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We examine the role of Berry's geometrical phase [Proc. R. Soc. London, Ser. A 392, 45 (1984)]
in the coherent excitation of atoms. The dynamics of a two-level atom prepared in a superposition
of its eigenstates will be modified in a nontrivial fashion by the Berry phase. We extend Berry's for-
malism to treat the Liouville equation for the density matrix. This extension allows us to discuss
statistical mixtures and to incorporate Berry s phase within the well-known Bloch-vector descrip-
tion of optical resonance. Furthermore, our density-matrix formalism provides the means of inves-

tigating Berry's phase in open, dissipative systems.

I. INTRODUCTION

In 1984, Berry' published a remarkable paper demon-
strating a new feature in the well-known adiabatic
theorem. ' This new element is a phase factor acquired
by the adiabatically evolved wave function. This phase,
named after Berry, develops in addition to the familiar
dynamical phase. The significance of Berry's phase is
that it is observable in the interference of two identically
prepared systems only one of which is adiabatically
varied (Fig. l). When the Hamitonian returns to its origi-
nal form (at t =T), the relative phase between the two
systems becomes observable in an interference type ex-
periment. Berrys's discovery has already made an impact
in a wide variety of areas within quantum physics. We
will not attempt to review these developments here but
recommend to the reader the review by Aitchison.

The interference experiment depicted in Fig. I is not
the only way that Berry's phase can be significant. It

H(R (0) )

H(R(t) )

I

t=0
FIG. 1. Schematic diagram of an idealized interference ex-

periment to measure Berry's phase. The time-dependent Hamil-
tonian is cycled so that &(R(t))=&(R(0)). [After Aitchison
(Ref. 4)].

may also appear when two identically prepared systems
are both subjected to the influence of adiabatically vary-
ing Hamiltonians. In this case the phase will appear in
an interference experiment when both Hamiltonians ac-
quire the same form (though not necessarily the initial
form) after different variations. It is not even necessary
for the Hamiltonian to return to its original form, as the
phase difference between different states (produced by
adiabatic evolution) can be understood in relation to
Pancharatnam's connection.

Yet another possibility is to consider a single quantum
system prepared in a superposition of the eigenstates of
its Hamiltonian. As the Hamiltonian is varied each
eigenstate may acquire a Berry phase. The differences be-
tween these phases are then observable at all times in the
measurable properties of the system. This situation com-
monly occurs in optical resonance and Berry phase effects
have been shown to affect the atomic inversion of an
atom undergoing Rabi oscillations in an adiabatically
varying laser field.

In this paper we discuss the role of Berry's phase in op-
tical resonance. We concentrate on the simplest model of
optical resonance in which transitions between two atom-
ic levels are driven by resonant interaction with an in-
tense laser field. In this model (Sec. II), the adiabatic
variation of the laser phase causes a modification of the
Rabi oscillations. This modification is attributable to the
development of Berry phases by the dressed atomic ener-
gy levels.

The density matrix is widely used in the solution of
quantum optical problems. We show (Sec. III) how
Berry's formalism may be extended to the Liouville equa-
tion for the density matrix. We employ this formalism, to
describe the two-level Bloch vector dynamics of our opti-
cal resonance model with the atom prepared in a mixed
state. Use of the density matrix also allows us to describe
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(Sec. IV) the quantum dynamics of open-dissipative sys-
tems. We add spontaneous emission to our two-level
model and obtain the necessary conditions for the sur-
vival of Berry's phase in the presence of damping. Final-
ly, we demonstrate in three appendixes the independence
of the dynamics of Berry phases in the adiabatic limit
(Appendix A) and in the adiabatic and weak damping
limit (Appendix B) in the case of spontaneous emission.
Appendix C gives the restrictions on the experimental pa-
rameters imposed by adiabaticity.

II. BERRY'S PHASE AND SUPERPOSITION
STATES IN OPTICAL RESONANCE

Berry's phase is now well known and we do not pro-
pose to give a detailed discussion of it here. Instead, we
recommend to the readers the original source' and the
very readable description by Aitchison. However, in or-
der to establish our notation, we briefly highlight the
main features of Berry's phase before turning our atten-
tion to superposition states and optical resonance.

