ionized ones, the series
such as those defined in Egs. (6) and (7) are not energeti-
cally separated and disturb each other. This means that
there may exist some doubly excited states of the type (6)
which lie below the ionization threshold or some reso-
nances associated with the second excited target state
which lie below the first excited level of the target, etc.
However, the number of such states is usually small and
therefore the higher roots obtained by the Ritz method
correspond to resonances in the region under considera-
tion.

Furthermore, the classification of the states in terms of
configurations as given by Egs. (6) and (7) is approximate.
Feshbach resonances are often degenerated, that is, they
are associated with several closed channels.” The hole-
projection technique holds true in this case, provided that
the appropriate vacancies are present in all the
configurations which are necessary to describe the reso-
nance.

The total symmetry of the wave function was not taken
into account when deriving the hole-projection tech-
nique. However, it may happen that some terms in the
configurational expansion are orthogonal to some open
channels just because of the spin- and/or orbital-
angular-momenta coupling scheme (see the example of
He™ discussed below). For those terms the hole-
projection procedure can be restricted to a lesser number
of vacancies or relaxed.

There are many systems in which different target states
connected with a series of resonances and a series of
lower-lying states are related to the same configuration,
i.e., there is no hole to distinguish between them. For ex-
ample, the C-like target!® has the ground state 'S and two
succeeding excited states !D and 3P which can be derived
from the same 1s522s522p2 configuration. Every one of
them can be a parent state for a series of 2P° states of the
seven-electron system, and no hole can be defined to dis-
tinguish between these series.

A similar, but even more misleading situation is found
in He . The first and the second excited states of He
(target) are 1s2s °S and 1525 'S. The resonance 1s2s2p 2P°
is found in the region between them.”!'"!° One may be-
lieve that the 1s vacancy, when built into the trial func-
tion, is sufficient to stop the unwelcome lowering of the
2P° energy. However, that vacancy is sufficient to orthog-
onalize the trial function to the 1s%np series only but not
to the 1s2s(3S)np *P° one. It may seem that it is no
matter since in He™ both the 1snp and 1s2s (3S)np *P°
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series do not really exist. But then there are scattering
states in He~ which can be imitated by these
configurations and therefore they cause a variational
breakdown. This fact may be seen in Fig. 1 and Fig. 2 of
Ref. 7, though it was not the intention of the authors.
The energy of the 2P° resonance is plotted there as a func-
tion of one of the nonlinear parameters used by Chung
and Davis in their calculations.” Those figures corre-
spond to the basis of singlet— and triplet—intermediate-
coupling terms, respectively. All the curves in Fig. 1 lie
above the experimental position of the 2P° resonance,
whereas the curves in Fig. 2 lie below that level. That is
just because all the terms with singlet intermediate cou-
pling are orthogonal to 1s2s S, whereas some of their
counterparts with triplet intermediate coupling are not.?°
It is obvious, because of the MacDonald?!' theorem, that
a superposition of these two basis sets should give results
lower than those in Fig. 2 of Ref. 7. Hence the absence of
terms with triplet intermediate coupling in the final cal-
culations by Chung!! and Chung and Davis’ had a vital
importance; the pure hole-projection technique would be
useless in this case. Chung did not notice this fact?? be-
cause in his formulation of the saddle-point technique the
hole projection is regarded as sufficient by itself to
prevent a variational breakdown, and the vacancies are
defined in relation to the capacity of the inner subshells
rather than in relation to the occupancy of orbitals in the
states lying below the investigated energy region.

IV. GENERALIZED SADDLE-POINT METHOD

The above discussion shows that a generalization of the
saddle-point method is needed. The generalization over-
coming main difficulties which appear in the hole-
projection technique is presented in this section.

Let us consider resonances lying in the elastic scatter-
ing region. All the states lying below are assumed to be
associated with the ground state of the (N —1)-electron
target. Therefore we approximate 9 _ by 2 _ spanned by
functions of the form

JN(XI, cee ,XN;q)Z-AAMéV‘I(Xh Xy pg)e(xy)],

(12)

where x; is a set of spin and spatial coordinates of the ith
electron, A is the antisymmetrizer, A denotes a coupling
operator producing functions of proper spatial and spin
symmetries, ¢ is an arbitrary but square-integrable spin-
orbital, and

oY Uxy, ...

is any approximate wave function of the target ground
state, and ¢ is a set of parameters. When the hole-
projection technique was being outlined in Sec. III, the
assumption on the structure of £_ was similar but the
description of the target ground state was very specific.
Now ¢ ~!is arbitrary. Moreover, its symmetry is taken
into account in Eq. (12), so it will affect the orthogonality
constraints.

_ We can build the projection operator P projecting onto
D_, defined in Eq. (12), according to the Feshbach

yXN—159)
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theory! in the spin and symmetry adapted form proposed
by Temkin and Bhatia.2 The operator Q =I —P is the
projector onto D:. The mini-max principle demands
that a trial function should belong to D*. In practical
calculations we can take an arbitrary N-electron trial
function ¢ dependent on parameters a and then project it
onto DL . Since projectors P and Q are dependent on g,
Q¢ depends on g too. The mini-max theorem can be
rewritten in the form

(Q(q)p(a)|H|Q (q)d(a))
(Q(g)d(a)|Q(q)d(a)) ’

i.e., the approximation to the energy E, (the best in the
square-integrable approximation) of the lowest Feshbach
resonance is to be found as the saddle point of the energy
expectation value, the minimum with respect to a and
simultaneously the maximum with respect to g, provided
the trial function is projected onto D1 .

