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Imaging of quantum-mechanical potentials
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In technical applications such as reflection seismics and nondestructive testing, imaging princi-
ples are successfully used for the reconstruction of inhomogeneities. In quantum-mechanical in-
verse problems one usually proceeds by parametrizing the unknown potential with some free pa-
rameters, which are fitted to the data. In this paper an imaging method is presented for the inver-
sion of quantum-mechanical data. This method is derived by applying a gradient method to the
minimization of the least-squares misfit of the data. This leads to an update of the model for the po-
tential as a continuous function of the space variables in terms of the temporal correlation of two
wave fields in this model. The theory is formulated in such a way that these wave fields can be com-
puted using a finite-difference method. With current computers the method can be implemented for
spherically symmetric potentials, which might include a spin-orbit interaction.

I. INTRODUCTION

The aim of quantum-mechanical measurements is ulti-
mately the reconstruction of the potential which interacts
with particles. In a typical experiment, one determines
the scattering cross section when the potential is exposed
to a particle beam. The scattering cross section is deter-
mined by measuring the particle intensity at a set of
detectors. Possibly one performs different experiments
where one exposes the potential to particle beams from
different directions, and with different energies.

In practice, one performs the inversion by parametriz-
ing the potential with a limited number of parameters.
These parameters are usually fitted to the data using a
least-squares criterion. ' For example, one expands the
potential in a (small} number of spherical Bessel func-
tions, and one determines the expansion coefficients. Al-
ternatively, one imposes a specific analytical form of the
potential, such as the Saxon-Woods potential, with some
free parameters which are fitted to the data. Specifying
the functional form of the potential introduces a degree
of subjectivity in the inversion. One would like to con-
struct the potential without introducing possibly errone-
ous notions on the shape or the smoothness properties of
the potential. Ideally one would use an imaging principle
to determine the potential.

Analytical results show that in order to construct a po-
tential for the one-dimensional Schrodinger equation us-
ing exact inverse scattering methods, one needs the
reflection coefficient for all energies. Furthermore, bound
states introduce a nonuniqueness in the inversion. For
the inverse problem of the Schrodinger equation in three
dimensions, exact inverse scattering techniques require
the scattered waves for all energies, all directions of in-
coming waves and all directions of outgoing waves, and
bound states must not be present. In real measurements
one normally only measures the amplitude of the waves
for only a finite range of energies and for a finite range of
measurement directions.

This means that the solution of a realistic quantum-

mechanical inverse problem is ill posed (as almost any
other realistic inverse problem in physics). In practice,
one needs a criterion to select the "best solution" from a
multitude of possible solutions for a given data set.
Specifying the functional form of the potential is one way
to do this, but with such a method one has no idea what
artifacts one introduces in the solution by this particular
choice of the shape of the potential. We propose the fol-
lowing criterion for the best model. The best model of
the potential is the model that gives the best fit of the
data in the least-squares sense, and that is closest to the
potential for a free particle (i.e., V=O}.

This can be realized by formulating the inverse prob-
lem as a least-squares problem where one fits the ob-
served data to the synthetic data for the potential. In this
way, the inverse problem amounts to a minimization
problem of the data misfit for the potential. The model
space in which one performs this minimization is
infinitely dimensional because the potential is assumed to
be an arbitrary function of the space variables. Because
of the large number of degrees of freedom in the inver-
sion, and because of the requirement that one wants to be
closest to the potential for a free particle, it is preferable
to use a gradient method to achieve the minimization of
the least-squares misfit. The formulation of this theory
naturally leads to an imaging principle for quantum-
mechanical potentials.

