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Realization of stochastic phase-space quantization on a collective field theory
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We consider the collective-field-theoretical description of a many-body quantum system (one di-
mensional for simplicity). We show how the stochastic phase-space quantization prescriptions can
be applied to such a system. We define integration measures for the inner product and prove, con-
structively, that it is not necessary to employ effective quantities (e.g. , effective action, Hamiltonian,
etc. ) in this scheme, unlike the conventional formulation of collective field theory. We offer intui-
tive interpretations of these results in terms of particle spreading and minimum uncertainty. A
specific, simple example is explicitly worked out.

I. INTRODUCTION

a
Q =q+i fi

Bp
(2a)

P =—i' (2b)

Henceforth we shall set A= l. A slight modification of
(2a) and (2b) adhering to a requirement of a more specific
nature has been discussed in Ref. 5.

Our own viewpoint of stochastic quantization, as
emerges through our work in Refs. 5 —7, is that it gen-
erates a formalism which has a natural way of describing
collective, or coherent, behavior on quantum systems.
This point is actually underlined by the relation that con-
nects the customary wave function tb(x) in configuration
space with the phase-space wave function relevant to the
stochastic scheme

P(q, p ) = f g (x)P(x)dx .

The stochastic approach to quantization advocated by
Prugovecki and collaborators' has a number of advan-
tages stemming from the fact that it is formulated direct-
ly in phase space. Essential to the realization of the sto-
chastic scheme is the existence of a family of functions

(x) I, which resolve (continuously) the identity in
L (R2"), where IR" stands for configuration space. We
write, formally,

f C, ,, &dqdp&k, ,, l=l

where I denotes the phase space of the system. In terms
of the functions g (x), (l) reads:

f g* (x)g (x')dq dp =6(x —x') .

Through the family Ij j one is able to achieve an irre-
ducible representation for the canonical quantization
mappings pertinent to the stochastic scheme and whose
most popular form is'

As clearly seen, the phase-space wave function P(q, p)
constitutes a superposition of ordinary wave functions
P(x).

In this paper we shall pursue our interpretation of sto-
chastic quantization further by directing our attention to
collective field theory. To the extent that a field theory
constitutes an extreme instance of a many-body system,
we anticipate that the methodology of phase-space quant-
ization, in its stochastic formulation, will find a natural
realization within a field-theoretical context.

There are two basic reasons behind our choice of col-
lective field theory as a system with a continuous infinity
of degrees of freedom on which to explicitly test our in-
terpretation of Prugovecki's stochastic quantization.
First, collective field theory is nonrelativistic, hence,
easier to deal with. Second, it is a field theory which is
directly borne out of a first quantized (N-body) system,
where the stochastic description is well understood.

The story of collective field theory dates back to almost
four decades ago. Our analysis, on the other hand, will
rely exclusively on the more recent work of Jevicki and
Sakita who revisited the problem in connection with
the 1/N expansion in field theory. Our present objectives
are, of course, quite different.

To further motivate our thinking, let us now direct our
attention to phase-space matters, whose role in our
scheme is quintessential. A number of authors' have al-
ready emphasized the decided advantages stemming from
the formulation of history over paths directly in phase
space. This point has been made irrespective of the sto-
chastic approach to quantization. The phase-space histo-
ry over paths leads to the following expression for the
transition amplitude ( q ', t '

~ q, t ):

f '
exp i f [pq H(p, q)]dr-q(r)Dp(r)

q(I') =q'

(4)

Now if the Hamiltonian has the customary structure
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2
H= + V(q),

2m

N

z . . . S[x] (6)

then the momentum integration can be easily performed
(it is of a Gaussian nature) leading to the standard,
configuration-space, path-integral formula. There are in-
stances, on the other hand, where the momentum in-
tegration leads to an effective action which replaces the
original one. Generally speaking, such a situation arises
with the quantization of constrained systems.

Interestingly enough, collective field theory, as
developed through conventional quantization prescrip-
tions in coordinate representation, is eventually formulat-
ed in terms of an effective action. The explicit content of
this statement will be given in Sec. II where the results of
Jevicki and Sakita ' will be briefly reviewed. The general
idea is that a nontrivial Jacobian factor enters the path-
integral formula and the same Jacobian is involved in the
inner product between state functionals. In the present
work we shall define a collective-field-theoretical scheme
within the framework of a stochastic phase-space ap-
proach to quantization.

