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Berry's geometrical phases in ESR in the presence of a stochastic process
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Berry's [Proc. R. Soc. London, Ser. A 392, 45 (1984)] geometrical phase is discussed in the con-
text of dissipative evolution of an interacting spin system, governed by the stochastic Liouville equa-
tion. An analytical treatment is given for a possible ESR experiment on an interacting electron-
nucleus system, modulated by two-site jumps. Geometrical phases are shown to be relevant to sys-
tems of this type, when their Hamiltonian changes slowly with time. A method for obtaining
higher-order corrections to the adiabatic approximation is demonstrated. It is found that if the
jumps are slow relative to the rate of change of the Hamiltonian, their effect reduces to familiar line
broadening, and the geometrical phases may be observed experimentally. Equations are also set up
for a similar ESR experiment on an electron-nucleus system undergoing isotropic rotational
diffusion, and a brief discussion of the equations follows.

I. INTRODUCTION

A few years ago it was shown by Berry' that when a
quantum-mechanical Hamiltonian changes adiabatically,
completing a cycle in parameter space, the corresponding
physical system will acquire, in general, not only the fa-
miliar dynamic phase, but also an additional geometrical
phase. This phase is related to the geometry of the cir-
cuit traversed by the Hamiltonian in parameter space.
The eFect has been put in a wider mathematical context
by Simon, who showed that Berry's phase can be regard-
ed as the result of parallel transport of the wave function
in a bundle with curvature. The existence of geometrical
phases in quantum mechanics was discussed in more gen-
eral mathematical terms by Anandan and Stodolsky" and
by Garrison and Chiao, among others. It was also found
that in classical mechanics there are some adiabatic situa-
tions in which one may define "geometrical" angles,
analogous to the quantum geometrical phase.

For the quantum case, the original treatment has been
generalized in various ways. Wilczek and co-workers"
showed that even for a system with degenerate states,
where the adiabatic theorem does not hold, it is possible
to define and calculate a geometrical phase, related to a
non-Abelian gauge field, unlike Berry's phase, which is
related to an Abelian gauge field. Berry' developed a
method of calculating the relevant phases when the
change in the Hamiltonian is not suSciently slow for the
adiabatic approximation to hold. Higher-order adiabatic
corrections were also calculated by Sun, ' and a nonadia-
batic process was discussed by Bulgac. ' An important
generalization was made by Aharonov and Anandan. '

They showed that the geometrical phase is directly relat-
ed to the cyclic evolution of the wave function, and not to
the change in the Hamiltonian. In particular, adiabatici-
ty is not necessary for this phase to appear.

The intensive theoretical work on the subject was ac-
companied by experiments of several kinds, which
verified the theoretical predictions. Optical experiments
have been carried out, ' ' as well as a nuclear quadru-

pole resonance experiment and nuclear magnetic reso-
nance experiments. '

In most studies of the geometrical phase, the systems
considered were single, noninteracting spins or photons.
In one case in which two interacting spins were con-
sidered, the consequences of having to use the density
matrix instead of the wave function were not explored in
detail. In virtually all studies it was also assumed that
the evolution of the quantum system was unitary (see,
however, the work of Samuel and Bhandari i. In most
physical situations one is concerned not with single parti-
cles, but with a system of interacting particles. Further-
more, in some cases there are complicated processes
which influence the behavior of otherwise simple systems
in a way that is practically impossible to describe exactly.
In many of these cases that influence is taken into ac-
count by adding to the Liouville —von Neumann equation
of motion for the density matrix a semiclassical term.
This term represents the relaxation due to a stochastic
process. The resulting Redfield-type or stochastic
Liouville equations have been used extensively in magnet-
ic resonance, both NMR and ESR, for various spin sys-
tems and stochastic processes.

The purpose of this paper is to investigate geometrical
phases in systems which are described by the stochastic
Liouville equation rather than Schrodinger's equation.
The general derivation of the relevant equations is
developed in Sec. II, concluding with a discussion of the
requirements for adiabaticity and the influence of the dis-
sipative process. It is seen that the concept of the geome-
trical phase remains meaningful in the presence of the
stochastic process, and that this phase may be experirnen-
tally observed.

In Secs. III and IV these general calculations are illus-
trated by two examples, in which the conditions neces-
sary for actual experiments are also discussed. The first
example is of a hypothetical ESR experiment, similar to
an NMR experiment that has already been done. ' The
two new features here are the existence of interactions
and the stochastic process. The system considered con-
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sists of an electron and a nucleus, with stochastic jumps
which modulate their interaction. The calculations
proceed in two stages. In the first stage we ignore the
jumps, treating the static interacting system. Using
Maricq's generalization of average Hamiltonian theory,
based on Floquet theory, we calculate systematically
the low-order terms for the adiabatic situation, obtaining
Berry's phase in the lowest-order term. In the second
stage the effect of the stochastic jumps is included ap-
proximately, assuming a slow jump rate. This is followed
by a discussion of the necessary conditions for observing
the calculated effects experimentally.

In the second example the same type of experiment is
considered, but for a different electron-nucleus system.
The Hamiltonian is assumed to depend on a continuous
variable, the molecular orientation with respect to the
direction of the static magnetic field. An isotropic rota-
tional diffusion process is present, and as a result of this,
the form of the coefficients in the equations is too compli-
cated for an analytical solution. Nevertheless, the
significance of the geometrical phases is clear also in this
case, and their effect can be calculated. A brief calcula-
tion is also presented concerning the possibility of observ-
ing geometrical phases in exactly degenerate sub-
spaces" ' ' in an ordinary ESR system. A short sum-
mary of the main results is given in Sec. V.

II. BERRY'S PHASE IN THE PRESENCE
OF A STOCHASTIC PROCESS

Although Berry's phase was originally defined in con-
nection with exact evolution according to Schrodinger's
equation, it may still have a meaning when relaxation
processes cause a decay of coherence. In the following
we shall define and calculate the geometrical (or Berry's)
phase for such cases, treating systems which have to be
described by a density matrix, which evolves according to
a relaxation equation. The basic equation of motion in a
high-temperature approximation is then

H(t)ln(t))=E„(t)ln(t)} . (2)

From here on, H and E„willbe expressed in angular fre-
quency units. The superoperator I operates on Hilbert-
space operators as

(ro)„,= y r„,„o„.
m, n

In the basic derivation of Berry's phase, the Hamiltoni-
an is assumed to change slowly in a cycle of period T
such that at time T, H(R (T))=H(R (0)}(Ref. 1). Here
the components of the vector R (t) are the time-
dependent parameters, which fully contain the time

1

dt
p= —[p(t),H(t)]+r(p(t) —p (t)) .