The presented method for data inversion has been very
successful in reflection seismics. The resulting imaging
principles have led to accurate and efficient algorithms
for the reconstruction of the Earth's subsurface. Several
formulations of seismic inversion using minimization
methods have been formulated using both linearized and
nonlinear versions of the theory. Given enough data, it
is possible to locate the inhomogeneities at their correct
position, and to a certain extent one can separate the
heterogeneity of the elastic impedances and of the seismic

' velocities.
The theory presented in this paper is the simplest for-

mulation of an imaging principle for quantum-
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mechanical potentials. In this way the physical princi-
ples are not obscured by unnecessary mathematical de-
tail ~ The theory presented here only deals with scattering
of spinless particles by a fixed potential. Extensions of
the theory to more complicated situations can be formu-
lated without much difficulty. For example, in the Ap-
pendix it is shown how spin-orbit interactions of spin- —,

particles can be incorporated. 3 priori notions on the
statistical properties of the model and the data can be
incorporated in the inversion without essential
modifications of the theory. In such an approach it is
possible to prescribe a priori values for the model, as well
as covariance functions for both the model and the data.
In this way one can impose a smoothness constraint on
the reconstructed model in a natural fashion by a suitable
choice of the spatial covariance function of the model.

II. LEAST-SQUARES FORMULATION
OF THE INVERSE PROBLEM

In a typical problem one has observed data d,b'„which
are gathered in different experiments, and which are
recorded at different instruments (the data are labeled
with the experiment index e and the receiver index r).
From these data one wants to determine a model m,
which is in a quantum-mechanical experiment, for exam-
ple, the potential as a function of the space variables.
One can only solve the inverse problem if a theory exists
for the relation between the model and the data (the for-
ward problem):

d'"=d'"(m) .

gradient

n+ ) n O'n~n (4)

The step length cz, can be determined by trial and error,
or can be estimated if the misfit function behaves locally
quadratic. In any case one should make sure that one
uses a step length a„such that the misfit function indeed
decreases [S(m„+i)(S(m„)]. After this, a new gradient
can be computed, and this minimization process can be
continued until convergence.

In such an approach the main difhculty is the computa-
tion of the gradient. The model m is, in general, a physi-
cal field, and it is therefore an arbitrary function. Rather
than parametrizing this function, we aim to retrieve this
field as an arbitrary function of the space variables. It is
for this reason that methods of functional analysis are
needed for the formulation of the inversion method.

For the computation of the gradient it is necessary to
define the Frechet derivative D, „(m) by

d'"(m +6m ) =d'"(m)+D, „(m)6(m)+O((6m ) ) .

Inserting this expression in (3) and (2), one finds that

y„=g D, ,(m„)[d'"(m„)—d b", ] .
e, r

In this expression D, „(m„) is the Hermitian of the
Frechet derivative for model m„. The term
(d'"(m„) —d;&", } is the misfit for the model m„. For a
perfect fit of the data (d'"(m)=d,'b", ) the gradient is, of
course, zero.

The inverse problem can be solved by minimizing the
misfit between the observations d, 'b", and the synthetic
data d'"(m). The misfit can be defined by a suitable
norm such as the L& or Lz norm. In this paper the fol-
lowing least-squares misfit S(m) is used:

III. PHYSICAL PROBLEM

Consider a scattering experiment where the wave func-
tion satisfies the Schrodinger equation

S(m) =
—,
' g[d" "(m) —d;b", ]' .

e, r
(2)

L itt=0,

where

S(m+6m)=s(m)+y6m+O((6m) ) . (3)

The model can then be updated in the direction of this

The misfit is required to be minimized with respect to the
model parameters m. This is the simplest formulation of
the least-squares problem, ~here one defines the best
model m as the model which gives the best fit between the
observations and the synthetics for this model.

