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II. Raising-lowering operators
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A detailed exposition of explicit formulas used in the evaluation of raising-lowering forms of
two-body-operator matrix elements is presented. The methods are based on the use of the unitary
group distinct row table and graphical representation of the many-particle basis. All matrix ele-
ments are expressible in terms of scalar and simple matrix factors. In order to facilitate the deriva-
tions of simple, computationally efficient forms for the matrix factors, we utilize a recently
developed calculus based on elementary graphs. The methods are applicable to systems of particles
involving spins greater than —' and reduce to previously known results for the case of spin —,

'.

I. INTRODUCTION

In a recent series of papers' we have introduced
methods for representing the many-particle, Sz adapted
bases of U( n ). We also proposed methods for evaluating
the matrix elements of one- and two-body operators ex-
pressed in terms of the U(n) generators, E„, The repre-
sentations, alternatively referred to as the distinct row
table (DRT) or graphical unitary group approach
(GUGA), are SU(n) generalizations of schemes developed
for SU(2) [actually, U(2n ) D U(n ) SU(2)] by Shavitt '

based on the earlier 6 ABC tableau technique of Paldus.
With respect to matrix element evaluation we developed
a graphical formalism ' which was used to deduce fac-
torized expressions for the matrix elements of one- and
two-body operators as well as a calculus for deriving
those detailed expressions to be used for raising-raising
(lowering-lowering) cases.

The purpose of this work is to complete the presenta-
tion of the calculus rules to be used for deriving detailed
expressions for raising-lowering (lowering-raising) cases.
Thus this paper should be read in conjunction with Ref.
5, the two being viewed as a sequel to Refs. 3 and 4. The
latter references were intended to introduce the graphical
techniques which permit the decomposition of the matrix
element expressions into factorized forms. The graphical
techniques by themselves, however, are insufficient to
provide detailed algebraic results for the factors. In this
respect the contents of this paper and Ref. 5 constitute a
detailed clarification and amplification of general results
first presented in Refs. 3 and 4.

Factorization techniques are important for several
reasons. First, they enable a significant reduction in the
amount of computation to be performed in a strictly alge-
braic sense by allowing one to cast the matrix element ex-
pressions in closed form. Second, they enable one to pro-
gram the formulas on computers utilizing multiproces-
sors connected in parallel thereby permitting the simul-

II. BACKGROUND THEORY

We present a brief description of the generalized
DRT-GUGA formalism. A more detailed description of
the construction and generation of the DRT is provided
in Refs. 1 —5. It is to be noted that Ref. 5 introduced a
more explicit, simplified notation, which is used herein,
than was presented in earlier references.

The DRT, originally developed by Shavitt ' based on
work of Paldus, is essentially a compact representation
of the Clebsch-Gordan (CG) decomposition of the per-
mutation symmetry, S~, adapted irreducible representa-
tions of U(n) [or SU(n)] formed by considering the sub-
duction chain

U (n)DU (n —1)& &U (p)

aU, (1)&U, (0), (2.1)

where the labels p„= [p„k ~p„k ~0;k =0, 1, . . . , L I are
the integer partitions of N„which label the U(p)LS~ ir-

taneous evaluation of the many factors which do arise.
The techniques, therefore, suggest alternative software
and hardware approaches to model calculations per-
formed on computers. Finally, by studying the expres-
sions for the various factors it is anticipated that a better
understanding of the coupling schemes and interaction
operators used to describe many-particle configurations
might be achieved.

The paper is divided into five sections. Section II con-
tains a brief description of the background theory neces-
sary to obtain the results presented later. Section III
deals with the raising-lowering (lowering-raising) type of
two-body operators. This section is further subdivided
into parts which deal with a variety of general and special
subcases. In Sec. IV we present examples of calculations
intended to demonstrate the application of the relevant
formulas.
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reducible representations (irreps), i))t„being the number
of particles described by labels 1,2, . . . , p already com-
piled within a particular many-particle state.