In its original simplest form, Berry's phase forms part
of the adiabatic theorem and is therefore an element in an
approximate solution of the Schrodinger equation. the
adiabatic theorem requires that a system initially
prepared in an eigenstate of its Hamiltonian (~m(0)))
will remain in the connected (instantaneous) eigenstate
(~m (t) )) as the Hamiltonian is slowly varied. In this adi-
abatic limit the wave function will develop in time to

This equation may be integrated with the result

y (t)= f A dR, (2.5)
R(0)

where A (R)=i(m(R)~[VR~m(R))] is a "pseudovec-
tor potential" and plays a similar role to that of the vec-
tor potential in electromagnetic theory. Equation (2.5) il-
lustrates the geometrical nature of Berry's phase very
nicely; it depends only on the geometry of the Hamiltoni-
an trajectory in its parameter space and not on the time
taken to execute it. For a complete loop in parameter
space the Hamiltonian returns to its original form and we
have

y (c)= f A dR= J f (VRXA ) dS. (2.6)

~m ) = exp[ip(R)]~m ) (2.7)

then the pseudovector potential will change and with it
Vm~

If we carry the electromagnetic analogy a little further,
we see that the Berry phase for a circut in parameter
space is equal to the surface integral of the pseudo mag-
netic field 8 =VR X A . Berry's phase is clearly simi-
lar to the famous Aharonov-Bohm phase. Indeed, the
Aharonov-Bohm phase is a special example of Berry's
phase. ' If we change the phase of our eigenstate ~m )
then we will change the Berry phase y . This is akin to
m.aking a gauge choice in electromagnetism. If we
change the phase of

~
m ) so that

~g(t)) =a (t) exp J E (t')dt' ~m(t)),
fi o

(2. l)
A =A —V~. (2.8)

where E (t) is the instantaneous eigenenergy of the state
and the probability amplitude a obeys the equation

a = —a (m~m) . (2.2)

=i(m(R)~[VR~m(R)) ].R (2.4)

The normalization of the state
~
m ) ensures that ( m

~
m )

is purely imaginary, as it must be for probability to be
conserved. This looks like the arbitrary phase of quan-
tum mechanics and it was always assumed that ~m )
could be multiplied by a suitable phase factor to make
(m ~m ) vanish. ' Berry's insight was that interference
experiments, of the type depicted in Fig. 1, make this
phase an observable property and that it must therefore
be more than just an arbitrary phase.

Berry's phase is the argument of the probility ampli-
tude a and obeys the equation of motion

(2.3)

Berry' has given a simple and appealing description of
the geometrical nature of this phase by considering the
variation of the Hamiltonian as changes in the parame-
ters upon which the Hamiltonian depends. We follow
Berry's notation and represent these parameters as a vec-
tor R. The variation of the Hamiltonian may be usefully
pictured as the motion of a "Hamiltonian vector" in its
parameter space. The dynamics of the Berry phase may
be expressed in terms of the variation of these parame-
ters, '

This transformation only affects longitudonal part of
A . The-curl of the longitudonal part of A is zero and
therefore the Berry phase for a complete loop in parame-
ter space is uniquely defined. The form of this phase is
particularly simple near a point in parameter space where
two eigenstates become degenerate. ' In this case, the two
states (that become degenerate) acquire phase equal to
plus or minus one half the solid angle subtended by the
Hamiltonian trajectory at the degeneracy. This is a fur-
ther confirmation of the geometrical nature of Berry's
phase.

We have already noted that a single quantum system
prepared in a superposition of the eigenstates of its Ham-
iltonian may exhibit Berry phase effects at all times.
Such a superposition state can be prepared by a sudden
variation of the Hamiltonian. If the new Hamiltonian is
varied adiabatically then we can apply Berry's results to
write the time-evolved wave function,

~P(t)) = g a„(0)exp J E„(t')dt'
o

X exp[iy„(t)]~n(R(t))), (2.9)

where a„(0) is the initial amplitude for being in each of
the eigenstate ~n ). There is only one arbitrary phase in
quantum mechanics and therefore, the relative phases be-
tween the eigenstate are observable quantities. These rel-
ative phases depend on the differences between the Berry
phases associated with each eigenstate. In this way the
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evolution of observables will depend on the Berry phase.
We can illustrate this principle with some results from
optical resonance.