In general, the relation (l) between the data and the
model is nonlinear so that the misfit S(m) is a nonqua-
dratic function of the model m. In principle, there is a
wide choice of optimization methods that can be used for
the minimization of the misfit. In seismic inversion, gra-
dient methods have proven to be extremely useful for the
reconstruction of elastic impedances. In such an ap-
proach one starts with an initial model mo, and iterative-
ly updates this model so that a sequence of models m„ is
obtained which subsequently minimize the misfit S(m„).
One can define the gradient y, of the misfit with respect
to the model parameters by

L. =ia—+ a a —v,
Bt 2m

with initial conditions

(8)

g(x, to)

is given. VVe shall see later that an overall phase change
of the initial conditions does not alter the results. In or-
der to ensure that the wave function remains normalized
we assume that

(10)

In a typical scattering experiment one measures the
number of particles at certain positions x„using, for ex-
ample, a photographic film or particle detectors. These
instruments usually measure the total number of particles
arriving at positions x„during the experiment. It is
therefore assumed that detectors at positions x„measure
the integrated amplitude for the duration of the experi-
ment. The data d, 'bs are thus gi.ven by
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d;b", =d;b, (x„)=f ~it;b, (x„,t)~ dt . Now introduce the causal Green's function G(x, t,x', t')
which satisfies

The detectors are assumed to be pointlike devices. For
detectors with a finite extent one should simply replace
the sum over detectors by an integration of the detector
coordinates x, . The model we are seeking is the potential
as a function of the space coordinates:

and

LG(x, t, x', t') =5(x —x')5(t —t'),

G(x, t, x', t')=0 for t &t' .

(19)

(20)

m(x)=V(x) . (12)

In the remainder of this paper the model is denoted by
the potential V.

The forward problem (7)—(9) can numerically be solved
using finite-difference methods. Of course, the computa-
tional domain must be of finite extent, and one needs to
impose absorbing boundary conditions at the edge of the
computational domain. In this way it is possible to com-
pute synthetic data d'(x„) for a given model of the poten-
tial.

IV. FRECHET DERIVATIVE D AND THE GRADIENT y
X 1t(x', t')5V(x')+c. c. (22)

[In this paper, an arrow over functions is used to denote
causal (right arrow) and acausal (left arrow) functions, re-
spectively. ] Equation (18) with the initial condition (16)
has the solution

5$(x, t)= fG(x, t, x', t')5V(x')g(x', t')dv'dt' . (21)

This finally gives the Frechet derivative

D„5V=f dV' f dt' f dt g*(x„,t )G(x„,t, x', t')

Using the definition (11), the synthetics d(x„; V) for the

potential V are given by

d(x„; V) = f ~P(x„,t; V)
~
dt, (13)

where P(x„,t; V) is the solution of the forward problem

(7)—(9) for the potential V. In expression (2) for the misfit
and (6) for the gradient one applies a summation over all

experiments e. For brevity the theory is developed for
one experiment so that the index e is temporarily
suppressed. The inversion scheme for multiple experi-
ments can be found by a summation of the final results
over all experiments.

In order to compute the Frechet derivatives it is neces-
sary te compute the effect of a perturbation of the poten-
tial on the wave function. Up to first order one finds that

According to (6), the Hermitian of the Frechet derivative
is needed in the computation of the gradient. Applying
the Hermitian of D„ to the misfit (d"—d,"b, }, one finds

that

(D„5d")( ')= f dt f dt'it(x', t')G (x', t', x„,t)

X P*(x„,t )5d(x„)+c.c. (23)

X [d (x„)—d„b, (x„)]+c.c. (24)

Using (6), this leads to the following expression for the
gradient:

y(x)=g f dt f dt'Q(x, t')G (x, t', x„,t)g*(x„,t)

~y(x, t; v+5V)
~

—~1//(x, t; v)
~

=g*(x, t; V) $5( xt; V)+c.c. (14)

More concisely this can be written as

y(x)= f dt it(x, t)P(x, t)+c.c. (25)

D„5V= P*(x„,t; V)5$(x„,t; V)dt+c. c.
jo

(15)

Throughout this paper c.c. stands for complex conjuga-
tion, and 5$(x, t; V) is the perturbation of the wave func-
tion due to a perturbation 5V. From the definition (5) of
the Frechet derivative and the definition of the data (11)
it follows that

In this expression itj is the normal causal wave function

g( x, t ) = i)'j( x, t ),
while P is defined by

g(x, t')=g f dt G (x, t', x„,t)g*(x„,t)
r

(26)

5it(x, to, V)=0 . (16)

From the Schrodinger equation (7)—(9) one finds that 5$
satisfies the following differential equation:

(L —5 V)(it +5/}=0

so that up to first order

L5$=5VQ .