The relaxation term with I is constructed so as to lead
the decaying p to relax to an "instantaneous equilibrium"
density matrix p0. The time-dependent Hamiltonian
H(t) will now be assumed to change slowly with time,
with a corresponding change in its eigenfunctions and ei-
gen values,

dependence of the Hamiltonian. The number of com-
ponents of this vector is not important for the basic
phenomenon, but in many practical cases (including
those which are treated in the present paper) it has three
components, e.g. , the magnetic field vector for a spin
Hamiltonian' '' ' ' ' or the wave vector of a photon. '

For convenience in notation we shall suppress the R
dependence of H, writing it just as H(t), from here on.
The wave function, assumed initially to be in an eigen-
state of K (0), %(0)= l

n (0) }evolves adiabatically to

+(T)=exp[iy„(T)]exp i —f E„(t')dt' ln(T) }
L

T
=exp[iy„(T)]exp —i f E„(t')dt' ln ( 0) },

0

(4)

in which the geometrical phase is defined by the expres-
sion

d y„(t)=i(n(R (t))lVln(R (t)) } R (t),d
dt dt

and consequently

y„(T)=if (n(R(t))lVln(R(t)}}dR . (6)

p(t)= g a „(t)exp i f 'm „(t—')dt' Im (t) &(n (t)l .
m, n 0

~ „(t')=E(t') —E„(t') is the time-dependent
transition frequency. The coefficients a „(t)are matrix
elements of p(t) in the time-dependent adiabatic basis,

The gradient in both equations is the R gradient. This
phase is thus obtained by an integration in parameter
space, and an explicit formula was given by Berry for the
case of a three-component vector of parameters. ' Con-
trary to the traditional treatment of the adiabatic approx-
imation, Berry showed that this phase is nontrivial, and
can be observed experimentally. In the work of Aharo-
nov and Anandan' this was generalized to the case of a
general wave function, not necessarily an eigenfunction of
the Hamiltonian. When the quantum system is described
by a density matrix, the definition (5} [or (6)] of the phase
y can still be used, but the evolution with time is de-
scribed differently, even when no dissipative mechanisms
are taken into consideration.

In order to see how geometrical phases appear in the
"adiabatic" evolution of a quantum system in accordance
with Eq. (1), one has to set up equations for appropriate
components of the density matrix. The Hamiltonian may
still be assumed to change slowly, its time dependence re-
sulting from its dependence on a set of time-dependent
parameters. In the cases to be treated explicitly in Secs.
III and IV the vector of parameters will be an effective
magnetic field in an appropriate frame of reference, but
this will not be assumed in the general derivation of the
present section.

Using the time-dependent states and energies defined in
Eq. (2), the density matrix is expanded as
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Substituting Eq. (7) in Eq. (1), we get the following equation:

d
kl( t } l ~kl( )akl( t}

dt
exp —i co&& t ' dt '

a „(t)=(m(t) exp if E (t')dt' p(t)exp —if 'E„(t)dt'' n(t))
0 0

(8)

+ x exp —i f ra (t')dt„' a „(t)()„t k(t) m(t) +i)t n(t) ((t))
d
dt

fi—cokl(t)aki(t)exp i —tokl(t')dt' + g I kl „exp i —to „(t')dt' a „(t)—a „'(t)
0 mn7

In this equation we have used the following notation for the "time-dependent (or instantaneous) equilibrium" density
matrix

p()(t) = y 5 „a„'(t)~m (t) ) (n (t) ~,
m, n

(10)

which is not necessarily the initial state of p(t) Ass. uming no degeneracies in the Hamiltonian, it is possible to use the
following relations:

(
d (k(t)~H'~m (t) &

k t m t k m
dt to „(t) (1 la)

k(t) k(t) = i y—k(t) .
dt

(1 lb)

For notational convenience, BH/dt is denoted here by H . One then obtains from Eq. (9) the following equation of
motion for the matrix elements akl(t):

d = d d
dt

akl(t) lakl(t} yk( t} yl(t} +exp ' ~kl(t
dt dt 0

X g exp i f co „(t')—dt' a „(t)5l „(1—5k ~ ) +5k m(1 —5l „)(k(t) ~H'~m (t) ) (n (t)~H'~l (t) )
town t

+exp i f loki(t')dt' g I kl „a„(t)exp i f co „(t')d—t' a' „'(t)—
0

m, n
(12)

It is convenient to decompose the Hamiltonian into a
constant part and a time-dependent part, 0 =H0
+H i ( t). For a slowly changing Hamiltonian the usual

assumptions of the adiabatic approximation are expected
to hold,

(kl)+(pq), there are three (or four) types of equations im-
plied by Eq. (12):

da, (t)= i y (t) y, (t} +—I, , a, (t),
0'

a „(t)=a„(0)+0 (13a) (14a)

co „(t)=co„(0)+O(H,(t)) . (13b) d . i, , (q(t)~H'~(l(t) &

dt ~, o ~ oi, (t)
a l(t)=exp i co l(t')dt'

In these equations co stands for a typical transition fre-
quency of the Hamiltonian. The first equation follows
from a calculation of the extent of deviation from the adi-
abatic approximation, while the second one results from
the definition of (ii „(t).Let us now discuss Eq. (12) first

by assuming a simple initial condition, and then general-
ize to any initial condition. Assuming the simplest initial
condition, which is a (0)= 1 and ak, (0)=0 for

+exp i f oiql(t')dt' I pl~q (l~q},
0

(k(t)iH'~p(t) &

ak (t)=exp i teak~(t')dt'
dt o . cok~(t)

+exp i f 'oak (t'}dt' rk (k&p),
0

(14b)

(14c)
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d
ak&(t) = exp i cokt(t')dt'

dt . 0

Xexp —i f cop, (t')dt' +C I'i, (pq0

trix which contribute to a growth in the magnitude of
other elements of the density matrix. Integrating these
equations approximately, this contribution is found to
change the requirement for the adiabatic approximation
to the following one:

(k~p, l~q) . (14d)

The constant C in (14d) is equal to 1 if there is a degen-
eracy in frequencies cok/ copq and is equal to 0 other-
wise. The terms with a' '(t) in Eq. (12) have been omit-
ted here, as they are nonzero only for p =q, in which case
the geometrical phase diff'erence in Eq. (14a) is zero, so
these elements are not relevant for the present discussion.
In order to distinguish clearly between the special effects
of the stochastic process and the features which result
just from using the density matrix instead of a wave func-
tion, it is convenient to discuss Eqs. (14) first by ignoring
the relaxation part, and then include also the effect of the
relaxation. Performing an approximate integration of
Eqs. (14b) and (14c) when the relaxation terms are ig-
nored, one gets a rough criterion for adiabaticity,

and

(q(t)IH Ii(t) &

[aitq(t)]

«1 (k~m),

~k/, mn «1 (l~n),
~tn

«1 (k@m, l~n) .

(16a)

(16b)

(16c)

(16d)

(q(t)IH'11(t))
1[~„(t)]' (15)

This is the ordinary requirement for the applicability
of the adiabatic approximation. Notice that the only
matrix elements ak, (t) that can become nonzero (when
I =0) are those that have one energy level in common
with the (pq) transition —either k =p or l =q. Berry's
phases for the individual wave functions result in geome-
trical phases for all off-diagonal elements of the density
matrix, as expressed by Eq. (14a). These geometrical
phases cause shifts in the spectral frequencies, ' ' which
can be observed experimentally.

When the elements of the supermatrix I are nonzero,
three kinds of effects take place. The most obvious one is
that the real part of I causes an exponential decay of
azq(t) When the s. ignal is Fourier transformed to the fre-
quency domain, this decay is transformed into a familiar
line broadening. In principle there is also a second effect,
a frequency shift due to the imaginary part ofI,but
this effect is usually relatively small. Finally, in Eqs.
(14b)—(14d) there are elements of the relaxation superma-

Equations (16b)—(16d) originate in Eqs. (14b)—(14d),
respectively. These additional conditions mean that the
relaxation process should be slow in comparison with the
transition frequencies, since otherwise the whole line
shape will be significantly altered by line broadening. It
is also necessary that there are no degenerate or nearly
degenerate frequencies connected by I

&& „.As long as
this modified criterion for adiabaticity is kept, it is still
meaningful to speak about frequency shifts caused by the
geometrical phase differences. However, if the matrix
elements of I are small compared with the transition fre-
quencies, and at the same time they are large compared
with the geometrical phase difference, the resulting line
broadening is larger than the frequency shift. In this in-
termediate regime the adiabatic approximation may still
be useful to some extent, but not sufficiently accurate to
make the observation of Berry's phase feasible. This
point will be discussed in some detail in Sec. III.