Approximate energies of higher Feshbach resonances
lying in the elastic scattering region can be obtained as
consecutive roots by the Ritz method, as in the hole-
projection technique. In order to get energies of reso-
nances lying in the inelastic scattering regions one should
use projectors proposed by Temkin and Bhatia? and max-
imize the energies with respect to variations of all the tar-
get states which are energetically open.

The relationship of this method to the Feshbach
projection-operator method is like the relationship of
Chung’s hole-projection technique to the hole-projection
proposed by Nicolaides.> Projection operators are strict-
ly the same as those by Temkin and Bhatia? but the way
of optimization of the target open state ¢ is different. In
the Feshbach method ¢} ~! should be the best possible
approximation to the ground state of the isolated target.
On the contrary, in the generalized saddle-point method
#Y ~1(q) is the (N — 1)-electron-core function. Due to the
maximization of the resonance energy with respect to g,
¢V ~lis averaged, in a way, all over D_. This extra max-
imization makes the method more expensive than the
Feshbach projector method. Nevertheless, if just the
square-integrable approximation is considered, then this
manner of optimization of ¢} ~! seems to be more plausi-
ble. It seems to be reasonable to take ¢} ~!(g) in a rela-
tively simple form and to maximize the resonance energy
with respect to g instead of using an elaborate ¢{)v ~1 opti-
mized for the isolated target.

E, ~ supinf (13)
qg «a

V. CALCULATION

The generalized saddle-point method has been applied
to the 152s2p 2P° resonance of He ™. That particular case
has been chosen just because, in principle, the hole-
projection technique is here not applicable (see discussion
above).

Two target states are energetically accessible in that
case. These are the ground state 'S and the first excited
state 23S of He. Their approximate wave functions are
chosen in the forms

—qolr,+ry)

B0 " (x),x5390)=Coe Xoo (14a)
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— —( + )
$Y T x1,x2341,4,)=C(re TR
—( + )
—rie TNy, (14b)

where C; and C, are normalization factors; r; and r, are
the radial coordinates of electrons; Y4, is a two-electron
spin function of the total spin s and the spin component
m. The space D _ consists of linear combinations of func-
tions

Y=AdY Nxy,%5;90)@(x3) (15a)

and

Y=A T 7 x1,%2;9192)¢(x3) , (15b)
m
where @ represents all possible spin-orbitals p; the sum-
mation over m is due to the spin coupling of the third

electron.

The three-electron trial function ¢ is taken in a
configuration expansion form using the Slater-type orbit-
als. To project ¢ onto D one could use projectors de-
rived by Temkin and Bhatia for many open channels.?
However, the author has used his own matrix version of
the Feshbach projection-operator method.® It is com-
pletely equivalent to the use of projectors by Temkin and
Bhatia, provided that configuration expansions are used
for both the target-state wave functions and the trial
function of the entire system. The advantage of this
method is that the computational algorithm is much
simpler.

In the actual calculation eleven angular partial waves
have been used, including both singlet and triplet inter-
mediate couplings. They are displayed in Table I togeth-
er with their contributions to the *P° energy. Nonlinear
parameters have been taken from the Ref. 11, where they
were optimized by Chung for the partial waves with sing-
let intermediate coupling. The triplet—intermediate-

TABLE I. Calculation of the energy of the 1s2s2p 2P° resonance of He~
the binding energy due to the given partial wave.
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included in this work, have the same
nonlinear parameters as their singlet—intermediate-
coupling counterparts. Nevertheless, their contributions
to the 2P° resonance energy are not at all negligible.

The [(s,5)3S,p] partial wave is especially noteworthy.
It is not orthogonal to the 23S He state. When projected
onto D* it lowers the energy by 0.000099 a.u. However,
if it is left nonorthogonal to ¢V ~! it causes a variational
breakdown (confirmed also in an explicit numerical ex-
periment performed by the author—the resulting energy
was near the 23S threshold). All the remaining
triplet—intermediate-coupling partial waves are orthogo-
nal to ¢§V”I, Eq. (14b), and could be included in a hole-
projection-technique calculation as well.

As we can see the convergence of the basis set is slower
than the convergence obtained by Chung.!! That is be-
cause the radial term selection process has been per-
formed not as carefully as Chung had done. !

The g parameters have been optimized keeping non-
linear parameters for all the partial waves unchanged. As
a start for searching for the 2P° energy maximum the
values g, =1.6875, g, =1.995, and g, =0.565 have been
used. They correspond to the minima of the target-state
energies at —2.847656 and —2.172500 a.u. for 1s%1S
and 1s2s3S, respectively. The total 2P° energy corre-
sponding to them is —2.151395 a.u., that is, 20.472 eV
above the helium ground state. It is included in Table II
as a result obtained by the projection-operator method.
The optimized values of g are g, =1.52, ¢, =1.83, and
g,=0.27 (g, obtained by Chung'! is 1.5). These values
were used to obtain all the results presented in Table I.