As in previous work the p„k describe the number of
rows of length k in a Weyl-Young tableau (WYT) after
the removal of all boxes containing labels greater than p
(alternatively, p„), is equal to the number of times the in-
teger k appears in the pth row of the corresponding
Gel'fand tableau). A single set of labels, p„, describes
only a Young frame shape while a complete set of labels,
Ip j

= Ip;p=O, . . . , n j, can be used to deduce the num-
ber of particles with label p, say, as welL as the positions
of these in a WYT. The parameter L is the maximum
row length of the complete Young frame for a given ir-
rep.

The DRT is a table whose entries are organized,
hierarchically, first into subgroup levels p =n,
n —1, . . . , 0. Within each level )M are J„(the total num-
ber of irreps at level )M) row entries arranged in lexical or-
der by the p„ labels [see (2.7) of Ref. 5]. Each row entry
contains, in addition to p„, a variety of labels significant
to a particular problem under consideration. ' '

The DRT can also be represented as a two-rooted, pla-
nar hierarchical digraph comprised of nodes and links.
The irreps p„and p0—:0 are represented by the head and
tail nodes, respectively. At level p the irreps p„are
represented as nodes ordered lexically from left to right.

E„,E p E 13E„—,=5 Q„p —5„pE (2.2)

Matrix elements of the elementary one-step raising
generators E„,„(a lowering generator would be
E„„)) can be expressed in the form

( I
p' j ~E„,„~ [p j ) = 6)o b,„"8„(iL„)) A„,(iL„)),

(2.3)

where the factors 6, A, and B were defined in Ref. 5; for
completeness and ease of reference we repeat these
definitions below, however:

Links between nodes at successive levels p and p+1 can
be labeled explicitly in such a way as to uniquely denote
the particular subduction chain in the CG decomposition
(2.1) [see (2.5) and (2.6) of Ref. 5].

A complete many-particle state is represented by a
walk, or traversal, from the head (top row of the DRT) to
the tail (bottom row of the DRT) along allowed links. A
complete, unique specification of a given state can be
written as

~ Ip j ), where Ip j denotes a list of p„ labels,
p=0, 1, . . . , n. All such walks (states) form an orthonor-
mal basis [see (2.9) of Ref. 5].

The U(n) group generators E„, are Hermitian ma-
trices which satisfy the Lie algebra commutator relation-
ship

r=a k =0

L h„(A, , k)
8„(A,;p„p„,p„', )=I (A, , tM) D„,(A. ) Q 5 +(1—5 )

(2.4)

(2.5)

and

)))„(A,, k)
A„(A.;p~~„,)=l „(A,,p, ).D„(A, ) g 5 „+(1—5 )

k=0
(2.6)

The parameter A. above is referred to as a pivot index and denotes the position of labels, p„& and p„&,, which diA'er be-
tween bra and ket states.

The quantities h and A. are referred to as hooklengths and are defined by

and

max(A, , k ) —].

h„(l,, k ) =h„(iL,k;p„)= ~k+1 —
A ~+ gp„,

j=min(k, k )

f„(k,k ) =h„(A,, k;p„p„, ) =h„(A,, k )+ez), v„(k, k ),

(2.7)

(2.8)

where e),&=sgn(k —g).
The quantity v„(A., k), whose value represents the number of boxes, in a WYT, containing the label )M in a row of

length k after the removal of all boxes containing labels greater than p, is defined as

v„(X,k ) =v„(A,, k;p„p„,)

N

X (p„, —p„-),
j=k

I (k —k,„)[(1—5, „)+5„(1—5, )]+[1—h„(&,k )]5,/, 50, „j
(2.9)

where k,„=max[j(1—5oz );j=0, . . . , k —1 j. It should be noted that when calculating the ratio of h„ to f„ in
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(2.5) or (2.6) one should calculate v„ first, since if v„=0 then the ratio is 1 automatically; if all boxes in the WYT row
(including "row" 0) are labeled p then h„—= 1; otherwise, it is necessary to perform the complete calculation of
(2.7) -(2.9).