Now suppose one has a more realistic initial condition,
in which several elements of the density matrix are
different from zero. Define the set S~ of their index pairs
as St = [(pq)Ia~~(0)&0). Then Eq. (14a) would become

G Gf

dt pq pq dt p dt
a (t) =ia (t) y (t) y(t) +exp —i co„q(t')dt'

0

(p(t)IH'Ir(t) ) (s (t)IH'Iq (t) )

(rs)ESi pr co, t

+exp i f co (t')dt'
0

I „,a„,(t)exp i f co„,(t—')dt' —a„,(t)
(rs) ES~ (17)
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and Eqs. (14b)—(14d) would be modified in a similar
manner. The equations are now more complicated than
with the artificial condition of a single nonzero element in
the initial value of the density matrix, but qualitatively
the situation is unchanged. In particular, if the relaxa-
tion terms are ignored, the rough criterion expressed in
(15) for the validity of the adiabatic approximation still
applies, and the geometrical phase differences shift the
spectral frequencies.

If the full Eq. (17), including the relaxation terms, is
considered, the same qualitative situation is encountered
as in Eqs. (14). In particular, conditions (16) have to be
fulfilled for the adiabatic approximation to apply. It is
convenient to arrange the relevant elements of the density
matrix, those which belong to the set S~, in a vector, and
the coefficients of these elements in Eq. (17) in a matrix,
so that the equation takes the form

teracting two-spin system, and the influence of the jumps
on this effect. This example will also be used for demon-
strating how to calculate, in a systematic manner,
higher-order corrections to Berry's adiabatic approxima-
tion.

Denoting the electronic spin by S and the nuclear spin
by I, it is assumed here that S =

—,
' and I =

—,'. The Hamil-
tonian is taken to be equal to (see Appendix of Ref. 30)

H = co~I, —y, B—.S+D(i )I,[S,+ —,'(S+ +S )] (19)

in a special reference frame, rotating around the direction
of the static magnetic field at the detection frequency
cod„. The nuclear Zeeman frequency is ~~, and the
effective magnetic field acting on the electronic spin is

d a(t)=X(r)a(t)+b(t) .
dt

(18)
B=

[ b z+ co, [cos(5t)x —sin(5t)y) ],
~e

The matrix, or rather supermatrix X(t) contains on the
diagonal both the geometrical phase differences and the
diagonal elements of the stochastic superoperator. Its
off-diagonal elements contain contributions from the two
sources of deviation from adiabaticity, viz. , the change in
the Hamiltonian and the off-diagonal elements of the sto-
chastic superoperator. The vector b(t) contains the con-
tribution of the equilibrium density matrix to the calcula-
tion.

In general, this set of equations may be solved numeri-
cally for specific cases. In order to get some insight into
these equations, it is desirable to study some examples
analytically, discussing what may be calculated or ob-
served in those cases. This will be done in Secs. III and
IV.

III. AN ESR EXPERIMENT ON A SYSTEM
WITH TWO-SITE JUMPS

A. General equations

To study the effect of stochastic processes, it is useful

to treat two extreme models. One is a model of discrete
two-site jumps, and the other is a model of continuous ro-
tational diffusion. In this section we shall consider a pos-
sible ESR experiment on an electron-nucleus system in

which a simple interaction is modulated by two-site

jumps, and in Sec. IV a similar experiment will be dis-

cussed for an electron-nucleus system, undergoing rota-
tional diffusion.

It is relatively simple to discuss Berry's phase in the
case of a three-dimensional parameter space. In that case
the three time-dependent parameters form the com-
ponents of an ordinary vector, which determines the adi-
abatic evolution by its influence on the Hamiltonian. In
particular, the discussion is simple if the vector moves in
a conical circuit in parameter space, precessing around a
fixed direction. One way to achieve in practice a situa-
tion of this kind in magnetic resonance is to irradiate
with one frequency, and to detect the signal relative to a
different frequency. ' We therefore assume such an ex-
perimental setting, investigating Berry s effect for the in-

where b, =coo—cod„(with coo being the Larmor frequency)
is the off-resonance value, and 5 =~ —~d„ is the
difference between the microwave irradiation frequency
co and the detection frequency. The electron-nucleus in-
teraction is given in a simplified form by the last term in
the Hamiltonian, with

D( )=' +d, i =1
(21)

where the real constant d is taken as positive. These two
values of D (i) represent two states of the system, and the
stochastic jumps between these two states give rise to the
following equation of motion for the density matrix:

(22)

In this equation the full density matrix is a direct sum of
the matrices for the two states, because they are coupled
only by the stochastic process, for which the matrix I is
expressed as

(23)

It is therefore possible to use throughout the calcula-
tions a Hilbert space which is a direct sum of the spaces
for the two states, ' and the observed magnetization is
obviously an average (with equal weights) over the two
states. From here on the two states of the system will be
referred to as two sites, to emphasize the similarity of the
problem to that of a spin jumping between different sites.

For our purpose it is necessary to work in the time-
dependent adiabatic basis of Hilbert space. Ordering the
~S,I, ) basis as (~ —,

'
—,
' ), ~

—
—,
'

—,
' ), ~

—,
' —

—,
' ), ~

—
—,
' —

—,
' )), the

Hamiltonian matrix H~'~ for site (i) is, in this basis:
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D (i)
2 2 4

D(i)
4

0

D (i)
4

D (i)
2 2 4

0

0

0

0

D(i)
2 2 4

D(i)
4

0

0

D(i) —b
4

D (i)
2 2 4

(24)

with b =(co, /2)e' '.
The eigenvalues of this Hamiltonian are found to be

COI COI

I& z(i)= — +r (i, t), A34(i)= +r+(i, t), (25)

with

2r~ (i, t) =
I [b, +D(i)] +[D(i)/2] +to, +D(i)co, cos(5t) I

'~

One may now define an angle 0~ (i, t) by the relations

r+ (i, t)c so[8+(i, t)]= b, +D(i)
2

(26)

(27a)

r ~ (i, t)sin[0~(i, t)]= D(i) +b
4

(27b)

It is also convenient to define a time-dependent phase,

f3~ (i, t) =arg D (i)
4

+b (28)

which has in general a different value for the two sites. The right eigenvectors corresponding to these eigenvalues are
the columns of the following matrix:

0

0

0

0

ll~W Q W 0

0

0

V W~ V~W~

V~Wg V Wy

(29)

with the notation

' 1/2
1+cos(8 )

) V+=
1/2

1+cos(8+ ) +
w+ =exp i

Note that here both energies and eigenfunctions of the Hamiltonian are time dependent as well as site dependent. In
the adiabatic basis one has to solve Eq. (17), which appears here in the form

a,",(t)=ia,", (t) y,"(t)— y,"(t) +exp i co,",(t')dt' rI", ,', a,I,'(t)exp i f aI",—(t')dt' —a,",""(t)

+exp i f co"(t')dt'
0

exp i f co'„,'(—t')dt' aI,' (t)
(rs) ESI

&p(t)IH'Ir(t)) &s(t)IH'Iq(t) &5, 5„+5„6,
pr qs

+exp i co"(t')dt' 1 "' ' a' '(t)exp i co' '(t'—)dt' —a' ' '(t)
pq pq pq (30)
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Here l =1 or 2 and i'&i. The time evolution of an element apq is thus determined by three terms. The first, diagonal
term contains a geometrical phase and the diagonal part of the relaxation superoperator. The second term gives the
coupling of this matrix element to other density matrix elements related to the same site, as in the ordinary adiabatic
situation. The third term gives the coupling of apq to the corresponding element a' ' of the density matrix for the other

pq
site, due to the stochastic jump process.