The fundamental model of optical resonance consists
of a single two-level atom interacting with a classical
laser field. In the rotating-wave approximation the Ham-
iltonian for this model is

,'fib o 3—+AA [o + exp( i (f—}+o exp(i P ) ], (2.10)

where the atom is described by Pauli raising and lowering
operators o.+, and o. and the inversion operator o.3.
The deturning 5, the coupling strength k, and the phase
P all depend on the properties of the laser. Adiabatic
variation of these parameters can induce a Berry phase.
If the atom is prepared in superposition of the eigenstates
of & then this variation can lead to observable Berry-
phase effects at all times. Consider our two-level atom in
its ground state in the absence of any applied laser field.
At time t =0 we suddenly switch on the laser field and
the Hamiltonian subsequently evolves under the action of

The field is applied too quickly for the atom to
respond adiabatically and the initial atomic state will be a
superposition of the eigenstates of &. In Ref. 6 we
showed that subsequent adiabatic variation of & led to
an observable modification of the probability for being in
the bare atomic ground state. In particular, if the Berry
phases are due to a variation of the laser phase only then
the probability for being in the ground state at time t is

governed by the Liouville equation

ip p (3.1)

These eigenmatrices are not in general Hermitian. The
Hermitian conjugate matrices are also eigenmatrices but
with eigenvalues of opposite sign.

(3.3)

We note that it is not generally possible to prepare a state
described by a single eigenmatrix. The Hermiticity of the
density matrix requires that both y„and y„+ must be
present. Nevertheless, we proceed by considering a single
eigenmatrix and construct the fu11 density matrix later.

If the Liouvillian is slowly varied then a nondegenerate
eigenmatrix will evolve into the connected eigenmatrix

where X—:[&, ]/A is the Liouvillian superoperator. The
eigenvalues of the Liouvillian are the differences between
the eigenvalues of the Hamiltonian. Therefore, the eigen-
values of the Liouvillian are the transition frequencies of
the system. For this reason the Liouvillian is sometimes
called the "line operator" (particularly in the older litera-
ture).

The Liouvillian superoperator has eigenmatrices g„
which obey the eigenvalue equation

(3.2)

k2
p (t)=1+ cos 2At — 5$(t) —1

2A
(2. 1 1) (3.4)

where 2A'A is the difference between the eigenenergies of
& (A =A, +6 /4) and 5$(t)=P(t) —$(0) is the accumu-
lated phase change. It should be noted that 5P can in-
crease without limit beyond 2~. This ground-state proba-
bility exhibits the familiar Rabi oscillations at the fre-
quency 2A. However, the term proportional to 5P is
geometrical in origin and arises from the difference be-
tween the Berry phase acquired by the two eigenstates of
&. This is a clear illustration of Berry s phase in the sim-
plest model of optical resonance. We emphasize the
point that the geometrical phase causes a measurable
effect on the inversion at all times and not simply when
the Hamiltonian has returned to its original form. We
note that although the phase variation-induced correc-
tion to p is geometrical in origin it also has a dynamical
interpretation in terms of a frequency-induced effect. '

III. DENSITY MATRIX AND TWO-LEVEL
BLOCH-VECTOR DYNAMICS

The quantum description of statistical mixtures is most
commonly achieved using the density matrix In this sec-
tion we develop a density matrix description of Berry's
phase and apply it to the dynamics of the optical Bloch
vector. A density matrix formulation also allows us to
describe dissipative effects associated with open systems.
We will investigate the role of damping and spontaneous
emission in Sec. IV, but we concentrate here on nondissi-
pative dynamics.