The final eleven—partial-wave result, —2.149 151 a.u.,
lies at 20.533 eV above the helium ground state. It is
compared in Table II with other theoretical and experi-
mental results. One can see that the results obtained by
methods using closed-channel wave functions (first five in
Table II) are close to one another. They differ essentially
from the remaining theoretical results, in which the in-

coupling terms,

. AE is the contribution to

Number
Partial wave of terms Nonlinear parameters —AE (a.u.)
[(s,9)'S,p] 24 2.0 0.54 0.345 2.141230
[(s ,p)‘P d] 4 2.0 0.515 0.42 0.006211
[(p,p)'S,p] 8 2.0 1.6 0.24 0.000773
[(s, d)3D rl 5 2.0 0.44 0.77 0.000439
[(s,p)*P,d] 4 2.0 0.515 0.42 0.000 187
[(s,5)'S,p] 9 2.0 1.6 0.24 0.000 117
[(s,5)’S,p] 15 2.0 0.54 0.345 0.000 099
[(p,d)'P,d] 4 1.6 1.84 0.37 0.000037
[(s,d)'D, f] 2 2.0 0.69 0.87 0.000 029
[(d,d)'S,p] 1 2.9 3.0 0.25 0.000018
[(s,d)’D, f] 2 2.0 0.69 0.87 0.000011
Total 78 2.149 151
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TABLE II. Energy of the He ™ 152s2p 2P° resonance relative to the He ground-state level.

E (eV) Method
Theory 20.536 hole-projection, Ref. 11
20.495 quasi-projection-operator,® Ref. 11
20.525 quasi-projection-operator,® Ref. 12
20.533° generalized saddle-point, this work
20.472° projection-operator, this work
20.17 matrix variation, Ref. 14
20.19 R-matrix, Ref. 15
20.33 complex stabilization, Ref. 16
20.26 resonance scattering theory, Ref. 13
Experiment 20.27¥0.01 Ref. 17
20.40F0.03 Ref. 18
20.5 Ref. 19

“In my opinion these results should be referred to as being obtained by the projection-operator method.
There is no difference between projectors and quasiprojectors when the target function is one-

determinant.

®The target-ground-state energy, —2.903 724, is taken from Ref. 23 (1 a.u.=27.211652 eV).

teraction with the open-channel continuum is taken into
account. The magnitude of the 2P° width!” shows that
the coupling with the continuum is rather strong and a
shift in the resonance position caused by it should be
quite large. The existing experimental data differ be-
tween one another. They lie in the range from 20.27 to
20.5 eV. Therefore it is rather difficult to state definitely
which theoretical result is the best one.

VI. SUMMARY

The original formulation of the saddle-point technique
by Chung® is based on the assumption that Feshbach res-
onances can be considered as quantum states with well-
defined inner-shell vacancies. The vacancies are defined
considering an electronic configuration (or several-
configuration mixture) corresponding to the resonance
under consideration. In Chung’s opinion the building in
a vacancy or vacancies is itself enough to prevent a varia-
tional breakdown. However, it may happen that the
same vacancies occur in states lying below the considered
one. In such a case these states will arise as results of the
hole-projection calculation instead of the expected ones.
In this sense they are spurious. The misunderstanding
comes from the improper way of deriving the method by
Chung.®

In this work the hole-projection method has been
rederived starting from the mini-max principle extended
to be valid for square-integrable approximations to reso-
nances. In this context the hole projection is a method of
orthogonalization of a trial function to the space of
lower-lying states of the same symmetry. This orthogo-
nalization plays a crucial role in preventing a variational
collapse. When the ‘“well-defined” vacancies are not

sufficient to distinguish between the resonances under
consideration and all the lower-lying states of the same
symmetry, then some additional constraints are needed,
e.g., omitting the triplet—intermediate-coupling terms in
the case of the 152s2p 2P° resonance in He™. That is why
each case that the hole-projection technique is to be ap-
plied to should be carefully analyzed in order to decide
whether some additional constraints are required or not.

Difficulties appearing in the hole-projection technique
do not occur in the generalized saddle-point method
which has been also derived in this work from the mini-
max principle. Feshbach-type projectors are used in it in
order to orthogonalize the variational manifold to the
open channels. The resonance energy is maximized with
respect to variations of the wave functions of the target
states which are energetically accessible. This method
completes the environment in which the hole-projection
technique may be interpreted. It confirms and explains
Temkin’s opinion** that the hole-projection technique
can be considered in the category of quasiprojectors.

The generalized saddle-point method has been applied
to find the energy of the 1s2s2p 2P° resonance of He™.
The result is in accordance with the results of calcula-
tions by Chung'! and Bhatia and Temkin'? in which
square-integrable wave functions have been used. The
contributions of triplet—intermediate-coupling terms,
which had not been included in the above-mentioned cal-
culations, have been found to be not negligible.
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