Finally, we refer the reader to Eqs. (2.20)—(2.22) of Ref. 5 for the definitions of the D„(k), I ii(A, ,p), and I „(A,,p) fac-
tors. These factors subject the triplet of labels p~„,p„', (p~~„, ), in the case of 8„(A„),to a consistency check;
that is, I z(A, ,p) checks that p„& and p„'

&
are each valid subductions of p„and D„(A, ) checks that p„ i and p„', are

compatible in the sense that 8„ is nonzero [and similarly for D„(A, ) and I „(A.,p) with regard to A„). In this respect
these coefficients play roles similar to selection rules as do the triangularity conditions of Racah-Wigner 6—j
coefficients.

As shown in Ref. 5 the A„and 8„ factors are fundamental to the derivation of explicit algebraic expressions for the
more complex subgraphs which arise in the raising-raising (RR) matrix element expressions and, as will be demonstrat-
ed below, in raising-lowering (RL) expressions as well.

From (2.3) above and (2.23) of Ref. 5 we express the result of a multistep raising generator, E„„(p(v), operating on
an arbitrary state

~ I p ) & as

L

E„„lIPI&= & &„(~. i p„p„ ip. i+a. i~.

v —1 L
x g T„(A,„,A,„,;p„p, +a, y„,p, , +a„, )A„(A,„;p„p„+a„p„,) IpI+

x=p+1 =1a
p&(x&v

(2.10)

where the summation is for each label A,, in the range from r=p to v —1. The factor T, is defined as [see also (2.24),
(2.33), and (2.34) of Ref. 5]

—1 P P +a x P —lp ]+a —11„—

= A„(A,.;p.p. +a.,p. , ).a.(X. , ;p.+a.,p„,p. , +a. .„
—A.(X.;p.p. +a.,p„,+a. „).a„(X. , ;p.p. ,p. , +a. „). (2. 1 1)

We define 8,& to be a linear operator ' which acts on the p, labels according to the component relations

p',„=p, +a, „=p, +(5 „—5, . ) vk L (2.12)

and where the label changes are performed at the index positions A, and A. —1. The plus (minus) sign denotes a raising
(lowering) operation on the labels p, . In terms of the graphical representation of states the effect of a„i is to shift the
node p„ to the left (right) for raising (lowering) cases. The resultant node p„' may or may not be consistent with nodes

p„+, . Note that at most L states can be generated by application of E„]„,whereas up to L " +' states are generat-
ed using E„

Since lowering operations can be expressed in terms of raising operations using (2.3) we shall require the Hermitian
conjugate forms of the A, B, and T factors. These are expressed as follows, using p', =p, +a,i (T—p, , K, K 1) to denote
the bra state labels,

at(x;p„p„,p„,+a„„)=a„(x;p~„',—a„,~„',),
A„'(~;p~„+a„~„,) = A„(X;p„', a„~~„'—

k~p p +a Ap —lp —]+a —lg) T (~ k p a ipKp —
1

a —
leap

—1)

a.~— —a„,pr,', )

(2.13)

(2.14)

(~ p a ApIIp —l) + (4 p a Ap —i a —imp (2.15)

With respect to (2.13)—(2.15) we emphasize the impor-
tance of the order of the argument labels in performing
computations where one must be careful to use the
correct labels. Since many of the algebraic simplifications
derived for the various subgraph factors rely on the rela-
tionship between hooklengths at adjacent subgroup levels
it is vital that a standard reference state, or nodes, be

I

chosen in order to deduce the particular relationships re-
quired. Referring to the graphical representation we
have established a convention where only the lexically
greatest (rightmost) nodes are used to compute the A and
B, and hence T, subgraphs. Clearly, alternate, equivalent
conventions may be established.
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III. RAISING-LOWERING OPERATORS

In this section we present the evaluation of the matrix
elements of the symmetric product of two generators,
namely,

[E„,E p] =E„E p+E (3E„„. (3.1)

It is possible to express any physical two-body operator
in terms of linear combinations of symmetric products
like (3.1) [see, for example, Eqs. (2.11) and (2.13) of Ref.
4].