The Hamitonian evolution of the density matrix is

j„y„(R)=iV~„(R)R, (3.5)

where we have introduced the parameter vector R in
analogy with the wave function analysis. We convert this
into an equation for y„by using an inner product defined
to be

(3.6)

This relation allows us to project Eq. (3.5) along y„ to
provide an equation for y„

y„=i (y„(R),V~„(R)&.R

The formal solution of this equation is

(3.7)

y„=—Tr J y„+(R)[V~„(R)]dR .
2 R(0)

(3.8}

This is the geometrical phase that is acquired by the
eigenmatrix due to the variation of the Liouvillian. We
note that, as with the wave-function analysis, ' this phase
is dependent only on the path in parameter space and not
on the time required to execute it. As before, the ortho-
normality of the g„quarantees the reality of y„. In gen-
eral, the density matrix will consist of weighted sum of
independently evolving eigenmatrices (Appendix A).

where y„ is the Berry phase associated with this eigenma-
trix. We note that y„will be equal to the difference be-
tween the geometrical phases associated with a pair of
eigenstates. Substitution of this expression into the Liou-
ville equation gives
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The old problems associated with the apparent arbi-
trainess of the Berry phases persist in the density matrix
formulation. However, as before, a careful analysis will
always lead to a unique geometrical contribution to any
expectation value. If the Hamiltonian is varied around a
closed loop in parameter space then the Berry phase ac-
quired by the eigenmatrix y„ is

y„(c)=i f, (X„(R},VaX„(R) ) d R

=t f f V„X(X„(R),V~„(R}).dS. (3.9)

3

Xn
= g an&t7&. &

i =1
(3.15)

phase within the Bloch-vector description of optical reso-
nance. The Liouvillean superoperator, formed from the
Hamiltonian (3.10) is easily diagonalized. One eigenma-
trix is the identity and this has eigenvalue zt.'ro. The
remaining three eigenvalues are 11=0 and A, 2 3=+2A.
The corresponding eigenmatrices may be expressed in
terms of the SU(2) generators (Pauli matrices):

As with the wave function analysis, the Berry phase for a
complete loop in parameter space is unique and indepen-
dent of the choice of phase of the eigenmatrix.

It is important to note that there is a class of eigenma-
trices that do not develop Berry phases. These eigenma-
trices are those that are diagonal in the eigenstate repre-
sentation. They are all degenerate eigenmatrices of X
with eigenvalue zero. The Hermiticity of the density ma-
trix requires these terms to be real and so they cannot de-
velop Berry phases. Moreover, these diagonal eigenma-
trices represent the eigenstate populations and cannot
vary in time if the adiabatic approximation is to hold.

We now outline a theoretical framework in which Ber-
ry phases are incorporated in the density matrix dynam-
ics. Following the wave-function problem, we consider
and N-level atom and its density matrix given by

a» =—cosP,

a, z
=—sing,

2A
'

1
21 21 /2~ 2

costtp+i A sing

1
22 21/2P 2

sing —i A sing

23

where the coe%cients a„, are

(3.16)

N —1

p(t) =—1+ g —,'C„e "e " X„(R(t))+H. c. 1

21/2g 2
cosf i A sinP—

(3.10)

The preceding expansion has been chosen to be consistent
with the Hermiticity and the trace properties of the den-
sity matrix. The eigenmatrices X„(X„+)may be expressed
as weighted sums of the SU(N generators:

N —1
2

Xn g nm n
m=1

The Hermitian conjugate expression is

N —1
2

Xn X anm Sm
m =1

(3.12)

where I is the N XN unit matrix and the commutation
relations of the generators are

[S„,S ]=2if„ tSt (3.13)

and f„,are the structure constants of the SU(N) group.
This type of expansion is a kind of normal-modes ex-

pansion for the density matrix and we can call the
X„(X„+) eigenmatrices "nortnal matrices" of the Liouvilli-
an. Accordingly,

1

21/2P 2
sinP+iA cosP

2' A

We can see from these coe%cients that g1 is Hermitian
and that y2+ =y3.

We are now in a position to calculate the Berry phases
associated with the eigenmatrices. We shall see that g,
does not develop a Berry phase. We use Eq. (19) to pro-
vide the geometrical phases (y „yz, y3)

y„=—Tr f X„+(R)[VRX„(R)]dR .
2 R{0)

(3.17)

Simple manipulation gives the results

As in our earlier example, we keep the amplitude and de-
tuning constant and vary only the laser phase. From (21)
and (22) we obtain the expression

t)a„~ Ba„~ Ba„3y„=i a„*, +a„'z +a„*3 dP . (3.18)

N —1

p' '—:g —,'C„e " e " X„(R(t})
n=1

(3.14)
y1=0

(3.19)
can be considered as a "negative frequency part" and its
H.c. p'+ ':—(p' ')+ as a "positive frequency part". In
the following we specialize to an N =2 level atom.

