
PHYSICAL REVIEW A VOLUME 39, NUMBER 7 APRIL 1, 1989

Quantization of lattice Schrodinger operators via the trigonometric moment problem
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We consider the spectral problem for lattice Schrodinger operators with polynomial potentials.
The eigenfunctions in the discrete spectrum of these operators correspond to the trigonometric mo-
ments of the periodic solutions of certain ordinary differential equations. Relying on this observa-
tion, the classical theory of moments permits the derivation of exact analytical and numerical
bounds to the eigenvalues.

I. INTRODUCTION

Lattice quantum systems are useful models for a
variety of physical phenomena, ranging from phase tran-
sitions to subnuclear particles. Among these, one-
dimensional lattice Schrodinger operators are particular-
ly important, hence their mathematical properties have
been extensively investigated. ' These operators describe
electron conduction in disordered, periodic, or quasi-
periodic media. They also arise in the quantization of
certain classically chaotic dynamical systems, such as the
kicked rotator. ' In these problems, the spectral proper-
ties of these operators are of paramount importance in
characterizing the dynamics: they determine, for in-
stance, the electrical conductivity of a medium, or the
quasiperiodic versus unlimited evolution of the energy of
a kicked rotator.

Since the determination of spectral properties may be
nontrivial, ' it is important to develop new analytical
methods to analyze this problem. In this paper we intro-
duce a method to compute the discrete spectrum (when
present) of lattice Schrodinger operators. This method is
analytical, but can be readily adapted to provide comput-
er assisted proofs. Handy and Pei have shown that a
direct application of the classical theory of moments can
determine upper and lower bounds to the ground-state
energy of discretized Schrodinger operators. Neverthe-
less, their analysis is ineffective in the limit of large lattice
spacings. A different formulation based on trigonometric
moments' is best suited to treat this case, and is here de-
scribed.

The reformulation of the lattice spectral problem in
terms of a periodic differential equations is crucial to our
theory. A by-product of this work is an interesting re-
sult: one is able to compute the gap edges in the spec-
trum of the continuous Mathieu equation. "

II. LATTICE KIGENFUNCTIONS
AND TRIGONOMETRIC MOMENTS

The Schrodinger operators we will consider are of the
form,

H: D C 1'(Z) ~l'(Z),

H(e„)=— (e„+i+e„ i
—2e„)+V(an)e„

1

a

ao )0, p integer, (2)

with leading even power, characterized by a discrete en-
ergy spectrum.

We can expand the general lattice wave function as
itj= g„g„e„,P„=(e„,iI't), „so that the spectral problem

can be written in the usual form,

(HQ)„= —
~ (P„~)+Q„ i

—2it„)+ V(an)Q„=EQ„.1

a

(3)

We see from Eq. (3) that the limit a ~ ~ is singular, as
the coefficient in front of the discretized Laplacian van-
ishes. This singularity was at the origin of the problems
encountered in Ref. 9.

Let us now consider the following expression:

which represents the formal Fourier transform of the lat-
tice wave function itjt. If it t is an eigenstate of the Hamil-
tonian (3) in 1 the expression (4) has a precise meaning.
It is possible to show [e.g., by considering the transfer
matrix of Eq. (3)] that the coefficients

~ g„~ decay (at
least) exponentially at + ~ if P is an eigenfunction. ' lt
then follows that P(k) is analytical in a strip along the
real axis (possibly extending to the full complex k plane).
Also, P(k) is periodic with period 2'.

Conversely, if P(k) is such a function, the coefficients

j exp(ink)P(k)dk,
27T 0

(5)

are at least exponentially decaying. Using the representa-
tion (5), we will then transform the spectral problem (3)
into a differential equation for P(k). In other words, clas-
sical results in the theory of Fourier series establish a

where e„ is a canonical basis set for 1 (Z), the space of
square summable sequences. If V is a well-behaved po-
tential, H is essentially self-adjoint' on a proper domain
D in I . We will focus on systems with polynomial poten-
tials,

V(x)=aox ~+a,x'~ '+ +a~
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f g c exp(imk) d)M(k) )0
0

(6)

one-to-one correspondence between analytical periodic P
solutions of a continuous differential equation and 1

eigenfunctions of the original spectral problem.
Equation (5) is the inversion formula for the Fourier

transform. It also shows that g„are the trigonometric
moments of the measure d)M(k)=P(k)dk. Let us assume
for the moment that this measure is positive: dp, (k)) 0.
This is indeed true for the ground state a generalization
to treat the excited states is described in a later section.

In general, for a positive measure d)M(k), the inequali-
ties

A. = E /a 2/a— (12)

Following the standard theory of periodic Schrodinger
operators, ' such solutions P(k) are eigenfunctions of
H (8) for 8=0. According to the notation of Ref. 15,

Using the representation (5), and under the hypothesis of
exponentially fast decrease of g„, the spectral problem
(3), (10) is equivalent to finding the analytical, 2n periodic
solutions of the Mathieu differential equation,

—P"( k) —[I,—2e cos(k)])t (k) =0,
where e=——a and

hold for any finite set of complex coeScients c . They
can be transformed into the quadratic form inequalities,

H(8)= d2

dk 0

+ V(k), (13)

N
c'itj „c )0, 0&N & ~ .

m, n =0

It is to be noted that f* =f for real P( k ); thus the
finite matrix P „ in Eq. (7) is Hermitian. According to
the classical theory of moments' the relations (7) are
equivalent to the Toeplitz determinantal inequalities,

40 P 11——2 0 N—
5~(g „)=Det

QN 4N —1 4—2 00

&0

(8)

for 0 & m, n & N & oo. The infinite set of inequalities (8) is
also sufficient to ascertain that a sequence of entries g„be
the trigonometric moments of a positive measure. '

Equation (3) can be interpreted as a recursion relation
for the coefficients P„. By induction, it implies that all
ilj„may be written in the form

is an operator on the subspace of L [0,2n. ] subject to the
boundary conditions,

P(2m. ) =e' P(0),
P'(2m)=e' P'(0) .