Given the phase-space content of our collective-field-
theoretical description we expect that it will be possible
to dispose with the aforementioned Jacobian factor. We
shall concentrate on this particular aspect of our con-
struction, irrespective of whether it simplifies the Hamil-
tonian descripton of the system. Our main concern is to
understand the subtleties involved in the stochastic ap-
proach to collective field theory rather than to explore its
possible practical advantages. We shall, nevertheless, dis-
cuss a specific example within the stochastic collective
field theoretical context advocated in our present work.

Our paper is organized as follows. In Sec. II we
present our main construction: a collective field theory
adhering to the premises of stochastic, phase-space
quantization. The focal point of our efforts will be the
specification of integration measures which define corre-
sponding inner products. In Sec. III we determine condi-
tions under which no extra Jacobian factor enters the sto-
chastic collective-field-theoretical scheme. We discuss a
simple example to which we apply the new formalism.
We also offer some comments concerning the meaning of
not having the extra Jacobian factor. In Sec. IV we
present some general thoughts regarding the extension of
our work to relativistic field theories.

II. PHASE-SPACE COLLECTIVE FIELD

The first step toward formulating a collective field
theory for the system is to introduce the density operator

(7)

obeying the (obvious) constraint

JP(q)dq=l . (8)

The operator P(q) serves as a collective field variable.
In terms of this variable the partition function (6) is given
by the formal expression

z = q e
—s[tt']J (9)

where the Jacobian factor J[P] enters on account of the
change of variables. It will be given an explicit form,
once the integration measure in (9) is defined.

At the same time the wave functions 1'(x&,x&, . . . , x„)
in the original description of the N-body system become
functionals of the form N[P].

We now give concrete meaning to the integration mea-
sure 2)P(q) through the Fourier expansion

4~= —' &eL,.
k=, n =+1,+2, . . . ,

27Tn

L
(10)

where I. is the length of the interval [a,b], i.e., the
"volume" of our system.

In terms of the Fourier components P&, the Jacobian
J[P] is given by

whereas (9) takes the form

z.= (12)

T[0]=—g( —k'4)

We next focus our attention on the action functional
S[P]. It turns out that all nontrivial information comes
from the kinetic part which reads —,'g; &P, in the origi-
nal N-body description. Denoting the corresponding
functional operator by T[P], we have

A. Conventional collective Aeld theory:
brief summary (13)

Our considerations will be conducted, for simplicty, on
a one-dimensional many-body system. Let there be a col-
lection of spinless particles dispersed within the interval
(a, b). The total number of particles in our collection is
N. Let S[x], x =(x, ,xz, . . . , x~), denote the action
functional which results after a Wick rotation (t~ —it )

has been performed. In that case we may talk of a parti-
tion function for the system which is given by the func-
tional integral

As part of the Hamiltonian functional operator the above
expression assumes the form

T[0 ~l ——Xk 4k~ ~+—l X PI,- ~~ k~i (14)-i 2, kk'

k L

where we have made the (obvious) definition
„—:—i(BIB/&). From (10) one surmises that Hermi-

tian conjugation amounts to
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(15a)

77k 7T k ~ (15b)

It turns out that the Hamiltonian is not Hermitian under
the above conjugation procedure unless the Hilbert space
is furnished with the inner product '

k (~0)

We observe the omnipresence of the Jacobian factor J[P]
throughout this construction. In particular, the effective
action functional mentioned in the Introduction reads

(17)

where S[P] is the expression resulting from the straight
substitution of (7) into the original action S[x ].

We close our survey with the important remark that
the Jacobian entering the inner product (16) can be trad-
ed with a redefinition of the canonical momenta. Explic-
itly, the similarity transformation &P[P]~J ' [P]N[P],
which eliminates J[P] from (16), implies the following
readjustment for the canonical momentum operator mk

..
(x)=exp(ipx)g(x —q) . (19)

These generating functions define, ' through their
modulus squared, confidence functions

tional one. Furthermore, the work of Berezin and
Subin" establishes the existence of kernels K(p, q;x,y)
which connect phase-space quantization conditions of the
form (2a) and (2b) to corresponding ones realized on pair
of dual variables (x,g) with the conventional representa-
tion x ~X=x, y ~ Y= i(—Blr)x ) (see also Ref. 12 for an
application of the Berezin-Subin work to stochastic
phase-space quantization). We, therefore, anticipate an
eventual success in constructing a complete set of vectors
within the context of our approach.