For each site i, the density matrix p(t) is made of two 2X2 blocks along the diagonal, since the Hamiltonian com-
mutes with I„andeach of these blocks is coupled by the jump process only to the corresponding block for the other
site. This means that the set of equations (30) is actually divided into two separate sets of equations. One set, involving
the I, =

—, blocks, will be treated here explicitly, and then the trivial modifications —col ~col, D(i)~ D(i)—will give

the corresponding results for the I, = —
—,
' blocks.

Note that in the absence of the stochastic process the system considered here is similar to the one that was investigat-
ed in Tycko's nuclear quadrupole resonance (NQR) experiment, since in both cases there is a four-level system which

is divided into two uncoupled two-dimensional systems.
In Sec. II it was explicitly shown how the initial condition of the density matrix determines the set of matrix elements

which are relevent during adiabatic evolution. In magnetic resonance experiments the initial condition is usually easy
to express in terms of the components of the relevant angular momentum operator, which is S in the present case. Its
components in the adiabatic basis are

—,
' sin( 9}cos(P)

—,
' cos(9)cos(P) ——sin(f3)

—,
' cos( 9)cos(P ) + —sin(/3)

—
—,
' sin(9)cos(P)

(31)

—
—,'sin(9)sin(P)

—
—,
' cos( 9 )sin(P ) ——cos(P }

l

—,'cos(9)sin(P)+ —cos(P)

—,
'

sin�(

9 )

sin�(P

)

(32)

S =
z

—
—,
' cos( 9} —,

' sin( 9)

—,
' sin(9) —,'cos(9)

(33)

It is thus clear that if one starts with a conventional initial condition, as p=S, or p=S, all elements of the density

matrix are relevant. It is therefore assumed here that all matrix elements are relevant to the behavior of the system.

Working in the I, =
—,
' subspace, the equations form the set

d a=Xa+b .
dt

(34)

The density matrix elements are arranged in the vector a in the order

(1)a, 2

(1)a 21

(1)a 22

a(2)
11

a (2)
12

a"'
21

(2)
Q22

(35)

while the matrix X is
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~(1) l yt(1)
7

E
(1 2)

1 ~(1,2) v

T

(2)4 (2)
(36)

1 (1,2)e lg
7

(1 2)

7
O

(2)e

(2)e (2)

y&(1) — [yI1)(t) y(11(t)] (37a)

~(2) = [y(2)(t) y(2l( t)=d (37b)

l CO16e" '= [cos[5t —P(1, t)]4r (1,t)

In this matrix the following definitions have been used,
omitting everywhere the minus subscript [see Eqs.
(26) —(28)]:

would normally set 6 equal to zero in each of these terms,
because it is small compared with r(i, t) [see Eq. (13)].
This would leave basically only one time-independent fre-
quency (in the third term). In fact, exactly the same
simplification can be obtained without invoking the adia-
batic approximation at this point, by considering the spe-
cial effect which is studied here. For Berry's phase one is
interested in complete cycles of evolution of the quantum
system, or of the Hamiltonian. It is therefore required
that the signal be measured not at any arbitrary instant t,
but at regular intervals,

i cos[6( 1—, t ) ]sin [5t —p( I, t ) ] ]
t =nT=n (n =1,2, 3, . . . ) .2~

(42)
Xexp 2i r 1, t' dt'

0

l 6(716

I cos[5t —p(2, t) ]

(38)
It is easy to show that T, the period of adiabatic evolu-
tion, is also the period of most quantities in the matrix X,

i cos[—9(2, t ) ]sin[5t —p(2, t) ] I

Xexp 2i r 2, t' dt'
0

(39)

P(i, t + T) =P(i, t),
r (i, t + T) = r(i, t),

(43a)

(43b)

e'' '=exp 2i f [r (1,t') —r(2, t')]dt'
0

Finally, the vector b has elements of the form

( )—a„'I' (t) exp i j co&'&'(t')dt' —exp i j co'&'&'(t')dt'
0

(40)
cos[5(t + T) p(i, t + T)]=—cos[5t p(i, t)], —(43c)

sin[5(t + T) p(i, t + T)]—=sin[5t /3(i, t)] . —(43d)

As for the geometrical phase, in each cycle it accumu-
lates the same additional value

(41)

using the fact that at equilibrium the density matrix has
equal elements for the two sites.

The exact time dependence of the elements of X is very
complicated. The functions e" ' and e' ' are differences of
products of three terms, each term having a different be-
havior. In each product, the first term oscillates at the
frequency 6, the second term oscillates at the same fre-
quency but with an extra time-dependent phase P, and
the last term is the exponent, for which elliptic integrals
have to be evaluated. In the adiabatic approximation one

y", (t) —y,"(t)=y", (n T) —y "(nT)

= n [yI'( T) —y~'( T)]

(44)

so that the quantity appearing in the matrix is simply a
constant,

y"=—[y", ( T)—y~'( T)]= —5[ 1 —cos[8(i, t)] I ..() 1 ()

(45)
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D (1)
/3(i, n T) = arg

2

CO]

2

0 [if D(i) &~, ]
vr [if D(i) &co,], (46a)

cos[5n T /3(i—, n T) ]=cos[/3(i, n T) ]

1 [if D(i) &co, ]
—1 [if D (i) & co, ], (46b)

I

In this equation we have used the well-known value of
Berry's phase for the case of motion in a conical circuit in
parameter space. ' ' Considering now only times t =nT,
n being any positive integer, and using the equalities in
Eq. (43), the time dependence of X becomes very simple,

(34), the coefficients are either constant in time, or oscil-
lating at one of three frequencies. In the upper-diagonal
block the frequency is co"', in the lower-diagonal block
co' ' and in the off-diagonal blocks the difference of these
two frequencies. Even so this set of differential equations
is too dificult for a direct solution, so the work will
proceed in two stages. In the first stage the time-
dependent problem will be solved for a single site, using a
Floquet-type method to obtain higher-order corrections
to the usual adiabatic approximation. In the second stage
an approximation will be used for the domain of slow
jump rates, in order to get an explicit analytical result for
the case of stochastic jumps.

sin [6n T /3(i, n —T) ]=0, (46c) B. One-site problem

~,6 cos[/3(i, n T) ]E1'(t)= i — exp[2inT r(i, nT)]4r(i, nT)

= —ia(i)exp[ice(i)t] . (46d)

Substituting Eqs. (46) in Eq. (34) for the case of a single
site, and multiplying by i, the equation of motion for the
density matrix elements becomes

Substituting these expressions in the set of equations
f(t) =y(t) f(t),~ d

dt (47)

The matrix g is defined as

a exp(i cot)
—a exp( —i cot)

0

—a exp( i cot)—
—y'

0
—a exp( i cot)—

a exp(i cut)

0
r'

a exp(i mt)

a exp(i cot)
—a exp( —

idiot

)

0

(48)

while the vector f is

ct, 1 (t)

+12(t)
(49)

Equation (47) has been deliberately presented here in a
form similar to Schrodinger's equation in Shirley's or
Maricq's work. The reason is that Floquet analysis, on
which their formalisms were based, is also natural to use
here, and it is convenient to use the same notation. One
has to keep in mind that the Liouville-space vector f(t) is
not a wave function, and the Liouville-space matrix y(t),
playing in this equation a role analogous to that of the
Hamiltonian, is not Hermitian. ' Nevertheless, Floquet's
theorem can still be used, since it does not require her-
miticity of the matrix (see, e.g., Ref. 30).