(14)

H(B) has purely discrete spectrum.
We now focus on the ground state of H(8=0). It is a

real, positive, ' even [P(k)=P(2m —k)] function. Its tri-
gonometric moments are also real, positive, and even:

These properties are indeed exceptional; we
will show in Sec. IV a first generalization to a wider situa-
tion. The moments g„are at the same time the com-
ponents of the ground state of the original I problem, as
seen from Eq. (12). We have so proved that the sequence
(f„)„~)vsatisfies the inequalities (7) and (8). We are now
going to use this fact.

The next step in our theory comes after noticing that,
if we choose the (arbitrary) normalization $0=1, the g„
may be recursively generated as functions of the energy
from Eqs. (3) and (10),

c ( n )
(E )y +d(n )

( E) (9)

III. LATTICE HARMONIC OSCILLATOR
AND MATHIEU EQUATION

Let us determine the ground-state energy E0 of the
discretized harmonic oscillator, defined by Eq. (3) with

V(an)=a n (10)

mGM

where the coefficients c'"'(E) and d'"'(E) can be obtained
exactly as a function of V(x). In the language of Ref. 14,
the trigonometric moments may be generated as a func-
tion of the energy E and a set of missing moments f
m EM. Here, M=

t 1], because the second-order nature
of Eq. (3) permits to express all moments as linear com-
binations of itjo, g„and the former may be eliminated by
normalization.

Inserting Eq. (9) in Eq. (8) yields an infinite set of ine-
qualities which constrain E and the missing moments
into a convex region. This region rapidly shrinks to a
point, as X increases. We now illustrate our method in
relation to the lattice harmonic oscillator.

P) =(2—a Eo)/2,

(2q)+a') —1,
(15)

etc. We notice that in this case we do not have missing
moments in Eq. (9). The 6)v i constraint, together with
the positivity of g) implies that 0& ED & 2/a . The b, )v=2
constraint, plus gi )0 provides the following bounds (val-
id for a )~2, after majorization of a square root),

2/a —4/a (/ (2/a (16)

They are to be compared to the bounds derived in Ref. 9,

& —,', [—a +(a +40)' ]a a

&Eo& '[a +(a +112) ] (17)

In the limit of large a the bounds (16) are tight while only
the lower bound in Eq. (17) is significant. It is
noteworthy that a second-order, perturbative analysis
(obtained by treating the kinetic energy as a perturbation)
yields the result
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TABLE III. Energy bounds for the six lowest symmetric
states of the discretized (a=1) harmonic oscillator. The num-
ber of moments used, N=8 is kept constant. 5 is the absolute
error (difference of the upper and lower bounds) while 5 is the
corresponding relative precision in the determination of the
eigenenergy.

E —
)

j E(+ )

j

TABLE IV. First two lowest-lying symmetric states for the
discretized (a=1) sextic anharmonic oscillator. The upper esti-
mate C+ is varied to show the corresponding sensitivity of the
bounds.

E( —)

J

0.929 85
3.707 19
6.162 36

11.057 34
18.031 66
27.01997

E(+ )

j
0.929 89
3.707 35
6.162 55

11.057 60
18.032 02
27.020 45

4X10-'
1.6X10-'
1.9X10-'
2.6X10-'
3.6X 10
4.8X 10

4.3 X10-'
4.3 X10-'
3.0X10-'
2.4X10-'
2.0X10-'
1.8 X10-'

10'
10'

10
10'
104
104

1.26
4.71

1.264 861 6
4.719977
1.264 84
4.7199

1.28
4.73

1.264 867 3
4.719983
1.264 89
4.7201

V. THE SEXTIC ANHARMONIC OSCILLATOR

A different example is represented by the sextic anhar-
monic oscillator,

V(an)=a n +a n (21)

This potential leads to a differential equation of sixth or-
der for P(k),
d2 d6

dk'(k)+a (k) +[A, +2 ec so( k)] (teak) = 0. (22)

In the above, A, and e are still given by Eq. (12). This is
no longer a Schrodinger equation. The preceding
analysis can nevertheless be applied, yielding the results
summarized in Table IV, for the ground and first sym-
metric excited states.

least in the scale covered by our computations.
It is evident from the one-to-one correspondence be-

tween H(0) and the lattice problem that the theory
developed here immediately provides half of the gaps and
of the bands of the spectrum of the periodic Mathieu
equation. Yet, the same formalism can be applied to
H(vr), the operator with antiperiodic boundary condi-
tions, as defined by Eq. (14): a different lattice operator is
now associated with H (m )—a shifted quadratic harmon-
ic oscillator. As a consequence, the spectrum of the
Mathieu equation can be exactly determined through our
method.

10
10
10'
10'

1.264 864 442 0
4.719980458 1

1.264 864 42
4.719980 3

1.264 864 442 4
4.719980 458 6
1.264 864 45
4.719980 6

VI. CONCLUSIONS
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We have developed an exact trigonometric moment
problem quantization for lattice Schrodinger operators.
By implementing the Hankel-Hadamard inequalities of
the classical theory of moments, we have derived analyti-
cal and numerical bounds to the eigenvalues of the lattice
harmonic and sextic anharmonic Schrodinger operators.

This theory can also provide information on certain
periodic differential operators associated by Fourier
transformation to the original lattice problem, such as
the Mathieu equation corresponding to the lattice har-
monic oscillator. Finally, the extension to the multidi-
mensional case is immediate, based on the formalism of
Ref. 14.
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