(17)

(18)

Knowledge of the perturbation 5g of the wave function
therefore leads to the Frechet derivative. It follows from
the initial condition (9) that 5P satisfies the quiescent ini-

tial condition

X [d(x„)—d, ,(x„)] . (27)

This means that the gradient y(x) can be expressed as
the temporal correlation of the wave fields 1tj and p. The
causal wave field P which satisfies (7) with the initial con-
ditions (9) can be computed using a finite-difference tech-
nique. The Hermitian of an integral operator follows by
interchanging the integration variables and taking the
complex conjugate. ' This means that P can be comput-
ed once P and G are known. However, in this approach
one needs to know G(x, t', x„,t ) for all values of the argu-
ments (x, t') which is practically not feasible and not
necessary. The introduction of the adjoint problem leads
to an efficient method for the computation of it.
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V. ADJOINT PROBLEM (L
—i)t G t (40)

Consider the problem

L(g=q,
with initial condition

(28)

Since the Hermitian of the inverse is the inverse of the
Hermitian [(L ) '=(L ') ] it follows from (39) and (40)
that

p(x, to)=0 . (29)
G =G.

VI. COMPUTATION OF THE GRADIENT y

(41)

fhe adjoint problem is defined by

L P=q', (30)

A dot product can be defined by

{P.g) = f dV f dt P*(x,t)P(x, r) .

Using this definition and expression (8) for L, one finds,
using an integration by parts,

&y, Ly) —(L It, j)
$2

1 dS f dt n. [p *(x,t )Vp(x, t )
—c.c. ]2pl to

+iaaf dV[P*(x, ti)P(x, t, ) —P*(x,to)P(x, to)] .

(33)

The terms on the right-hand side (r.h.s.) are the bilinear
concomitant terms. ' The surface integral vanishes be-
cause the wave function vanishes at infinity. The volume
integral on the r.h.s. of (33) vanishes if we impose quies-
cent final conditions on ~t~:

P(x, t, )=0 .

Kith these conditions we have

(34)

The problem (28) with the quiescent initial conditions
(29), and its adjoint problem (30) and (34), can con-
veniently be solved using the causal and acausal Green's
functions G and G which satisfy

LG(x, t, x', t') =L G(x, t, x', t') =5(x—x')5(t t'), —

(36)
and

G(x, t, x', t')=0 for t (t',
G(x, t, x', t')=0 for r&r'.

The adjoint problem (30) and (34) has the solution

P(x, t ) = f1V' f dt'G(x, t, x', t')q'(x', t') .

{37a)

(37b)

(38)

The Green's function G is the formal inverse of L so
that

(39)

Furthermore, G is the inverse of L, which implies that

where we leave the temporal boundary condition yet
unspecified. Both P and P are supposed to satisfy the
condition (10) at infinity.

For the operator L in (8) one has

(31)

According to (25), the gradient y follows from the tem-
poral correlation between the wave fields g and 1(~. Using
(41), Eq. (27) for l( can be written as

P(x, r )=g f dt'G(x, t, x„,r')g"(x„,r')

X[d(x„)—d,b, (x„)] . (42)

The wave field P needs to be computed for every experi-
ment. Introducing the experiment index e once more,
and comparing (38) with the adjoint problem (30) and
(34), one finds that g' satisfies

Lofti'(x, t )=q'(x, r ), (43)

with

q'(x, t ) =g t("(x„,t )[d'(x„)—d,', (x„)]6(x—x„), (44)

and with quiescent final conditions

f'( tx, )=0. (45)

The wave fields whose temporal correlation produce
the gradient can be computed with two finite difference
computations for each experiment. These computations
are performed for the current estimate of the potential
(the current inodel). First, one computes the physical
wave field P which is propagated forward in time from
the initial condition (9). The values of the wave field are
stored for all positions in space. This computation also
gives the wave field at the receivers [P'(x„,t)] and the
difference between the observations and the synthetics for
the current model [d'(x„)—d', b, (x„)].