In Ref. 5 we evaluated the matrix elements of the sym-
metric raising-raising generator products primarily be-
cause they led to symmetrical expressions in our factori-
zation scheme. Further, it was possible, in general, to
simplify the algebraic expressions for the various factors
by taking into account the relationships between hook-
lengths (2.16) and (2.17) at successive subgroup levels.
We can describe those matrix element expressions
schematically in the form

~ not
in

over
lap range

1 ln
overlap
range

(3.2)

where P'," and P', ' refer to scalar and 2 X 2 matrix fac-
tors, respectively, and where, in cases defined by index re-
lations such as p&a & v&P, for example, the overlap
range refers to subgroup levels from a to v.

Similarly, for raising-lowering generator products we
shall develop symmetrical expressions. The factors
which arise in the overlap range, however, will no longer
always be 2X2; rather, they will be matrices of larger di-
mensions (indeed, P', ' will be replaced, in general, by P', ',
or L X L matrices).

In the following treatment of the raising-lowering (RL)
[lowering-raising (LR)] classes of operators we shall as-
sume, without loss of generality, the relations on the ele-
mentary generator indices

p, &v and a)p (p) v and a&p) .

The LR expressions are derived from these by finding the
Hermitian conjugate of the matrix element expressions
for the RL operators.

It is useful to decompose the RL products further into
classes involving various degrees of overlap between the
ranges of application of each generator in the symmetric
product. The following diagrams serve to illustrate the
ranges, and their overlap, of the operator indices. The
various factors which are to be defined represent those
subgraphs which arise completely in the overlap and
nonoverlap ranges as well as the junctures of the two
ranges.

A: P-

a-

8: P-. v

a i p a-
D

. v

Dis joint Contact Compl ete
Overlap

Par tiara
Overlap

In all the cases we consider p, & p; it is assumed that 0 and
n are at the bottom and top of the diagrams, respectively.
Remaining cases are easily derived from these either by
conjugation or by renaming indices.

B. Case B: p & v=P& a

These cases are referred to as contact cases. The ma-
trix element expression is similar to that of the nonover-
lapping case and is given as

A. Case A: p & v&P&a

Since the range of application of each generator is
completely outside the range of the other the matrix ele-
ment expression is found to be simply the product of two
single generator matrix elements determined over re-
stricted ranges of the state labels. Within the lowering
range we employ the bra (primed) labels as reference la-
bels for computing purposes [using (2.13)—(2.15)] thereby
avoiding the need for alternate explicit expressions for A,
8, and T factors which differ only slightly from those al-
ready defined for the raising cases (which use the ket la-
bels only).

a —1

~ 4'4 ~'pp~ vip~ ~ ~ —
~ p —&4 ) (4 ~ —i p p& &p i)—

p=P+ 1

v —
1

X g T,(A.„A, , ;p,p, +0, p, ,p, , +0, , ) A„(A,„;p„p„+B„p„,)6"
r=p, + ]

(3.3)

where p'„=p —
8„& and p' &=p &+8, &z and where we have used X, and g to refer to those pivot indices opera-

V v —l

tive within the ranges of the raising (p to v) and lowering (p to a) generators, respectively. We define the factor k at
the contact level v to be
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W (g, X;p„p~r tp', )=A,,(g;p'N, p, i).B (A,;p',8 ip', i )+ A„(g;p'p p,' i
).8 (X;p„p ip', i ) .

When both terms in (3.4) are nonzero zero W can be expressed as

(3.4)

h (g, A. ;p )+@i~(r~p P Pv —1P —1) A (Epvp P 1) —+ (~p P 1P ——1)2
/ 1'5 gy ypV

' 1/2

(3.5)

where it is to be noted that the hooklength h, (g, A, ) is
evaluated using the ket state (unprimed) labels. By elim-
inating redundant evaluations of hooklengths (3.5)
achieves greater efficiency than with (3.4).

By comparing (3.3)—(3.5) to Eqs. (3.2) —(3.5) of Ref. 5 it
is evident that, although the relations are similar, the RL
factor 8' cannot be derived directly from the RR factor
8' defined in Ref. 5. This point is relevant in practical
computations where separate case identification criteria
and formulas must be expressed (programmed).

