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Recursive generation of higher-order terms in the Magnus expansion
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Several methods for systematically calculating higher-order terms in the Magnus expansion of the
time-displacement operator are discussed from a unified point of view. It is shown that a quadratic
recursive scheme recently introduced in the average Hamiltonian formalism of NMR spectroscopy
can be extended to other cases, including the original multiple commutator approach developed by
Magnus [Commun. Pure Appl. Math. 7, 649 (1954)].

I. INTRODUCTION

The unitary time-displacement operator U=U(t, O)
for a quantum system with Hamiltonian H=H(t)
satisfies the Schrodinger equation

U= 1+ g P„, P„—(1lfi)",
n =1

(1.2)

where P„=O at t =0. Substituting into Eq. (1.1) and

comparing terms of equal orders, one finds

P, =H, P„=HP„—, (n ~2),a =- a
Bt dt

whence

n —IP„=P„(t)= f dt, . I dt„H, H„,

(1.3)

H, =H(t, ) . (1.4)

All this is well known, but was repeated here for further
reference, and as an illustration of a general technique
used below.

If the Hamiltonian does not depend on time, Eq. (1.4)
readily yields P„=(tH)"In! and the summation in Eq.
(1.2) can be done in closed form, giving U= exp(tH).
Magnus' has shown that under certain conditions an ex-
ponential representation of U, viz. ,

Qo

U=e =1+ g 0",
) k! (1.5)

can be found also in the case of a time-dependent Hamil-
tonian. The operator A=A(t) is expressed formally as a
series expansion similar to Eq. (1.2):

0= g 0„, 0„-(1/&)",
n=1

(1.6)

with Q„=O at t =0. To first order Eq. (1.5) gives
U = 1+0&, so that 0& clearly coincides with P, . The fol-
lowing terms in Eq. (1.6) were obtained by an iterative

U=HU (H=HliA),
dt

with the initial condition U = 1 at t =0. Equation (1.1) is
easily solved by iteration, with 1/A as a natural ordering
parameter (this is equivalent to perturbation theory). Let
us assume U expanded as

process which makes apparent a nested commutator
structure of increasing complexity. Compact and sym-
metric formulas of this type have been derived up to
fourth order (see Appendix). Milfeld and Wyatt, who
used the Magnus expansion to study the behavior of
molecular systems in intense laser fields, have given al-
ternative expressions through fifth order, but in a less
symmetrical form. The Magnus expansion became rapid-
ly popular and has already been used in a variety of
time-dependent problems: semiclassical atomic collision
theory, multiphoton excitation of rnolecules, multiple
Coulomb excitation of nuclei, pulsed magnetic resonance
spectra, ' " spectral line broadening, ' infrared diver-
gences in QED, ' to quote just a few.

For some of the applications mentioned above,
and more generally in order to investigate the conver-
gence of the expansion, ' ' it is of interest to develop sys-
tematic procedures for generating higher-order terms in
Eq. (1.6). In Sec. II we present in a simplified form the
generator method recently proposed by Burum. ' Origi-
nally this method was formulated for the specific needs of
high-resolution NMR spectroscopy in terms of average
Hamiltonians. Here we adopt a more standard form of
time-dependent quantum mechanics, which should help
make things clearer.

An interesting alternative is provided by a method sub-
sequently introduced by Salzman, ' who apparently was
not aware of Burum's work. For completeness we in-
clude a simple derivation of Salzman's formulas in Sec.
III. Although the latter have a rather transparent struc-
ture, the rapid increase with order of the number and

complexity of terms in the operator Q„appears as a seri-
ous hindrance in the numerical treatment of problems
that involve more than two states. ' As will be seen, it is
straightforward to extend the generator idea here in or-
der to circumvent this drawback by a recursive process.
Finally, in Sec. IV a similar treatment is applied in a
specific form to the original Magnus approach, in which
0 is expressed in terms of multiple commutators.

II. BURUM'S METHOD

The two infinite expansions in Eqs. (1.2) and (1.5) a«
assumed to represent the same operator U. With due ac-
count of Eq. (1.6) we identify terms of the same order in

1/A to get
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P, =01,

(2.1)

In practice, however, the form in Eq. (2.5) has been found
to be the most useful.