The preceding formalism enables us to include Berry's

We note that y2 and y3 are equal to the term appearing
in the ground-state probability (2.11). In the earlier treat-
ment, the contribution was due to the difference between
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the Berry phases associated with the two eigenstates.
Here, however, the geometrical phases themselves have
this form. This is because the eigenmatrices have phases
that are the differences between the phases of the eigen-
states.

An important feature of the density matrix is that it al-
lows us to treat statistical mixtures. We can illustrate
this ability by choosing our atom to be initially prepared
in a mixed state with probability P of being excited

cessional velocity of the Hamiltonian ( —P) about which
ii precesses.

Our Bloch-vector solution displays a geometrical Berry
phase in addition, to the Rabi oscillation and the conven-
tional precessional terms [cosP(t) and sing(t) in u and U].

This phase is proportional to the overall change in the
laser phase. After the Hamiltonian has completed a loop
in the Bloch-vector space (6$=2vr) the dynamical phase
will have been shifted by the density matrix Berry phase

p(0)= —,'1+(P —
—,')o3 .

This initial condition corresponds to the coefficients

(3.20) sr~
Xz 3=+ (3.23)

IV. OPEN SYSTEMS AND SPONTANEOUS EMISSION

C~=C3=(P —
—,') (3.21)

=2(P ——') cosP 1 —cos 2At — 6P
2A 2A

Substituting these coefficients into Eq. (3.14) gives the
time-evolved density matrix. The projections of the den-
sity matrix along the three pseudospin directions are the
components of the Bloch vector

u:—Tr[p(t)cr, ],

In this chapter we extend our earlier analysis to incorp-
orate damping and utilize our method to include spon-
taneous emission within the two-level model discussed
above. The statistics of open systems form an important
problem in quantum optices and in other branches of
quantum mechanics. Such systems are commonly de-
scribed by using the reduced density matrix. This re-
duced density matrix is obtained by tracing the complete
density matrix over all systems except the one in ques-
tion. " In the weak coupling limit, the reduced density

+—sing sin 2At ——A6$
A 2

U—:Tr[p(t)cr~)

=2(P ——') . sing 1 —cos 2At — 5P
2A 2A

A
——cosP sin 2At — 6P

2A
(3.22)

ut—:Tr[p( t )cr 3]

=2(P —
—,
'

) + cos 2At — 5P
4A A 2A

where P=P(t) and 6$=$(t) —P(0). Here u and v are the
in-phase and in-quadrature components of the dipole and
w is the atomic inversion. If the atom is initially
prepared in its ground state (P =0) then the ground-state
probability [p =

—,'(1 —w)] agrees with our earlier result
(2.11).

The Bloch-vector components precess around the
Harniltonian vector with the characteristic Rabi frequen-
cy A. In addition, the Hamiltonian is slowly rotating in
parameter space. The motion of the Hamiltonian is
reAected in the two dipole components u and U. These
terms depend directly on the projection of the Hamiltoni-
an vector onto o. , and o.

z and are therefore dependent on
the sine and cosine of the instantaneous laser phase. The
adiabatic theorem has a natural geometrical interpreta-
tion in the Bloch-vector picture (Fig. 2). The validity of
the theorem requires that the rotational velocity of the
Bloch vector ( —A) should be much greater than the pre-

FIG. 2. Bloch sphere. The coherence vector (u, v, m) process-
es around the riamiltonian vector & many times in the time
taken for the Hamiltonian to process from position (a) to posi-
tion (b).
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matrix p obeys the equation of motion

ip=Xp+iLp . (4.1)

Liouvillian) term arises from tracing the total density ma-
trix over all the modes of the surrounding vacuum. The
non-Liouvillian term is

Here, X is the Liouvillian superoperator for the system in
question and I. is the effective superoperator describing
the influences of all the remaining systems. The applica-
tion of Berry's formalism to this system proceeds as be-
fore. The non-Hermitian superoperator X+iL must be
diagonalized and a Berry phase calculated for each eigen-
matrix.