With these fields, the source term for the field lt
' is ob-

tained [see (44)]. With this source term the adjoint prob-
lem (43) for P' with the quiescent final conditions (45)
can be solved. In this computation one propagates the
solution 1( backwards in time using a finite-difference
technique. For this the same finite-difference code can be
used as for the computation of the physical field itj. The
temporal correlation of these two wave fields yields for
every position in space the value of the gradient

y(x)=g f p'(x, t)g'(x, t)dt+c. c. (46)

For the computation of the gradient one thus needs to
perform for each experiment two finite-difference compu-
tations, and one temporal correlation.

The term g* in (44) plays an interesting role in the ex-
pression for the sources of P. Suppose this term was ab-
sent. In that case the source q would be independent of
time. Such a source does not radiate energy, so that there
is no wave field backpropagated in the medium. The P*
term in (44) gives the source of g an oscillatory behavior,
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which effectively radiates the field f and thus produces a
nonzero gradient.

The same term also ensures that the procedure does
not depend on an overall phase shift of the physical wave
function g. If one applies an overall phase shift expia to
the initial conditions (9), then P will have this phase shift
for all later times. The source of it then obtains a phase
shift exp —ia; the same applies to the solution 1t for all
earlier times. These opposing phase factors cancel in the
final expression (46) for the gradient.

VII. PRACTICAL ASPECTS OF THE INVERSION

Due to practical limitations of the available computing
power, the theory presented here cannot be used yet
without modifications in practical implementations. At
this point finite-difference computations in more than two
dimensions require more computing power than is gen-
erally available. It is for this reason that in seismic inver-
sion one frequently makes the assumption that the Earth
does not vary perpendicular to the line along which a
seismic profile has been shot.

There is a tremendous difference in the relative scale of
a seismic experiment and a typical quantum-mechanical
scattering experiment. In seismic inversion, the domain
of interest generally has a size of approximately 100
wavelengths, while the duration of the experiment is, say,
100 periods. (These numbers fix the required computa-
tional domain. ) In a quantum-mechanical experiment
one may employ waves with a wavelength of, say, 10
m, and the apparatus may have a size of 10 m (or
more), so that the wave field needs to be modeled on a
domain of 10 wavelengths (or more). Similarly, the
duration of a quantum-mechanical experiment in terms
of the dominant period of the employed waves may be ex-
tremely large.

For practical applications it is therefore necessary to
reduce the spatial and temporal size of the physical prob-
lem. The data (the average amplitude of the waves) de-
pend in the far field only on the average particle flux in
each direction. This means that given the measured in-
tensity at distant receivers, one can infer the intensity
that would be measured closer to the scattering region.
In the far field zone this means that the measured intensi-
ty only needs to be corrected with a 1/r factor to ac-
count for geometrical spreading effects.

Similarly, the initial conditions (9) may specify the
wave field a very large number of wavelengths from the
scatterer. However, the wave field is only influenced by
the scatterer if the wave field differs appreciably from
zero near the scatterer. This means that in many situa-
tions one can replace the initial conditions (9) by
equivalent initial conditions which specify the wave pack-
et just before it comes into contact with the scatterer.

These tricks make it possible to reduce the spatial size
of the computational domain. From an academic point
of view this can be justified by remarking that this pro-
cedure effectively replaces a pure finite-difference model-
ing of the wave field by a hybrid modeling procedure
where the vicinity of the scatterer is handled by a finite-
difference method, and where the propagation between

the computational domain and the area of observation is
handled analytically.