Using ordinary Floquet theory as in Shirley's paper
one obtains in the present case an infinite-dimensional
matrix with eleven nonzero diagonals, which is not
simpler to treat than the original problem of Eq. (47). On
the other hand, the time dependence can be averaged
over with average Hamiltonian theory (AHT), ' be-
cause cu, the oscillation frequency, is of the same order of
magnitude as co, , and thus (in the adiabatic case) much

larger than 6, which determines the intervals between
detection points. However, the AHT approach will not
only average out many details of the time dependence, it
will also require t =m 2'/co, where m is an integer,
whereas the observation of Berry's phase requires t = n T.
These two conditions may not be compatible, and when
we go back to the original two-site problem, in which
there are two different values for co, we shall have three
simultaneous requirements, which will in general be in-
compatible. It is therefore necessary to choose an inter-
mediate approach, keeping some of the time dependence
in g and eliminating the need of having a special relation-
ship between co and 5. Maricq's generalization of AHT,
based on Floquet theory, is indeed appropriate for this
purpose. The original derivation was done for a Hermi-
tian g, but this is not essential for the method.

In Maricq's formalism, Eq. (47) is solved by

f(t) =P(t)exp( —i Ht) f(0), (50)

where f(0) is the initial condition, and

P(t)= QP„(t), H= gH„,
in which P„(t+2vrlco)=P„(t) The first ter. ms in these
series are Po(t)=1 and HO=0. The general terms for
n )0 are defined as
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P„(t)= i—f X(t')P„,(t')
0

"Hamiltonian" (in our case the Liouville-space matrix X)
in a Fourier series,

n —1

g P„(t ')H„k H„—dt', (52a)
k=1

X(t)= g X„e'""',P„(t)= g P„„e'""',
P P

(53)

J X(t')P„,(t')
2K 0

n —1—g Pk(t')A„k dt' . (52b)

from which one gets the expressions

&.= Xx—P.—i,.—g Pk, oH„k-
k=1

(S4a)

k=1

It was shown by Maricq that for any n &0, B„=H„
where H„,is the (n —1) term in the Magnus expansion
used by ordinary AHT. A convenient form for P„(t)and
A„may be obtained by expanding P„(t)and the original

P (t)= g xP„
p+ —~

n —1

X X Pk, A .—nk
k =1 v~O

1 —exp(i vcot)

1 —exp[i (p+ v )cot]

(p+ v)co

(54b)

The first few terms are then given by

1 exp(i p—cot )P, t)=
o pco

(ssa)

(55b)

Qo
1~2 g ([xq x —„1+[xox„] [xo x—„])

PQ)
(ssc)

P (t)= g [X~ (1 —e'""')+X ~ (1—e '""')]
( )2 P

+ g gx~, (1 —5, „)
p~O v~O

1 —exp(i pcot )

pcs

1 —exp[i (p+ v )cot]

(p+ v)co
(55d)

,'+ y (1 —~. .)
' ", —y (1 —b„„)

(vcr) &o
' (vco)(v co) &o

' (vcr)(v co)

Xp 1 ([x.,x—.]+[xo x.]—[xo x-.]) .
0 PCO 1

VCO

(55e)

Using these formulas one can calculate the matrices for
the present case. The results are given in the Appendix.
In these matrices the quantities e and y' are of the same
order of magnitude as 5, while ~ is similar in magnitude
to the irradiation strength co, . It is therefore clear that in

Eq. (51) the two series converge rapidly in the adiabatic
regime. It will be shown below that by taking just two
terms in each expansion we reproduce Berry's version of
the adiabatic approximation plus a small correction. By
taking into account a sufficient number of terms in the
expansions, it is possible to get higher order adiabatic
corrections.

Assuming an adiabatic situation, the series expansion
for the average Liouville space "Hamiltonian" will be ap-
proximated by

H=B, +8,= (56)

where the matrix A is defined by

0 b —b 0
—b —a 0 —b

0 a b

b —b 0

(57)

with a =y'+2a /co, b =y'a/co (a »b). The series for
P(t) will be truncated as

P(t) =P,(t)+P, (t) = p 1 0 p

p 0 1 p*
p* p

(58)

with p =(a/co)(1 —e'"').
For the computation of the exponent exp( iHt) in Eq. —

(50) it is desirable to transform H, or rather its approxi-
mation A, to a canonical form,
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T 'AT=A

so that the exponent will be computed as

exp( —i Ht) =exp( —i At) = T exp( —i At) T

(59)

(60)

using the definitions
—i A. 3tPo=e ' —2c =e (64a)

Like the original Liouville space "Harniltonian" y [Eq.
(48)], the matrix A is not only nonhermitian, it is also not
a "normal matrix, " i.e., it does not commute with its
Hermitian adjoint, A A —A A &0. As a consequence
of this, the matrix 3 is diagonalized by a nonunitary
transformation, and its (right) eigenvectors do not in
themselves form a complete orthogonal set. In fact, its
right and left eigenvectors are a biorthogonal set, for
which certain symmetries may be relevant. ' Carrying
out the diagonalization procedure for A, the eigenvalues
are found to be

ik3t + ' lg

P, =c(e —1)=—(e'y ' —1),
CO

(64b)

2

)))2=c22cos(g3t) = — (e~y'+e ~ y )')'
CO

(64c)

F(t) —=P(t)exp( —iHt)

Combining this result with Eq. (58) the approximate solu-
tion for Eq. (47) is calculated with

A. )
=k2 =0, A 3

= —A 4
=a ( I —4c 2

)
) y2 =ar (61) 1+F)4 F]~ F]4

with c =b/a, and the corresponding eigenvectors are the
columns of the matrix T,

F2

Fzi

Fez F23

Fez

F2&
(65)

1

v'2

0
T=

0

c

2CG g+ g
2cQ g g+ (62)

F[4 F]2 2C F]2 C 1 +F[4

where the matrix elements F, are

1
cv'2

with d =[2(1+4c )] ' and g+ = —2c2/( I+r) Using.
Eq. (60) the exponent is approximately given by (see &p-
pendix)

exp( —i Ht) = exp( iAt)—
1 —

p2 c —
(I(',

F,4 =2q [cos(cot) —1 —cos[(co —y')t] )

e
—

(
—

y )t)'
F, =q(e' ' —e""'),

F —
( 1 2q )e ~y't+ 2q 2(ei (m+ y')) ice)

)

(66)

4'o

p2
—2c

—c —P)

P~
—2c

4o

(63)

F23 =2iq sin(y't)+2q (e'(" y "—e""'),

with q =e/a &&1.
Taking a very common initial condition for such an ex-

periment, p(0) =S„the solution for the density matrix is

—C+ Sq [ 3 —2 cos[(to —y') t] ]

SIe'y'+2q [2e' 'cos(y't) —cos(y't) —2e' ']]
S I e 'y '+2q [2e ' 'cos(y't) —cos(y't) —2e '"']

I

C+Sq [1—2 cos[(co—y')t] j

(67)

with C=——,)cos[8(0)] and S—:—,)sin[8(0)). Measuring S,
for example, the observed magnetization is

Tr(S„p)= [a „(t)—a2~(t) ] ) sin(8)cos(P)

—[a,2(t)+a2, (t)]—,'cos(8)sin(f3)