Our final comment pertains to our own work on sto-
chastic phase-space quantization. The point has been
abundantly made that this approach is a natural one
for accommodating states of minimum uncertainty. As
already implied above, the simultaneous presence of p
and q variables in the wave function leads to particle
descriptions which do not support absolute localization
either in coordinate or in momentum. Consider, in this
connection, the interpretation given to the generating
functions g(x —

q ) which give rise to the resolution family
of functions according to

, . 8 lnJ[P]vr„+ —,i— (18) h(x —q)= lgx —q)I', (20)

By substituting the kinetic energy term, one obtains an
effective Hamiltonian H,z which, by construction, is Her-
mitian with respect to an inner product not involving a
Jacobian factor.

B. Preparatory remarks on the stochastic scheme

Our objective, as stated in the Introduction, is to set up
a collective field theory within the framework of the sto-
chastic phase-space approach to quantization. From the
outset we agree to adopt the standard practice of elevat-
ing wave functions, associated with first quantization, to
field operators, associated with second quantization. In
particular, Eq. (3) will be carried over as a relation among
field operators.

There are now certain pertinent aspects of the stochas-
tic scheme which we would like to review before under-
taking our explicit analytical considerations. The first re-
mark pertains to the fact that in the stochastic frame-
work neither position nor momentum eigenstates are, in
general, available. The modifications of the canonical
mapping (2a) and (2b) introduced in Ref. 5 for the explicit
purpose of realizing such eigenstates leads to a Hilbert
space inner product with respect to which neither Q nor
P are Hermitian operators. At first sight, it appears that
this occurrence will present a severe handicap in our
effort to define a functional integration measure for the
sought-after collective field theory. After all, the integra-
tion measure defined through the Fourier decomposition
(10) for the conventional collective field theory relies on
the Hermiticity of the momentum field operator.

We do know, on the other hand, that the stochastic
quantization scheme is unitarily equivalent to the conven-

which furnish a measure of the "spreading" of a
quantum-mechanical particle. (Corresponding argu-
ments can be made in momentum space. )

We have speculated ' that the stochastic phase-space
quantization scheme accommodates, in a natural manner,
the well-known coherent states of minimum uncertainty.
The latter comprise a complete (but not orthonormal) set
of functions. In our following work we shall find it con-
venient to rely on a similar set of functions which is com-
plete but not orthonormal.

C. Construction of a phase-space collective field theory

Q(q, p)= —g e 'g(x, —q) . (21)

For reasons of emphasis, related to the fact that we
have generated the resolution family of functions I g
from functions defined on coordinate spaces, c.f. (19), we
shall write P (q), instead of P(q, p) from here on.

In Ref. 6 we have identified the above expression with
the so-called Bloch functions, widely employed in solid-
state physics' in connection with electronic lattices. Ac-
cording to that interpretation, the generating functions
g(x, —

q ) correspond to wave functions pertaining to the
particle located at the lattice site i. The relevant

We consider an N-body setup similar to the one in Sec.
IIA. The first step, in our attempt to construct a sto-
chastic collective field theory, is to transcribe the density
operator given by (7) into a corresponding phase-space
quantity. The bridging relation is given by (3). Substitut-
ing (7) into (3) and using (19), we obtain an initial expres-
sion for the collective field which is relevant to our new
description. It reads
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Schrodinger equation contains a Hamiltonian with poten-
tial energy determined by the interactions of said particle
with the other particles as well as external forces.

We observe that our transcription into the phase-space
language has amended the idealized description of the
collection of particles in terms of 6 functions by a more
realistic one in terms of Bloch functions.

The lattice arrangement, though not essential from a
physical point of view, presents a concrete advantage in
that it allows us to employ Bloch functions. Given that
we are actually considering systems with a sizeable num-
ber of particles, the collective-field-theoretical approach
is meaningless; otherwise, the lattice setup is equivalent
to assuming a uniform density distribution. We shall
adopt this arrangement from now on. (Alternatively, we
can adopt a more cautious point of view and simply state
that our subsequent construction pertains exclusively to
lattice systems. )

Our pressing task at this point is the search for com-
pleteness. To this end, we shall trade the lattice periodic
Bloch functions with the, unitarily equivalent, Wannier
functions i/j, (q) defined by

i/j;(q)= f e 'i/j (q),

where the integral goes over the first Brillouin zone (BZ)
with volume L in the reciprocal lattice.