The total superoperator (X+iL) has eigenmatrices g„
obeying the eigenvalue equation

(X+iL )g„=X„g„, (4.2)

The adiabatic correction for this eigenmatrix (y„) is given
by

where A,„ is in general a complex eigenvalue. If the
Liouvillian is slowly varied then a nondegenerate eigen-
matrix g„[that is, Re(X„)&Re(X ) for m&n] will
evolve into the connected eigenmatrix

g„~g„=exp —f X„(t')dt' exp[iy„(t)]g„(t) . (4.3)

ILp=I o po+ — (cr—+o p+po+o },
2

(4.5}

y„(t)=y„a„,„(t)—lyly, Dis(t),

where y„a„, is the familiar Berry phase

(4.6)

y„a„,y(t)=i f (y„(R),V~„(R)) dR
R(0)

and y„D,s is a damping-induced correction

(4.7)

where I is the spontaneous emission rate.
In practice, the determination of the eigenmatrices of

the superoperator X+iL may be complicated. However,
in the weak damping regime we can obtain satisfactory
results by working with the eigenmatrices of the Liouvil-
lean superoperator. The phase acquired by an eigenma-
trix has two contributions; one from the variation of X.
and one due to the presence of damping. In Appendix B
we show that, in the weak damping limit, the total Berry
phase is

y„=i(g„(R),V~„(R) R, (4.4) Dis(t): f dt (g& (R)& Lg&(R) )
0

(4.&)

where the inner product is defined as before. We note
that y„will in general be complex in this dissipative sys-
tem.

For our two-level model the Liouvillian is derived from
the Hamiltonian (2.10) as before. The additional (non-

The preceding expression for the total phase holds only
for the eigenmatrices of the Liouvillian that have nonzero
eigenvalue (that is for n =2, 3 in Sec. III). The total
phase for the eigenmatrix with zero eigenvalue y, is (Ap-
pendix B)

t dt" 'r I Herry( ] r] DiS(yl(t) yl, B y(t) l Yl, Dis(t)+ ln 1+ (y„L1)e ' '"" e
0 C]

(4.9)

As we noted in Sec. III, g, is constrained to be Hermitian
by the Hermiticity of the density matrix. Therefore
y, 8«,„=0and y, (t}must be imaginary,

Here T is the time needed to complete one loop in param-
eter space. It is now straightforward to calculate the dis-
sipative part of the phases with the result

yl, Drs( ) y, D,s(t)= KI t, — (4.12)

) 2, 3; DIS(t) (4.13)

(4.10)
We know all the necessary quantities for the computa-
tions of y, 2 3 and only need to choose an initial condition
to determine C&. We consider the simple initial condi-
tion of the atom prepared in a mixed state with probabili-
ty P of being excited; see Eq. (3.20) with corresponding
expansion coefficients given in Eq. (3.21). The dissipative
contributions to y„are both path and time dependent.
Therefore we require a specific development at the varia-
tion of the Hamiltonian. For simplicity we return to the
variation of the laser phase and choose this variation to
be linear in time,

where K and G are

2A. +6
4A, +6 (4.14)

1 6k+6
24k, +6 (4.15)

y, (t) =iKI t i in[1 —
—,'(P ——

—,
'

)
' —(e "'—1)] (4.16)

Before writing down the full Berry phase must complete
the calculation of the dissipative part of y& using Eq.
(4.10). We find

lt(t) =Q(0)+
T (4.1 1)

and
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y»(t)=+ 5$(t)+iG1 r . (4.17)

The imaginary part of these phases represent the effective
dissipation rate associated with each eigenmatrix.