+ [a2, ( t ) a, 2 ( t ) ]—c—os(/3), (68)

with a similar result for S . The leading term in the am-

plitude of the signal has Berry's phase shift, and the other
terms are, in the adiabatic case, relatively small correc-
tions to the main term. In fact, by including in Eq. (51)
also higher-order terms in each expansion, one may gen-
erate in a systematic manner higher-order corrections to
the adiabatic approximation. The use of Maricq's for-
malism for the time-dependent single-site problem thus
provides us not only with a way to calculate the geome-
trical phases analogous to Berry's phase, but also with a
method for deriving corrections to this version of the adi-
abatic approximation.
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C. T~o-site problem

It is now possible to return to the original two-site
problem. In the general case, having the solution of the
one-site problem does not make the situation simpler, but
if the rate of stochastic jumps is suKciently slow, i.e.,
1/r « ~(p(t)((, an approximation can be made. Equation
(34) separates into the two equations

a"'(t) = —iy"'(t) —1—a'"(t)+b'",
dt 7-

(69a)

—iy"'(t) ——1 a"'(t)+b'",
dt 7

(69b)

where 1 is the unit matrix. The equations are immediate-

ly solved by

a" '(r) =e ' "f"'(r)+ F"'(r) f [F'"(r')] 'b' "(r')dr'
0

(70a)

a~2~(r)=p '»~f~2~(r)+F~2~(r) f '[F~2~(r )]
—'b~'~(r )dr',

(70b)

where f'"(t) and f' '(t) solve Eqs. (69) when there is no
stochastic process (formally, when 1/r=0). Calculating
the matrices G"—= [F"(t')] ' one finds (see Appendix)
the lowest order elements, in terms of powers of a/co, to
be the diagonal elements. The first and fourth elements
are unimportant, because they multiply in Eq. (70) the
first and fourth elements of b, which are equal to zero.
The relevant elements are 62'2 =e ' ' and 633 e'
These elements multiply in Eq. (70) the second and third
elements of b, respectively, which oscillate with high fre-

quencies. Therefore the integrals in Eq. (70) are relatively

small corrections to the first term on the right-hand side

of this equation. As a result of this, the main inhuence of
the stochastic process is, as usual, just to multiply the
nontrivial part of the density matrix (the part which is

not proportional to the unit operator) by decaying ex-

ponents. Fourier transforming to the frequency domain,

one gets a characteristic broadening of the signal (the
small frequency shift due to the jumps is neglected in this

approximation). The calculation of the geometrical

phases is not affected, in this approximation.
The condition for observing a geometrical phase in the

slow jump rate domain is to have a significant frequency
shift because of the geometrical phase, without a compa-
rable broadening by the jump mechanism. As noted

above, the geometrical phases are associated with fre-

quency shifts that are roughly equal to y', so their magni-

tude is similar to 5. These shifts occur relative to the
transition frequency of 2r(i, t) [see Eqs. (38) and (39)],
which is similar in magnitude to ~&. Since in the adiabat-

ic case 5/co, is small, the shifts are correspondingly small.

On the other hand, this ratio should not be very small,

because then the whole effect will be too small to ob-
serve. ' The shift will not be noticed if the broadening
exceeds y' by a sufhcient amount, so the condition for ob-

-serving the shift is

1—«y'-5 .
'T

(71)

This means that in the present context there are three,
not two, relevant dynamic regimes. For 1/~) ~& the dis-
sipative mechanism is too fast to allow any adiabatic evo-
lution. For co, ) 1/r )5 the adiabatic approximation
may be useful, although it is not very accurate. In this
case the jump process is not fast enough to cause
significant line broadening that will change the basic
structure of the spectrum. It is fast enough, however, to
broaden the lines to such a degree as to hide the frequen-
cy shifts originating from the geometrical phases. Only
when 1/r «5 or at least I/v&5 the adiabatic approxi-
mation is sufticiently good, so that also Berry's phase can
be observed.

The situation described here, in which motions that are
too slow to inAuence the general line shape may still be
fast enough to modify the effect of the geometrical phases
in the spectrum, can be used for studying very slow
motions. The slow time scale, determined by 5—the rate
of change of the Hamiltonian —makes Berry's effect
more sensitive to such motions than the general structure
of the spectrum. To study such slow diffusion processes
one may do a "forced precession" experiment, measuring
the magnetization during the irradiation of the system.
The chief requirements are detecting at a frequency
which may be different from the irradiation fre-
quency, and measuring stroboscopically at t =n T,
n =1,2, 3, . . . . The experiment has to be repeated for
several values of 5, including 5=0, to check the linear re-
lationship which should exist between the frequency shift
and 5. The frequency domain spectrum is concentrated
in a very narrow region, of width 5, with high-frequency
resolution. Very slow motion will somewhat broaden the
line, as predicted by Eqs. (69) and (70). When the rate of
motion is comparable to 5 one may have to include
higher order terms in the solution of Eq. (34), because
then also the higher-order frequency shift caused by the
motion becomes important.

Alternatively, it is possible to irradiate with a strong
pulse, and then detect the free-induction decay. In this
case the measured signal oscillates at its ordinary unshift-
ed frequency, and the only mark left by the geometrical
phase is a constant phase factor in the amplitude of the
signal. One therefore needs to measure the ratio
(5» ) /(S, ) at a particular moment, preferably iinmedi-
ately after the pulse, or after an additional echo pulse, to
avoid dead-time problems. This ratio should depend on
the value of 5. A measurement of this kind would require
very accurate phasing in the detector, and the relation be-
tween the measured quantity and the frequency 5 would
not be as simple as in the previous type of experiment.
An additional difficulty here would involve the length of
the pulse. The duration of the pulse should be
t =nT ~ T =2m/5 so that at least one cycle of adiabatic
evolution will be completed. The pulse would then have
a very large tipping angle,

CO]

co]t ~ 2m ))2m, (72)

in addition to being strong, to achieve a significant rota-
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tion of the magnetization.
Finally, it is necessary to compare the effects described

above for the two spectral lines, related to I, =
—,
' and

I, = —
—,
' manifolds. It is obvious from the definition of

r(i, t) above that if the hyperfine coupling is relatively
large, an appropriate choice of off-resonance value
would result in very different transition frequencies for
the I, =

—,
' and I, = —

—,
' subspaces. It should be noted that

from the definition of cos[8(i, t)] [Eq. (27)] and the formu-
la for y' [Eq. (45)], an appropriate choice of b. could also
make one of the phase shifts y(i)' much larger than the
other. Then the geometrical phases would selectively
shift mainly one of the two spectral lines, leaving the oth-
er one almost unaffected. If the smaller shift is not too
small to be unobservable in practice, the difference in size
between the two frequency shifts would make a further
distinction between time scales in the very slow diffusion
regime. Also here, if the motion is not very slow, one
may need to consider higher order terms in the solution
of the relevant equations in order to include the motional
frequency shift in the calculation.