C. Case C: p=P(v=a
It is necessary to recognize the variety of subcases

which apply in this case. Included among these subcases
I

are diagonal and off'-diagonal matrix elements for which
the subgraph factors are expressible in terms of either
scalars or matrices. This case affords one a good means
to illustrate the fundamental differences between RR and
RL classes of matrix elements. In particular, it will be-
come evident why the RL class does not lend itself in all
cases to representation in terms of only scalar and 2X2
matrices.

%'e proceed by considering the effect of a RL generator
product on an arbitrary state. Using k and g to denote
the raising and lowering pivot indices, respectively, and
the relation between bra and ket state nodes,
p' =p, +0,&

—8,
&

in the overlap range, we find the result
7

L L

[&.(g. ;p,p'. p'. +—~.——g, ) &.(~. .;p.p. p. +~.——
,

) ]
( =1

p~r&v p r(v

X g [T.(k., k. , ;p J .'+~.qg.',p'. , +
K —p+1

X T, (A,„A.„,;p,p, +i-),z p, ,p, , +B„ ii. )]

X [A„(g„;p~„'+B„&p„, ).A„(A,„;p„p„+B„qp„, )]

(3.6)

A similar result holds in the case of the generator product E„E
We shall consider three subcases, those for which (i) all bra and ket nodes in the overlap range differ, p', &p,

(r=p, . . . , v —1), (ii) at least the head and tail nodes differ, p', &p, and p„'&p„, some or all of the remaining nodes
in the overlap range are identical, and (iii) all bra and ket nodes are identical, the diagonal cases in other words. The ra-
tionale of this approach is that it affords one the opportunity to gradually develop an understanding of the structure of
the various factors (and the notation used to distinguish them) by proceeding from the simplest to the most complex.

1. p~+p~; 7=@, . . . , v 1

From (3.6) (and its conjugate) it follows that the matrix element expression can be written in the form

( Ip'} lF-„.F-, „+E„„E„,I Ip } & =~&.(~. i, k, i,p.p. ip'. i)---
v —1

T,(~., 4. ~.-i k. i;p.p~.-ip', -i)A.(~„k.p„p~, -i)~~0 '

T—@+1

where we define the factors introduced above as the matrices

(3.7)

+v(k&pip v —1 ~v —lrPV —1 ) v(~&PVP v —i ~v —liLP v —i )

&, (~ P.p.—iP.—i +~.- i~).&.(4 P.p.' —iP,
' —i +~.- i()

(3.8)

and

A„(g;p„a„~„p„,).A„(X;p„' a„~—~„,)—
Ir

A„(X;p„p„+a„~„,) A„(g;p~„'+a„g„,) I3.9)
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CQ

+

CQ

+

b
CQ

+
I

t-

CQ

+
t-

B v(~ kipvpv lpv —1—) Bv(~~pvpv —1pv 1+t)v—lk—)

.B.(k p.p. i
—~.—ip.—i)

h „,(A, , g) eq~-
h„,(A, , ()
h, (A, , g)

h, , (A, , g)+aqua

1/2

1/2

(3.1 1)

where we have used relations like (2.27) —(2.30) of Ref. 5.
Similarly, when both terms in (3.9) are nonzero A„ is ex-
pressible as

where 8 denotes the transpose of B. Also, in order to
condense the notation somewhat, the subgroup label has
been deleted from the 8 operator in (3.10).

We remark that the first (second) elements arise due to
the first (second) generator product in (3.7). Further, in
contrast to the analogous RR matrices, T [see Eqs. (3.27)
of Ref. 5], 1 is diagonal, a property which derives from
the fact that there are only two ways of proceeding from
the nodal pair p,p, , to p~,', using single raising and
lowering operations as opposed to four ways using two
raising (or lowering) operations.

Additional algebraic simplifications can be derived for
factors (3.8)—(3.10). For example, when both terms in
(3.8) are nonzero B, can be expressed in the form

(g, g;p p& &)=g (Z;p~„+B„~„&)—
A„(g;p„—B„gp„p„ i )

h„,( A., g)+ egg

h„,(A, , ()

1/2

I

I

b

CQ

I

h

h

o

CQ

I

CQ

I

b

X h„,(A, , g)

h„,(A, , g) —
e~g

1/2

(3.12)

It is possible to obtain simplifications for T also, but this
involves a number of further subcategories. The impor-
tance of such results as (3.11) and (3.12) is seen in practi-
cal computations where one requires only single (instead
of repeated) evaluations of each B (or A) factor in addi-
tion to the more easily determined elements of the rela-
tively simple matrices given.