Collecting the values eigenvalues, eigenmatrices, and
Berry phases we can compute the time evolved density
matrix from the Eq. (3.10). The component along the cr3
matrix is the population inversion and has the form

w (t) =p2~(t) —p„(t)
Q2

=2(P —
2 )

2K (P ——')+ 1
2

e
—Kl f

2K(P —
—,')

1 + cos 2At — 6$(t) e Gr~

2K P —
—,
' 2A A

(4.18)

Here the decaying exponentials come from the dissipa-
tion and the experimentally manifestable Berry phase
gives rise to the term containing 5P. We can check that
w (0)=2(P —

—,
'

) and —1 (w ( oo ) = —b 2/(A~+ 2A2) (0
as they should be. Moreover, the asymptotic value w ( ~ )

is in agreement with the steady-state solution ass of the
Bloch equations in the weak damping limit,

p2+2+
4

wss
+2+ +2/2

4

~w(oo) . (4.19)

2 4A, +5- I- 6~2++2 (4.20)

This condition is slighty stronger than the weak damping
condition only. The Berry phase will be observable in the
damped system if

The final expression for the population difference, Eq.
(4.18), also shows that the Berry phase causes a drifting
of the population inversion. This drifting is observable
only as long as the dissipation has not acted too strongly,
that is, if GI t & l. (As K —G we also have KI t ~1.)
Therefore, in addition to the adiabatic condition, we re-
quire a second condition for the observability of the
Berry's phase in the presence of dissipation,

using the geometrical Bloch-vector picture. Dissipation
via spontaneous emission will affect the Berry phase. We
have shown that the phase will survive only if the time re-
quired to complete the loop in parameter space is less
than the characteristic damping time.
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ing the parameters R on which it depends. The wave
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V. CONCLUSIONS

(4.21)

(4.22)

We assume the initial state to be a superposition of the
initial eigenstates [ l

n ( R(0) ) ) ]
N

lq(0)&= g C„ln(R(0))) . (A2)
n =1

The Hamiltonian is allowed to slowly vary and the eigen-
states acquire Berry phases. The generalization of
Berry's ansatz for the wave function is

The motivation of this work was to apply Berry's phase
to problems in optical resonance. We have concentrated
on the semiclassical model of a two-level atom driven by
a laser with a varying phase. The density matrix allows
us to model systems prepared in mixed states or undergo-
ing dissipation. We have applied Berry's formalism to
the Liouville equation for the density matrix. This devel-
opment has allowed us to describe the two-level dynamics

N

lP(t)) = g C„exp —i J dt A, „(t)
n =1 0

Xe " ln(R(t)) ), (A3)

where A, „(t) are the eigenenergies of the dressed states
(ln(R(t)))). Substitution of this ansatz into the wave
equation gives
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C„y e™=i (n(R(t))[VR~m(R(t)))]. Re "C

+i g C„(m (R(t) )
~ [Vtt ~n ((R) ) ) ].Re " exp i—f dt [A,„(t)—A,„(t)]

n+m

lgIf we define y =e then Eq. (A4) becomes

=A (R(t))y + g A „(R(t))e
n&m

where

A (R)(t))= —(m(R(t))~[VR~m(R(t)) ) ] R(t),
C„

A „(R(t)) = — ( m (R(t) )
~ [V„~n (R(t) ) ) ].R(t),

m

5 „(t)= f dt[A, „(t)—A, (t)] .

The formal solution of Eq. (A5) is

(t)=exp f dt'A (R(t')) 1+ & f dt" A „(R(t"))exp —f dt'A (R(t')) e
0 m~n 0

Every term in the summation is negligibly small compared to unity. To show this we define the quantities

B „(R(t"))=A „(R(t"))exp —f dt'A„(R(t')) y„(t"),
0

(A4)

(A5)

(A6)

(A7)

(A8)

(A10)

(Al 1)

Here, B „has been defined in terms of its derivative because 3 „ is obviously the derivative of a slowly varying func-
tion. We aim to show self-consistently that y is also a slowly varying function. Therefore we assume that B „ is a
slowly varying function

B
B

(A12)

Integration by parts of the last term in Eq. (A9) gives

C „(t")B „(t") "=t, B „(t")C „(t")

C „(t")B „(t") "=~ dt"C „(t") B „
i [A,„(t"—) —A, (t")]T t"=o fo —i[A.„(t")—k (t")] T

(A13)

These terms are negligibly small because the adiabatic theorem requires that (A,„—A, )T ))1. Dropping these small
terms and taking the logarithm of Eq. (A9) gives the familiar result

y„(t)=i f (n(R)~[VR~m(R))] dR . (A14)
R(0)

The Berry phase for each nondegenerate eigenstate evolves independent of the others.