The long temporal duration of the experiment in terms
of the periods of the waves can be handled by using a re-
formulation of the theory in the frequency domain. Al-
ternatively, in case one employs near-monochromatic
beams, the intensity is almost constant in time. In that
case one can replace the true experiment by a hypotheti-
cal experiment with a shorter duration and with the same
average square-w. ave amplitude. In this way the temporal
duration of the experiment may be reduced to a size
which is computationally manageable.

Since finite-difference computations in three dimen-
sions are currently too expensive to perform on a routine
basis, the practical applications are at this point limited
to situations where only two dimensions are relevant for
the wave propagation. This is the case for spherically
symmetric potentials for which

V(r)=V(r) . (47)

Of course, the measurements are performed in three-
dimensional space, but since the scattered waves depend
only on the scattering angle and not on the azimuth one
can reduce the number of dimensions to two. In that
case the gradient y depends only on the radius r. This
can be incorporated by averaging the gradient as ob-
tained in (46) over all angles:

y(r)= I y(r, 0,$)dII,1

4~ n
(48)

where 0 and P are the usual polar coordinates and II
denotes the space angle. Mathematically, this procedure
can be justified by introducing a spherically symmetric
a priori covariance function for the potential.

VIII. CONCLUSION

The imaging method presented here constitutes an un-
biased method for the reconstruction of quantum-
mechanical potentials. In this approach it is not neces-
sary to specify the (possibly erroneous) functional form of
the potential. At this point the method can be imple-
mented for the reconstruction of spherically symmetric
potentials.

The theory presented here is only the simplest formula-
tion of imaging of quantum-mechanical potentials. The
incorporation of a priori notions on the statistica1 proper-
ties of the data and the potential can be performed
without essential modifications of the theory. The
theory is flexible and can be applied to more complicated
situations; for example, in the Appendix it is shown how
spin-orbit coupling can be taken into account.

The main difference of the proposed imaging technique
with seismic applications is that in seismics one can
directly measure the wave function, whereas in quantum
mechanics one usually only measures the time-averaged
amplitude of the waves. By analogy with the seismic
case, one can show that if one could measure it directly,
instead of I ~g~ dt, the source q of it in (44) needs to be
replaced by
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q'(x, t ) =g[P'(x„, t )
—P;b, (x„,t )]5(x—x„) . (49)
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APPENDIX: TREATMENT OF SPIN-ORBIT
INTERACTION

In this appendix an extension of the proposed inversion
scheme is presented for spin-orbit interactions as an ex-

ample of the Aexibility of the inversion method. The
theory is presented for one experiment; for an inversion
using data of different experiments one should sum the
final result for the gradient over all experiments. For
spherically symmetric interactions of particles with spin
—, , the spin-orbit interaction is incorporated in the opera-

tor I. in the following way

In this hypothetical situation one could use the phase in-
formation contained in l(. However, one would have the
additional problem that it is only possible to obtain
meaningful results from P if one knew the position of the
detectors with an accuracy smaller than a wavelength. In
practice, this is hard to realize. In the situation where
one uses (13) as the data one does not have this problem
because ~it(x, t)~ is in the far field a smooth function of
X.

Just as with seismic inversion, one cannot hope to
reconstruct the true potential with arbitrary data because
the null space of the inversion is nonzero. For example,
if one only has measured the amplitude for near-forward
scattering, for a finite range of energies, one can only
hope to reconstruct a smoothed version of the true poten-
tial. If one only uses data for backscattering one can only
hope to find the spectral components of the potential
which match the wavelengths in the employed waves.
This is not a drawback of the employed inversion scheme,
but it is a consequence of the fact that for realistic data
the inverse problem is ill posed. In seismic inversion us-

ing a gradient method one has a similar situation;
transmission data only give the trend in the velocity,
while reflection data only give spectral components of the
elastic impedances which match the wavelengths of the
employed waves. " However, the employed method al-
lows both in reflection seismics as in quantum mechanics
for the retrieval of the information of the medium that is
contained in the data.

X (L o )f( x', t ') 5 W( x') .