P v —I +P v i' P & XP&' P ~ =P ~ f0&»~e,
or all, ~ in @+1,. . . , v —2

The matrix element expression for this case is essential-
ly the same as (3.7), the major difference being in the
definition of the intermediate factors, T,. If one applies a
lowering (raising) operation first and then a raising
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(lowering) operation with the result that the bra and ket
nodes at level ~, say, are identical then one must account
for all ways of achieving this, up to L ways. In order to
account properly for this we attach an additional (vector)
index on the pivot indices, hence A, = IX',i =1, . . . , I. I,
and similarly for g. As before, we distinguish the pivot

indices for raising (k) and lowering (g) for the sake of
clarity in the presentation but emphasize that A, '=P. In
practice, there will not always be L operative pivot in-
dices and the size of the pivot index "vectors" is there-
fore less than L at each level ~. The T, factor corre-
sponding to (3.10) can be cast in the form

T,(~ 0 S»a p,pW, ip', -i)=-
T (~ 0 p a p,pZ, ip''. —i)-

0

0

T,"(7 0 S»a p.pW. ip,
' —i)- (3.13)

RLwhere we note that the matrix is block diagonal. T," and T, are each L XL matrices in general whose elements are
defined as

T, (A, ', g', p~, o';p,p@, ,p'„, )= T,(g', o';p, —c}p,p, ,
—c} p, , ).T, (A, ',p';p,' —c}~@', ,

—c}g', , ),
T (~' 0' p' a' p,pZ, ip.' i-)=T.-(P a'pW', +~@,' ip', i-+~. )-. T,(~' p'p, p. ~u, -ip, -i+~,»

(3.14)

(3.15)

using the pivot index labels to indicate the positions of
each element within the appropriate submatrix. We have
suppressed certain indices in (3.14) and (3.15) where no
ambiguity is likely to arise.

We note that in Ref. 4 there exists some ambiguity
with respect to the structure of the matrices (3.13). In
particular Figs. 11 and 12 of Ref. 4 indicate off-diagonal
blocks; these matrices are not incorrect for more general
generator products than are considered herein, but for
symmetric products (3.13)—(3.15) should clarify any am-
biguity.

The diagonal matrix elements form this subcase. Each
of the head, tail, and intermediate factors are L-element
matrices in general. One major simplifying feature which
arises, however, is that all of the elements are rational
numbers due to the fact that they are each the square of
either a B, A, or T factor. The head and tail factors are
defined as

where

and

(A., g;p„p„, ) = A„(g',p„—c}„~„p,)
(~ gPpP~ i

)= A (A. ;P P +c} LP i )

(3.19a)

(3.19b)

The intermediate factors, in conjunction with
(3.13)—(3.15), are expressed as

T, (g', p~;p,p, , ) = T,(7 ',pj;p —c}~p, —c}g,)2

(3.20a)

T', "(~' p'p, p, - i )

&,"'(~ k p.p, -i)=&,, (k', p,p, , i
—~, iy , )', (3.1ga)

&. (~ 0 p.p. i)=&,, (~';p.p. ip„,+&, „)', (3.18b)

= T,( A, ', p', p,p, +8Lp, ,p, , + c} ) (3.20b)

—[g LR(g g. ) P RL(g g. )]
(A, , g;p„p„, )

~ RL(~,. ),
V & PVPV —

1

(3.16)

(3.17)

D. Case D: p &P & v& a

These cases are referred to as partial oUerlapping. The
matrix element expression is given as