APPENDIX B

We demonstrate here that the dynamics of the geometrical phases y„can also be identified and separated in the dissi-
pation problem of Sec. IV. This generalization is carried out under the condition of weak damping (to which we will
give a precise meaning) and at the price of the introduction of a path-dependent imaginary part in Berry phase. For
simplicity we restrict our analysis to the two-level atom problem.

The substitution of the normal mode expansion (3.10) into the dissipative Liouville equation (4.1) leads (after projec-
tion on y„) to

i j e' '"= —((g, V ).R —&g, Lg ))

C
—g ((y, VR~ ).R —(y, Ly„) )e " "

exp i f dr(A—.„—A, ) + (y, L I ) exp i fdrA,
2C

(B1)



3236 D. ELLINAS, S. M. BARNETT, AND M. A. DUPERTUIS 39

This equation is of the type of (A5). Therefore we can apply the formal solution (A9) and find:

(t) = exp f dt'[ A (R(t'))+ A
' (R(t'))]

0

3 tt

X 1+ g f dt"[A „(R(t"))+A'„(R(t"))]exp —f dt'[A (R(t'))+A' (R(t'))]
m~n =2

tl

Xe "(t")y„(t)+f dt "D (R(t"))exp i f dr A, (r)
where

(82)

(t) =e

b, „(t):f—dr[A, „(r)—A, (r)],
0

(t}=——(y, Vgg ) .R,
(83)

C„
A

' „(t)= (y,Ly„),
m

D (t)= (y, LI)1

2C

We are going to show that the summations and (if k &0), the last term are negligibly small compared to unity under
the adiabatic and weak damping approximation.

We define the quantities:

B „(R(t"))=A „(R(t"))exp —f dt'[A (R(t'))+A' (R(t'))] y„(t"),
0

8'„(R(t"))—= A'„(R(t"))exp —f dt'[A (R(t'))+A' (R(t'))] y„(t"),
0

C „(R(t")):—e

(84)

IILII —I «IA.„—A, (85)

Obviously this assumption states that the damping is
weak. If this is the case we can assume

We explained in Appendix A why B „was defined in
terms of its derivative, however, here we need an addi-
tional assumption to justify this choice and insure that
A

' (R(t) ) is slowly varying. Namely, we assume that

AppENDIx c

(C 1)

In this appendix we point out the restrictions of the
adiabatic theorem on the variations of the laser phase and
amplitude in the two-level atom problem of Sec. II.
From Messiah's formulation of the adiabatic theorem
the following condition must be fulfilled:

a +(t)
P+ & max «1,

CO

(86)

As in appendix A an integration by parts shows that be-
cause of the adiabatic condition (k„—A, )T))1 and of
(85), each term of the summation in (82) is negligibly
small.

Finally, if A, (t)&0 we can apply the same argument to
the last term in (82) and neglect it as well. If on the other
hand A. (t)=0 the last term is slowly varying. In this
case we can keep it in the solution because it is consistent
with the assumption of a slowly varying y

Taking the logarithm in the case A, &0 (m =2, 3) gives
the by now familiar result (4.7} and (4.8). When A. &0
(m = 1) we must include the last term also and obtain the
expression (4.9) for y, .

co +(t)=E E+ . —

Using the eigenvalues and the eigenvectors we find

+(t)= I|)+ cos+pl & I&I+ lpl,
where

(C3)

E+ —
—,
' AA

cosO=
[2E+ (E+ —,'fib,)]'~—

fiA,sinO=
[2E+ (E+ —

—,'A'b, )]'~

where P+ is the probability of transition from one
state to the other. According to Messiah's definition we
have

(C2)
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We can see that a simple sufficient condition (Cl) is

(C4)

If A(t, ) «h(t) then (C5) reduces to

since A=(A. +b, /4)' is obviously the half of the tran-
sition frequency between the dressed states. The state-
ment P«A is directly obtained in terms of the laser
phase, while the statement 0((A is a condition on laser
detuning and amplitude. With a little algebra one can
show that we must have If on the other hand A.(t) ))b,(t) we get

(C6)

0= —cos 0

A ——A
2

. «A. (C5)

(C7)
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