P~=Q~+ —(Q(Q2+Q~Q()+ —Q, , . . . .1 1

3'I

The general term can be written as

n

Q„=P„—g Q„'") (n ~ 2),
k=2

where

(2.2)

(2.3)

III. SALZMAN'S METHOD

In his paper Salzman used a rather lengthy induction
procedure in order to solve Eq. (2.1) for the "unknown"
quantities 0„ in terms of the "known" perturbation
operators P . Instead, we simply notice here that for-
mally the Magnus operator can be defined also by
Q=log[l+(U —1)]. From Eqs. (1.2) and (1.6) we then
have

i +. +i =n —12 k

0 . . 0
l2

Notice that subscripts indicate the order with respect to
1/A, while superscripts represent the number of factors in
each product. Thus the summation in Eq. (2.3) extends
over all possible products of k operators Q, (in general,
noncommuting), such that the overall order of each term
is equal to n Equ. ation (2.1) [or (2.2)] is the starting point
in Burum's method.

By regrouping terms in Eq. (2.3) we get

g Q„=log 1+ g P„
n=1 n =1

(3.1)

Taking into account the Taylor expansion of the function

log�(

1+z ) we further obtain

QQ„=QP; —T(QP, P + —,
' g P;P P), + (3.2)

The above equation immediately yields 0„ in terms of the
P), 's (k ( n) if we collect all terms of order ( I /A)" in the
right-hand side. In this way one has successively,

Q1=P, ,

i + -+i =n —22 k

0 . 0
l2 ik

02 (3.3)

+ . +Q„),+) g Q; . . Q;
+ +r =k —12 k

(2.4)

Each of the remaining sums is indeed a lower-order Q
operator formed with products of k —1 factors 0, .
Therefore we can rewrite Eq. (2.4) as

P~ —,(P,—P2+P2P, )+ , P, , —

which are precisely Salzman's formulas. It is clear that
Eq. (3.3) is nothing but the inverse of the system given
above in Eq. (2.1). Since the two systems have a similar
structure it is an easy matter to introduce a generator for
Eq. (3.3) as in Burum's case. To this end we write the
general Magnus term of order n in the form

n —k+1g() — y g()g
m =1

g(1) Q g(n) Qn
(2.5)

Q„=P„—g R„'"' (n +2),
k=2

where

(3.4)

Equation (2.5) is what Burum called "the Magnus expan-
sion generator. " Together with Eq. (2.2) it off'ers a con-
venient basis for computing Q„. For a given n only the
nth order perturbative contribution P„must be calculat-
ed explicitly, while the rest is obtained recursively from
preceding Q 's (m & n).

Other generators may be easily produced by ordering
terms in Eq. (2.3) in a diff'erent way. For instance,

R = P P . . P (i +. +i =n).(k)
n I

I !2 ik 1 k (3.5)

n —k+1R'"'= ~ R"'R'" " (2&k n )n ~ m n —m
m=1

n n& n 1

(3 6)

Proceeding as in Eq. (2.4) one readily gets the quadratic
recursion formula

Q' =Q g Q . . Q
i + ~ . +i =n —23 k

+(Q)Q2+Q~Q)) g Q, . Q,
i +. +i =n —33 k

+ 0 ~ ~

leads to
n —k+2

g(k) y g(2)g(k —2) (3 ( k (
pg )

m =2
(2.6)

Equation (3.6) represents the Magnus expansion gen-
erator in Salzman's approach. The obvious advantage of
the latter over Burum's method is that it provides an ex-
plicit expression of the nth order Magnus approximant
Q„ in terms of perturbation theory operators [notice,
however, that the presence of inverse factorials in Eq.
(2.2) might have in turn beneficial effects in numerical
calculations]. More general recursive schemes, similar to
Eq. (2.6), are valid here too, but do not seem of much
practical interest.