( [p'I
~ tF.„,E I ~ IpI ) =3,"B (g, ) / T (A. ,k, )F,, (A, ,,A, g' )

p ——v+1
v —

1

X Q T, (A,„g„A.„. , g, , ) Cg(7ip, gp, kp
r-=P+ 1

f3—1

X Q T,(A, „A, , ) A„(A.„)b," (3.21)

where we define the factors F and 6 in analogy with (3.16) and (3.17), respectively. The elements of these are given as
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F (p, k', g', p„p„+d,g, ,p', )= A, , (p;p p, +B,g„, ) B.„(A.', g', p„+B,g„,p', )

g—„(p;p„p,+a.~'. , ).B,(~,g', p,p„,p', , ),
(p, k', P', p p'p„&p, ,

&
+&

&
)=B,(p;p'p, ,p, , +a, „)~,(~', g', p„p'.p„, )

B,—(p;p p,p„,+3, ) 3 „(A,', g', p,p',p, i+8, ip) .

(3.22)

(3.23)

These factors can be compared with their respective RR
analogues (3.21) and (3.24) of Ref. 5. As for these latter
factors simplified expressions can be obtained in certain
instances.

Before completing this section it is worth noting, in
brief, an alternative approach to the formulation of sub-
graph factors. It is possible to avoid the use of large ma-
trices in the general specification of the factors P (B ), 6
(A ), and T by retaining some aspects of the explicit sum-
mation over intermediate states as expressed in (3.6)
while redefining these factors as two (nonzero) element
matrices. In this approach each of the elements is con-
structed as a sum of terms corresponding to the several
RL (LR) generator product factors defined previously,
each of which occupied a distinct position in the ap-
propriate matrix, corresponding to particular pivot in-
dices.

Whereas, previously, the matrix formulation accounted
for the proper combination of all such terms as well as
the summation over all such combinations, in the alterna-
tive approach one would incorporate into each term in
the sum of terms a Kronecker 6 symbol involving the
correct pivot indices. At each level, therefore, one would
require a summation [as in (3.6)] over the pivot indices
when performing the matrix multiplication between fac-
tors at adjacent levels, thereby leaving the Kronecker 5's
to select the proper combinations of terms.

Although there is no formal difference between this al-
I

ternative method and the one described previously each
has merits which may be pertinent to different types of
computer implementation. We intend to report further
on these techniques in a future communication relating to
programming strategies.

The results presented in this section are intended to
demonstrate the techniques used for defining the graphi-
cal factors which arise in raising-lowering matrix element
calculations as well as the application of the fundamental
calculus rules defined in Ref. 5 by which algebraic
simplifications of these factors may be obtained. The fun-
damental quantities in this respect are the subgraphs A

and B from which all other higher-order graphs are
defined. Though the results presented herein are com-
pletely general we have not attempted to cover explicitly
all of the many special cases which do occur.

Finally, since the states defined using the DRT are iso-
morphic to both WYT and Gel'fand tableau (GZT)
states " it is possible to restate the techniques in the
language appropriate to either of those alternate repre-
sentations. The significance of the DRT-GUGA repre-
sentation is that it allows one to cast the matrix element
expressions graphically, on the one hand, and to achieve
a more compact representation than either WYT or GZT
on the other.

IV. EXAMPLE CALCULATIONS

In this section we present the details of the calculation
of the following matrix element, namely

10

10
10

10 +9, 11E 12, 10 ++12,10+9,11

10
10

10

where the bra and ket states have been expressed using WYT and the dots represent any valid arrangement of labels in
the range from 1 to 8. In terms of DRT labels the states are represented as follows, namely,

Subgrou
Row 8 7 6 5

Bra
4 3 2 1 0 8 7 6 5

Ket
4 3 2 1 0

12 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 4
11 1 1 1 1 1 1 1 0 4 1 1 1 1 1 1 1 1 3
10 1 0 1 1 2 1 1 0 3 1 0 1 1 2 1 1 0 3
9 1 0 1 1 1 1 1 1 2 0 1 1 1 1 1 1 1 2
8 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

where we have omitted the labels for subgroups levels 1 to 7. Note that the bra and ket labels at level 10 are identical.
In order to demonstrate the use of the techniques presented in the previous section as well as to illustrate the relative

efficiency of these techniques we shall develop the calculation first using the iterative technique based on the use of one-
step generator matrix elements and then using the factorization approach.
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Using the iterative approach based on the use of one-step generators we must first decompose the operator expres-
sion, using (2.2), into the form