The Wannier functions obey the completeness relation

N

g i/j;(q)ij'j;(q') =&(q —q') . (23)

i(q —x,. )k 2~pg
g(q —x, ) =g c/e ', k=, n =+1,+2, . . .

(24)

In other words, g(q —x, ) is conceived of as a distribution
around the particle position x; which replaces the ideal-
ized description, in the conventional collective field case,
of the same particle through 5(q —x, ).

Substituting (21) in (22), we obtain

l

N
—iqk (25)

They are not, however, orthonormal.
By trading the p variable (Bloch functions) with the i

variable (Wannier functions) we are now in possession of
a localized description of the system with a basis labeled
by the particle number. To make further progress we
must become more specific about the generating func-
tions g(q —x; ). According to our interpretation, c.f. dis-
cussion following Eq. (21), we can think of the g(q —x;)
as wave functions pertaining to each individual particle.
They can be expanded in a basis of functions which de-
scribe the corresponding individual particle. One such
expansion is

We now introduce our collective field through its ex-
pansion in the Wannier basis

y(q)=pa i/j (q) . (26)

Substituting (25) into the above expansion we obtain an
alternative expansion of the collective field in a Fourier
basis which we exhibit as follows:

q(q) =X qke'"
k

(27)

(28)

In sharp contrast to (10), the Fourier expansion of ipk has
nonunity coefticients.

A particularly simple situation arises when we divide
phase space into cells of volume 2m and employ for the
g(q —x;) corresponding step functions per lattice site.

The confidence function h (q, x; ) now reads (the c; are
complex parameters)

lc;I' if lx; —
ql «

h( —x )='»«( lx; —
q I «, (29)

where e denotes the spreading of the wave (step) function
and a the lattice spacing in configuration space. In this
case the c/ entering (24) do not depend on k and (28) as-
sumes the simpler form

(28')

where the b are independent of k.
Whether in the form of (28) or that of (28'), our in-

tegration measure emerges as Qk i«0)dpk. An alterna-
tive choice stems from (26), namely, Q da . For practi-
cal reasons, however, we shall stick with our first choice
throughout.

III. DISPENSING WITH THE JACOBIAN FACTOR

In Sec. II we successfully conducted a search for com-
pleteness which produced an assortment of integration
measures, appropriate to the collective-field-theoretical
scheme. We shall now proceed to examine whether the
Hermiticity of the Hamiltonian -can be effected in a natu-
ral way, without the necessity of introducing a Jacobian
factor into the inner product. The strategy we shall em-
ploy will utilize work already carried out within the
framework of the conventional collective field theory. '

To set ourselves up for achieving such a strategy we
shall make the simplifying assumption that the
coefficients b (k) entering (28) [or b entering (28')] are
the same for each particle: bi(k)=b2(k)= =biv(k)

b(k). Such —an assumption is entirely within the prem-
ises of the collective approach according to which the
original variables x =(x„.. . , xjv) are to be replaced

Appealing to (25) and (26), we determine that ipk is of
the general form

1 —ikx . 2~gg
qjk =—g b (k)e ', k=, n =+1,+2, . . .

N L
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with ones that are symmetric with respect to particle ex-
change.

Under this working assumption (28) becomes

&pk= g e ', k=, n =+1 +2, . . . . (30)
b (k) ik—x 2vrn

X .
)

L k(k~O)
(39)

Upon consulting (10), the above relation tells us that

Lb(k) (31)

Multiplying and dividing the
using (32), we obtain

N
1J Pdx, g 6 (t. — ge

j=1 k(k y0)

left side by L, as well as

as well as that

a Ib(k) a

ay, . x a~,
(32)

Lb(k)
77k Qj k (33)

Referring to the conventional collective scheme, we
now recall the redefinition (18) through which the Jacobi-
an is removed from the inner product at the expense of
replacing the Hamiltonian with H, z. Restricting our-
selves to the kinetic term, the latter reads

Teff' p g ~—k+kk'[4]~k'+ 8 g k k 0 —k+kk'l Nldk'
k, k' k, k'

(34)

where we have ignored a term that is cancelled once the
level of the vacuum state is adjusted to zero. In the
above relation Qkk, [p] is given by

[with b(k) =b for the simpler description according to
(28')].