IV. ELECTRON-NUCLEUS SYSTEM
WITH AN ANGLE DEPENDENT HAMILTONIAN

The effective magnetic field B is equal to

1
I [&+g (Q)]z+co, [c os(5t)x —sin(5t)y]I .

Xe
(74)

In this expression A=coo —cod„includes the isotropic part
of the g tensor, while the axially symmetric g tensor is
defined as

g (0)=gDoo(Q) =g—,'(3 cos 13
—l ) . (75)

The Euler angles Q=(a, p, y ) specify the molecular
orientation with respect to the direction of the static
magnetic field. The oscillation frequency 6 is again
cu —cod„, and the orientation-dependent hyperfine cou-
pling is

D(fl ) =DDOO(Q), (76)

where D is a constant. The stochastic process is assumed
to be isotropic rotational diffusion, for which the relaxa-
tion operator is

A. Isotropic rotational dift'usion of an electron-nucleus system
I =RV (77)

H = coII, —y, B.S+—D(Q)I,S, , (73)

As in the previous example the system to be considered
consists of an electron with spin S =

—,
' and a nucleus with

spin I =
—,', but this time with a different, perhaps more

realistic model for the Hamiltonian and for the stochastic
process. In principle it is possible to treat a general case,
with a g tensor that has no axial symmetry and with
hyperfine coupling in which the pseudosecular terms are
not negligible. However, such generality will complicate
the calculations without changing the basic result, so that
the physics of the problem will be obscured. We there-
fore restrict the discussion to the case of an axially sym-
metric g tensor and include only the secular term of the
hyperfine coupling. Using the reference frame which ro-
tates at cod„around the static magnetic field, the Hamil-
tonian is assumed to be

where the constant R characterizes the rate of the
motion. The eigenfunctions of this operator are Wigner's
functions DzM(D), with eigenvalues RL (L + 1 ). The
equation of motion of the density matrix is now

(78)
In order to solve this equation it is convenient, on the

one hand, to expand the density matrix in terms of the
eigenfunctions of the stochastic super operator, to be
denoted for simplicity as f (0), where the index m
stands for the set of indices (L,K,M). The corresponding
eigenvalues will be denoted as r . On the other hand, in
order to follow the adiabatic behavior of the system, one
has to use an adiabatic basis in spin space.

The Hamiltonian has the following matrix in the
~S,I, ) basis:

CO I
2

~z D (0, )

2 4

Q)I CO

+
2 2

0

D(ft)
4

COI

2

0

D(A)
4

D(A)
2 2 4

(79)
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with b as in Eq. (24) and ~, /2—=5+g(Q)/2. Since both
the Hamiltonian and the diffusion process do not couple
the subspaces of I, =

—,
' and I, = —

—,', it is again possible to
do the calculation just for one of the subspaces. The ei-
genvalues of H (t) are

(t) )

w*uz(Q)

(86)

where

COI ~r
+P

y X3 4 +l +t 2
(80)

2r+ = [[b.+g(Sl)+D(Q)/2] +iti, I' (81)

Using the definitions

2r+cos(0+) =b.+g(II)+ D(A)
2

2r+sin(0+) =co, ,

(82a)

(82b)

U+W
(83)

the corresponding eigenvectors are the columns of the
following matrix:

The angle-dependent functions are those that were
defined following Eq. (83); in all of them, the angle depen-
dence is contained in expressions of the type
[aDOO(Q)+bDOO(Q}]' . When such an expression is ex-
panded in the functions Dz~(Q), the coefficients are ob-
tained by multiplying each expression by Dx~(Q) and in-
tegrating over dQ. Nonzero coefficients can be obtained
only for K =M =0, so that the relevant functions are just
dao(P), which are Legendre polynomials in cos(P). Tak-
ing into account the parity of the integrand, it is clear
that only even values of L will have nonzero coefficients,
their magnitude is found to decrease for large L roughly
as 1/L. It is thus possible in practice to truncate the
infinite summation over even values of L at some high
value of L. Operating with I z on the density matrix, one
has to operate on products of two functions [see Eq. (84)].
Each such product can be expressed in terms of the
eigenfunctions of I n,f (Q) by means of standard formu-
las. In the present simple case the f (0) are just the
normalized doo(/3), for which one has

V+W V W
2Jt Jtl J

doo(P)doo(P) = g (21 +1) 0 0 0 d J~(P) (87)

with the definitions u + =Q [ I +cos( g ) ]/2,
U+ =Q[ I+cos( 9+ ) ]/2, and w = e ' ' . In the present
example, only the eigenfunctions of H are time depen-
dent, while the energies are constant.

It is now possible to transform to the adiabatic basis
the components of the angular momentum vector S, and
using the same arguments as in the previous example, all
matrix elements of the density matrix are found to be
relevant in the sense of Eq. (18).

Since the adiabatic states are angle dependent as well
as time dependent, they can be expanded in terms of
Wigner's functions, the "coefficients" being time-
dependent vectors in spin space. We shall use here the
notation v for a column vector, and v for the corre-
sponding complex conjugate row vector. Therefore in
the expression for p in Eq. (7) the following relation
holds:

~k (t) ) &1(t)~ = g v'"'(t)v„"(t)f (II)f„*(&).
m, n

(84)

wu, (Q)

tU*u2(A }
~k(t)) =

0

(85)

or of the form

This relation makes it possible to calculate the relaxation
term in Eq. (78}, and this calculation will now be out-
lined. The eigenvectors of H found above are either of
the form

I„„,=Tr(~q(t))&p(t)ll
~

(t))&s(t)l) . (88)

The resulting element of the relaxation superoperator
is a sum over functions of Q. Premultiplying the equa-
tions of motion by D oo (A ) and integrating them over d 0,
one obtains equations which do not contain any angle
dependence.

In order to carry out the procedure described above,
one needs to find the coefficients of Wigner's functions in
the eigenstates of H(t), in principle for all even values of
L, and in practice for some finite number of them. In a
similar problem, involving equations for all even L values
which are coupled among them, it was also found that
truncation for some value of L is possible. In that case
four L values were found to be sufficient for ~~H ~~

/R ~ 10
and seven L values to be sufficient for ~~H~~/R =100.
This gives only a rough estimate for the present case, be-
cause here an expansion over L values is involved, rather
than coupling of algebraic equations, and also the Hamil-
tonian considered here is not exactly the same as the one
for which the quoted numbers were found. Nevertheless,
it seems that also here the number of relevant L values
should be of a similar order of magnitude.

The set of equations to be solved has the same general
structure as in Eqs. (34) except that here the matrix X
consists of a single 4X4 submatrix instead of two such
submatrices. The complexity of the present case lies in

Substituting in Eq. (17) the results obtained here, the
equations of motion for a&i(t). contain in the relaxation
part a double summation over even L values. In this
summation, an element of I has the form
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the calculations that are needed to get a reasonable ap-
proximation for the values of the matrix elements of X,
before applying the procedures of Sec. III to get an actual
solution.

It is clear that the set of equations obtained here can
only be solved numerically, and it is dificult to get
analytical estimates for the geometrical phases and for
the inhuence of the stochastic process on these phases.
Nevertheless, comparing the structure of these equations
to those contained in Eqs. (34) it seems that the geometri-
cal phases should still have an observable effect, with the
diffusion process resulting in an overall line broadening,
as long as only the slow motion domain is examined. It
therefore seems that the same types of experiments men-
tioned in Sec. III C would also be useful here. In particu-
lar, the "forced precession" experiment could be used as
explained above both to study the inhuence of diffusion
on Berry's phase, and to study very slow motions by their
inhuence on that phase.

As shown in Sec. III, the interesting domain for the
geometrical phases is that of slow diffusion, in which
R ~ 5 (( ~~H ~~. It was mentioned there that in practice it
is inconvenient to use a very small 5, and in fact it was
found in an actual case that 45=~~H~~ is sufficient to
achieve an adiabatic situation in which Berry's phase is
relevant. ' It therefore seems that, within the slow
diffusion domain, a large dynamic range may be covered
by coupling just several L values. In the present case,
however, the situation is complicated by inhomogeneous
broadening, due to the presence of molecules at all orien-
tations. This broadening is similar in magnitude to the
irradiation strength cu, , and in order to reduce it one has
to irradiate only a specific spin packet by using a relative-
ly weak co, . This would make sin(0) in Eq. (82) very
small, and according to Eq. (45) Berry's frequency shift

would become much smaller than 5. The shift could then
be observed only if the motion is very slow, satisfying the
rough inequality

1—&5 «D .
D (89)

This restriction to slower motions would necessitate the
use of more terms in the expansion over L values, in addi-
tion to the fact that the observation of the effect would
require greater accuracy.