E9 I]E)z )Q+E]z )QE9 ]] —E9 ]QE]p ]/E]z ]]E]]]Q E9 fpE]p ]fE]] ]QE~z

—E]p ]~E9 ~QE]2, ]]E]],]o+Elp, 1]E9„)QE]]]QE~z,

+E]z )]E]] )QE9, 1QElp, 11 E12 1]Eii ioEio, i]E9, ]Q

—E)] )Qe]z ]]E9,10E1Q, 11+El1 1QE&z 11Elp, 1]E9,1Q . (4.1)

Applying each term in (4. 1), retaining only those intermediate terms which contribute to the matrix element value
(note that in practice one would in fact include all intermediate terms, thereby increasing significantly the amount of
computation), we find for the contributions from each term

[5 (2'")] '[3(ll)159791—3 (7)11(9577)—3(7 )11(3373)+2 (3 )7 (ll)179+3(ll)159791

—3 (7)11(9577)—3(7 )11(3373)+2 (3 )7 (11)179]=[3(ll)3901]/(2' )(5 ) . (4.2)

We remark that the symmetry between the first four and last four terms is fortuitous, occurring due to the specific
states and operators which we have chosen for our example. Due to the intermediate states which arise on application
of each generator in (4.1) the numbers of A and 8 factors which must be calculated (excluding those states which even-
tually prove not to contribute) are 68 respectively. (We note that even the value of 68 assumes certain obvious optimi-
zations. ) The eight terms in (4.2) were determined by combining the results from all of the intermediate states used for
the corresponding generator product.

In addition to the calculation of A and B factors other issues relating to the efficiency of the computation involve the
arithmetic combination of the diff'erent product terms in (4.1) which require determining squre roots and, typically, the
greatest common divisor of two numbers; none of these processes is displayed explicitly in (4.2) but they have been car-
ried out. Thus optimizing the computation will involve reducing the actual numbers of factors as well as recognizing
squares of A or B factors, each of which is expressible as the square root of a rational number.

Using the factorization technique corresponding to case D of Sec. III we find the following factors, namely,

F —
(

231 )1 /2( 85 105 735 1155 15 117 165 429
)5 3584 ~ 512 ~ 4096 ~ 5120 ~ 512 ~ 1920 ~ 1024 ~ 2560

T —( 231 i 1/2( 429 5 3 1 77 105 35 5
5 10880 384 560 320 3200 6656 2112 1344

(
1 )1/2

(4.3)

(4.4)

(4.5)

(4.6)

Multiplication of the factors (4.3)—(4.6) yields the same
result obtained in (4.2) as required.

The numbers of A and B factors required to calculate
(4.3)—(4.6) are 25 each; the reduction by 43 of the total
number of calculations for each type of factor, compared
to using (4. 1) and (4.2), is due to the elimination of redun-
dant evaluations of B&z and A9, an efficient accounting of
intermediate states and the use of the previously de-
scribed algebraic simplifications in the subgraph factors.

Although the comparison of efficiencies is purely
empirical the results indicate that the factorization tech-
nique is the better one to use in practical computations.
Preliminary, more rigorous analysis further bears this out
and indicates even greater gains in efficiency when evalu-
ations of overlap range T factors are required.

V. CONCLUSIONS

We have presented a detailed exposition of the algebra-
ic methods used to derive specific subgraph factors per-
tinent to the efficient evaluation of raising-lowering ma-
trix elements of the U(n ) group generators. We have
shown that the techniques employed yield factors which

are analogous to those found for raising-raising generator
products with the important differences that in the over-
lap range the factors are expressed as matrices whose size
is larger than 2X2, in general, and whose structure is
block diagonal.

It is to be emphasized that the method is fully general
with respect to the treatment of arbitrary Sz adapted ir-
reps of U(n), in other words, Weyl-Young tableaux of ar-
bitrary shape (appropriate to n and N). Thus the
methods are likely to be of use to practitioners in diverse
areas such as nuclear and elementary particle physics in
addition to applications in the atomic and molecular
domains to which the unitary group approach has been
largely restricted heretofore.
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