Introducing the conjugate momentum
= —i ( a/ asap k), relevant to the stochastic scheme, we
determine

L b(k)i

k[k pO)

(40)

The expression on the left is none other than the Jacobian
J[P] entering the conventional collective field theory [c.f.
Eq. (11)]. We conclude that if b(k) is chosen according
to

J[rI]= g lb(k)
L

k (.-0) + (41)

then J[(I)]= 1.
For the simpler case described by (28') the above condi-

tion reads

~[rI]= Q
L

k ( g0)
(41')

In conclusion, we have determined explicit conditions
under which a collective field theory constructed in ac-
cordance with the prescriptions of phase-space stochastic
quantization does not involve a Jacobian in the sense that
the latter is unity. Moreover, we have found that the
Hermitian Hamiltonian corresponding to this approach
has the general form (kinetic energy part):

A:k'
Ts(och 2 X ~ —k

kk'
&kk [4]—

L
(35) cVkk'

(42)

Substituting (31) and (33) in (34), we obtain

T...h= —,
' 2 ~ k~kk [~]~k-

k, k'

+-,' & k'k'V k~kk'[q ]V k-
k, k'

where

kk'
"R'kk = b( —k)b(k')(i(

(36)

(37)

The above expression, of course, adheres to the stochastic
description given by (28'). For the more general case de-
scribed by (28) we must replace (b by ~b(k) ~b(k')~.

Following Ref. 8, let us pursue, within the context of
the present approach, an application pertaining to the
Bohm-Pines electron plasma. Besides the kinetic term
(42), we must also include the Coulomb interaction be-
tween electron pairs. In the Fourier transform language
we are using, the aforementioned potential-energy term
reads (we are now working in three dimensions)

(V

J Q dx, Q 5 yk
— ge ' =1

j= 1 k(k-~0) I

(38)

or

Let us now determine circumstances under which (37)
is consistent with J[g] being unity, i.e. , no Jacobian fac-
tor is to enter the stochastic collective field description.
From (28) we easily surmise that a necessary condition
for this to happen is the following:

4~e
Ukk — V6kk'

14
(43)

+2
Vk —O'

V
kk' (44)

where Vis the volume of the system.
Taking into account the interpretation of

~
b

~

as
describing a spreading for each particle, we surmise the
following behavior for large A:
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Substituting the above in (42) and adding the
potential-energy term (43), we write

1

StoCh

k N
V

4me V 1 k V
k2 4 N 0 —

krak

(45)

which identifies the plasma frequency as

24~e N+, kCOk—

We close this section with the following remark. In
earlier work ' on stochastic quantization we arrived at
an inner product pertaining to "phase-space" wave func-
tions of the form

(0 0»= J dp de Pi(p»e)A(q p)

In other words, the stochastic scheme at first quantiza-
tion level introduces a density function, equvalently a
Jacobian factor, which corresponds to a particle spread-
ing that adheres to minimal uncertainty. The same exact
density function also appears in connection with particle
descriptions through coherent states. ' In quite a con-
trasting manner, the collective-field-theoretical descrip-
tion according to the stochastic scheme utilizes the pres-
ence of the particle spreading to eliminate a Jacobian fac-
tor, whose presence in the conventional description is
unavoidable. In fact, as (41) and/or (41') suggest, the
aforementioned Jacobian factor can be interpreted as a
measure of the particle spreading Our fina. l intepretation,
then, is that the stochastic description trades the Jacobi-
an of the conventional formulation with the particle
spreading, which it inherently contains.

framework within which we were able to study the appli-
cation of phase-space stochastic quantization prescrip-
tions to a system with a continuous infinity of degrees of
freedom. The fact that we have worked in a nonrelativis-
tic context has greatly facilitated our discussion.

The application of stochastic phase-space prescriptions
to relativistic field theories calls for extra considerations.
In this connection we may recall that the many-particle
content of a relativistic field theory is attained through
the second quantization procedure and its accompanying
Fock space construction for the Hilbert space of states.
This whole edifice is based on a formulation which relies
exclusively on a Heisenberg picture. It is difticult to en-
vision a stochastic phase-space description of field theory
along these lines.

Consider, on the other hand, the possibility of casting a
field theory into a Schrodinger-like picture. ' The con-
ventional quantization rules now read

Q(x) =P(x), n.(x ) = i—
5$(x)

Generalizing these quantization prescriptions to the fol-
lowing ones:

4( )x=P(x)+i, A(x) = i—
would appear to be the first step towards a "stochastic
field theory. " The corresponding state functionals wi11

now be of the form %[/(x), m.(x)]. Any substantial pro-
gress along such lines is heavily dependent upon a fuller
understanding of a Schrodinger field theory and its parti-
cle content.
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