(A2)

The gradient y now has two components, which describe
the derivative of the misfit S with respect to V and W, re-
spectively,

y(x)= (x), (x) =(yi(x), yii(x)) .
as as
av 'aw (A3)

By analogy with (6), the gradient is related to the Frechet
derivative and the misfit (d"—d,"b, ) by

(y i (x), yii (x))=+D„~(d" d;„, ) . — (A4)

Using (A2) and (A3), this gives by analogy with (24)

y~(x)=g f dt'ter(x, t')G (x, t', x„,t)

X @*(x„,t )[d(x„)—d, b, (x„)]+c.c. ,

yii, (x)=g f dt'i' (x, t')(L.o )"G (x, t', x„,t)

(A5)

X Q*(x„,t )[d(x„)—d„b,(x„)]+c.c. , (A6)

where T indicates the transposed. In analyzing these ex-
pressions one should be careful with the spinor indices,
and one should decide on what are the data d". We sup-
pose here that the data d" are the integrated amplitudes
of the spinor components:

d;"=d, (x„)=f iP, (x„,t)i dt . (A7)
0

In that case a term like f G $*5d is in an explicit com-
ponent notation g, P, G, it" (5dj ), while g (L.o')
G $*5d stands for g, kg, (L.o ),"G k gk (5d& ).

Expression (A5) for y i, is analogous to expression (24)
and can be treated along the same lines with the pro-
vision that the wave function is now a two-component
spinor. Thus one can define a spinor g which satisfies

difference is that the gradient and the Frechet derivative
now have two components instead of one, since they de-
scribe the dependence of both V and W. Expression (22)
for the Frechet derivative is for the operator in (Al)
given by

D„(5V,5W)= f dV' f dt' f dt g (x„,t)G(x„,t, x', t')

X f(x', t')5V(x')

+ dV' dt' dt x„,t G x„,t x', t'

a eA
L =i% +8 8——V(r) —W(r)(L.o )+ (B.o ) .

at 2m 2mc

(Al)
L i'(x, t ) =gQ*(x„)[d(x„)—d,b, (x, )]5(x—x, ), (AS)

This matrix operator acts on the spinor g. The angular
momentum operator is denoted by L, and o. are the Pauli
matrices. The magnetic field 8 is assumed to be given,
and the aim of the inversion is to determine both V(r)
and W(r).

The derivation of the expression of the gradient
proceeds along the same lines as in Secs. II—VI. The only

g(x, t, )=0 .

By analogy with (46) it follows that

yv(x)= f dt Q (x, t)Qv(x, t)dt+c. c. ,

(A9)

(A10a)

where L is the operator (A 1) for the current model. The
spinor it has quiescent final conditions:
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with

f~( x, t ) = hatt( x, t ), (A10b)

tian, it follows that

y~(x)= fdt g (x, t)fn, (x, t)dt+c c. (A 1 la)

and where f(x, t ) satisfies (A8) and (A9).
In the derivation it is tacitly assumed that L =L . For

the first terms in (A 1) this follows from the same argu-
ments as for the scalar Schrodinger equation (8). The
magnetic interaction ( cr .B ) is Hermitian because the
Pauli matrices are Hermitian, and the angular momen-
tum operator is also Hermitian (L =L ). Furthermore
the boundary terms associated with this operator vanish
because the boundary conditions on the sphere are
periodic. This means that the operator L is indeed Her-
mitian.

The gradient y n, is given by (A6). Going through the
steps of the Secs. II—VI, and using that (L o ) is Hermi-

with

f~(x, t ) = (L tr )ttt( x t ) . (A 1 lb)

This means that, using Eqs. (A10) and (All), one can
compute the gradient of the misfit both with respect to
V(r) and W(r). In order to do this it is only necessary to
perform two finite-difference computations for the spi-
nors P and tP for the current model. The two com-
ponents of the gradient y follow by applying different
operators to ttt. After a temporal correlation with g this
leads to the desired gradient.
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