B. Possibility of degeneracy in the rigid limit

In Sec. IV A the effect of rotational motion on Berry's
phase was examined. In the rigid limit, i.e., when the
diffusion rate is zero, one may in principle investigate
another interesting manifestation of Berry's phase. This
is related to non-Abelian gauge fields, appearing when the
Hamiltonian has an exact degeneracy that is not broken
by the time-dependence. "' '

Suppose the angle-dependent Hamiltonian used above
includes also a pseudosecular term in the hyperfine in-
teraction,

H coIIz & ~ B S

D'(0) = &3/8DDO—, (0) . (91)

In the ~S,I, ) basis the Hamiltonian is thus represented
by

+D(A)I, S,+[D'(Q)I++D'*(A)I ]S, , (90)

where B is defined as in Eqs. (72) and (73), and D(Q) is
given by Eq. (74). The pseudosecular hyperfine constant
is equal to

~z D (Q)
2 4

COI CO

+
2 2

D(Q)
4

0

D(&)
4

0

c

(92)

0 c
~r ~. D (0)
2 2 4

with c =D'(0)/2.
In general this Hamiltonian has four different eigenval-

ues, and the subspaces of I, =
—,
' and I, = —

—,
' are coupled.

Suppose now the sample is not a powder but a single
crystal, with a specific orientation 0, with respect to the
static magnetic field. If the orientation is chosen so that
the polar angle is equal to the "magic angle, " i.e. , /3

=arcos(1/&3) then Doo(Q, )=0 One may also . choose
conveniently coo=cod„sothat the Hamiltonian matrix be-
comes

—b* —a
c* 0

0
c

—b
(93)

0 —c' —b* a

with a =col/2.
This Hamiltonian has a degeneracy either when c =0,

which is simply the case treated in Sec. IV A, or when
a =0. In the first case the I, =

—,
' and I, = —

—,
' subspaces
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are uncoupled, but in the second case all four spin states
are coupled by H. To achieve a =0 one has to irradiate
the nuclei continuously at their resonance frequency, in
addition to irradiating the electrons, and work in a rotat-
ing frame with respect to the nuclei. The element c then
becomes time dependent, being multiplied by the factor
exp( —i catt) Th. e eigenvalues of H are then

2 1/2D'(0)
2

+
21 2

(94)
A3 A4

In each of the two degenerate subspaces occurring here
one may observe geometrical phases that are related to a
non-Abelian gauge field. " This means that if the system
is initially in one eigenstate of the Hamiltonian, it will
evolve into a linear combination of all eigenstates with
the same energy. The transformation involved can be
calculated using the method of Ref. 11. This effect,
which is more general than the ordinary effect of Berry's
phase in a nondegenerate case, would be especially in-
teresting to study, as it has not been observed experimen-
tally so far. In practice, however, two obstacles should
be overcome before such an experiment becomes feasible.
First, with ordinary instrumentation the orientation of
the single crystal with respect to the static magnetic field
can be determined up to a precision of roughly 1 . Hav-
ing such an error in the angle, the secular dipolar term
and the g tensor will not vanish exactly, and the degen-
eracies will be split. Moreover, irradiating the nuclei
effectively at their resonance frequency while the elec-
trons are irradiated close to their resonance value, re-
quires very high power in order to cover a significant part
of the spectrum. Therefore one could investigate the gen-
eral case of nonabelian gauge fields only after solving
these practical problems.

modulated by two-site jumps. The calculations were
done at first for a single site, using Maricq's generaliza-
tion of average Hamiltonian theory to calculate systemat-
ically higher-order corrections to the adiabatic approxi-
mation. Then an approximate result was obtained for the
two-site problem, demonstrating the general conclusions
mentioned above. The basic requirements for a possible
ESR experiment, testing these predictions, were also dis-
cussed. The second example was of an electron and a nu-
cleus with a secular hyperfine interaction, modulated by
isotropic rotational diffusion. The equations were set up,
showing the same basic features as in the first example.
A complete analysis was not done, due to the complexity
of the equations, which requires a numerical solution, but
the possibility of doing relevant experiments was brieAy
discussed. Also the conditions for observing geometrical
phases in a degenerate subspace of an ESR system were
considered.

In conclusion, from the theoretical calculations done
here it seems that an ESR experiment may be done to ex-
amine the inAuence of a stochastic process on Berry's
phase. Such an experiment may also be useful for study-
ing very slow motions, since it should have high resolu-
tion in the frequency domain.
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APPENDIX

In this appendix the explicit formulas will be given for
several matrices that were used in the Floquet analysis of
the single-site problem discussed in Sec. III. Using Eqs.
(55), the following matrices are obtained:

V. SUMMARY

Berry s version of the adiabatic approximation was
studied for interacting quantum systems which are de-
scribed by a density matrix, evolving in a semiclassical
manner according to the stochastic Liouville equation.
Starting with a general equation, it was shown that in
spite of the loss of coherence caused by the stochastic
process, it is still possible to calculate and observe the
geometrical phase shifts, provided one remains in the
domain of slow motions. A distinction was made be-
tween motions which are slow relative to the rate of
change of the Hamiltonian, for which Berry's phase is ob-
servable, and less slow motions, which are still slow com-
pared with the transition frequencies of the Hamiltonian.
In the latter case the line broadening resulting from the
stochastic process is sufficiently large to mask the fre-
quency shifts caused by the geometrical phases, although
the line broadening is still too small to change
significantly the structure of the spectrum.

The general discussion was followed by a detailed
treatment of two electron-nucleus systems, studied by
ESR experiments. First we considered a model of an
electron and a nucleus with a simple interaction term,

0 0 0 0
O —y'Oo
0 0 y' 0
0 0 0 0

] e lent ] e tent

0 0
0 0
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idiot
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QH =
3

CO

2 2a 2y
2(x 2f
0 2a

2f 2(x

2f 2Q
—2n 0

0 20. —20. 0

(A5)

Since this is not a unitary matrix, its inverse has to be
computed using standard procedures for inverting a gen-
eral matrix. The inverse matrix T ' is approximately
equal to

In Eq. (A4), p0=2cos(cot) 2,—p&
—= (1—e' '), and

e 2l celt

It is clear that if the change in the actual spin Hamil-
tonian is slow relative to the frequencies typical to this
Hamiltonian, both expansions converge quickly. For the
average Liouville space "Hamiltonian" related to y the
matrices (Al) and (A3) combine to give the lowest-order
nontrivial approximation, which is the matrix A [see Eq.
(56)]. Diagonalizing A, the eigenvectors are the columns
of the transformation matrix T, which is approximately
given by [see paragraph which follows Eq. (61)]

1

v'2 &2c 1

v'2

1
T '= — — —&2c —&2c

&2
C

c

c 2

C
2

(A7)

Substituting these matrices in Eq. (60), Eq. (63) is ob-
tained.

In order to invert F it is convenient to write

1

V'2

0
0

1

v'2

1

v'2

/2c
&2c

1

v'2

—c —12

—1 —c
(A6)

F '=exp(iHt)P '=[exp( i At)]*P— (Ag)

since 3 is a real matrix. In the resulting matrix 6—=F
the elements G]2 G]3 G2] G24 G3] G34 G42, and G43
are found to be of the same order of magnitude as q, and
the elements G,4, 64, , 623 and 632 are -q . The ele-
ments G» and 644 are approximately equal to 1,
G22 =e '~ ' and 633 =e'~ '.
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