Finally, we should like to recall that the term P„ in
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Eqs. (2.2) and (3.4) is actually obtained by iteration, as
shown in Sec. I. Thus from Eq. (1.3) one has

P„= dt'H t P„] t' = mq q0
q

where the m 's are weights for some conveniently chosen
quadrature formula. The problem therefore reduces once
again to evaluating a sum over products of two operators.
As a prerequisite for this, one must, of course, store
intermediate-time results at each stage.

IV. THE COMMUTATOR APPROACH

This, of course, is not the end of the story, since the
final result is reached only after integrating over t. Thus
from Eq. (4.3) one obtains

n —]Bk
d&'H t', 0

0

(4.6)

which is the counterpart of Eq. (3.7). However, in this
case the whole recursive scheme must be carried out for
some set of intermediate times 0 (t & t.

Unlike the two methods described above, the older
derivations of the Magnus expansion' ' ' proceeded
directly from the Schrodinger equation (1.1) without any
reference to the perturbative solution. This led to the fol-
lowing differential equation satisfied by n(t):

n= y, In", H} .
0 k!

Here the dot indicates the time derivative, the curly
brackets denote a multiple commutator with A entering k
times:

In", H} =[n, [ . [n,H] . ]], {n,H} =H (4.2)

and the Bk's are Bernoulli numbers (in particular,
B2 +, =0 for m )0). Substituting the expansion of Eq.
(1.6) into Eq. (4.1) and equating terms of the same order
one finds

n, =H, n„= y S„'"' (n )2),
k =]

(4.3)

where

s„'"'=$[n, , [ . [n, , H ] ]]
(i, + . +i„=n —1 ) . (4.4)

Notice that in the last equation the order of H has been
explicitly reckoned, whereas k represents the number of
0's.

It is easy to see that the newly defined operators S„' '

can again be calculated recursively. The recurrence rela-
tions are now given by

n —k
S„'"'= g [n,S„":"],(2(k (n —1),

V. DISCUSSION AND CONCLUSIONS

We have shown that the first two methods exposed are
based on systems of equations which are indeed inverse to
each other. Burum's method gives Q„, basically, in terms
of P„and of lower-order Ak's, while Salzman's method
handles only perturbative contributions. In view of Eqs.
(2. 1) and (3.3) it is easy to understand that these two
methods are completely equivalent. On the other hand,
they both clearly emphasize the Magnus expansion as a
rearrangement of the perturbation expansion.

Properly speaking, Eqs. (2.5) and (3.6) are generators
not for n„but for the difference n„P„(inc—identally, it
is just this difference that ensures that the unitarity prop-
erty U U=UU =1 is satisfied to each order of the
Magnus expansion). Similarly, in the third method, Eq.
(4.5) is actually a generator for the time derivative of n, „.
The chief advantage of these equations stems from the
fact that they involve only products of two operators
(matrices). This should greatly facilitate numerical and
algebraical calculations of higher-order contributions in
the case of multistate systems. However, whatever
method is employed, some additional time integrations
are needed, which requires that provision should be made
of intermediate-time results at each order.
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s'"=[n„„II], s„'"-"=
I n", -',H } .

(4.5) APPENDIX

Other forms [e.g. , similar to Eq. (2.6)] seem to be prohi-
bited by the presence of commutators.

For the reader's convenience we reproduce below the
compact time-ordered expressions of the first four terms
in the Magnus expansion as derived by Wilcox:

n, (t)= f dt, H, , (A 1)

tl
n, (t)= —,

' f dt, f dt, [H, ,H, ],
t2

n, (t)=-,' f dt, f dt, f dt, }[H,, [H, ,H, ]]+[[H„H,],H, ]},
(A2)

(A3)
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t2 t~

&,(t)= ,',—f«, f «~ f «3 f «4[[[[&&,H2] H3] H~]+[Hi [[02 H3»H4]]

(A4)

Other equivalent forms are easily worked out by using the Jacobi identity for double commutators. Notice that similar
formulas given in Ref. 19, and reproduced in Ref. 21, are flawed by a number of misprints (in particular, the integrand
of the fourth-order term is incomplete).
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