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Cellular solutions for highly nonequilibriurn directional solidification
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We compute numerically the cellular shape expected for the directional solidification of CBr4, at
velocities far above the threshold for the Mullins-Sekerka instability. Our cell has a smooth tip
plunging to a deep narrow channel which ends with a small liquid bubble. Our results are com-
pared to the experimental findings of S. de Cheveigne, C. Guthmann, and M. M. Lebrnn [J. Phys.
(Paris) 47, 2095 (1986)].

Solidification patterns are an important class of non-
equilibrium structures that can form under the nonlinear
dynamics of systems with many degrees of freedom. '

One such pattern is the periodic cellular array seen when
a temperature gradient controls the solidification of a
binary compound. This particular structure arises from
combination of the tip region dynamics, as it occurs in
free growth, and a wavelength selection process, similar
to that which occurs in familiar hydrodynamic systems.

There have been several important studies of possible
steady-state cellular arrays. Ungar and Brown combined
bifurcation analysis with finite element numerical compu-
tations to obtain a picture of the solution space near the
onset of the Mullins-Sekerka instability. This work has
been extended in several directions by other researchers.
Dombre and Hakim showed tat one would in general ex-
pect a continuous family of solutions (with varying wave-
lengths), at least for infinite cells in the one-sided limit.
This work relies upon an analogy between the tip region
of the cell and the Saffman-Taylor finger, pointed out in-
itially by Pelce and Pumir. Their results were verified
by the numerical calculations of Ben-Amar and Moussal-
lam. Finally, we have recently shown' how to combine
all of the above pieces, plus the ideas of "microscopic sol-
vability" as understood for the free growth problem, ' to
form a coherent picture of possible steady patterns from
onset all the way to deep cells.

Given our current understanding, the most immediate
challenge is to perform a realistic calculation for a given
material and experiment. This is what is reported in this
work. Our goal is to enable a detailed check of theory by
comparison to experimental shapes. This comparison is
best done in the simplest possible setting for a system
which has the fewest unknown parameters. From our
perspective, the experiments of de Cheveigne et aI. " on
CBr4 are quite adequate; for thick enough cells one can
use the two-dimensional theory, all the crucial pararne-
ters are known, and cell shapes have been determined un-
der well-controlled growth conditions.

Let us briefly review the standard methodology for
deriving the boundary integral formulation of directional
solidification. We consider a material solidifying in the

presence of a fixed thermal gradient. This geometry al-
lows us to fix an average front velocity. The solidification
is diffusion limited, controlled by the release of impurity
at the solid-liquid interface. This occurs because of the
miscibility gap between the two phases. Under these as-
sumptions, the (normalized) concentration field satisfies
the diffusion equation

C(y~co)=1 .

At the interface,

Dtn VC~, D, n. VC~, —=v„(Ct —C, ),
C,

C) = = —y/lT —dpk .

Here k is the partition coefficient, and IT dp are the
thermal and capillary lengths, respectively. We will
shortly relate the actual values of all the parameters ap-
pearing in these equations.

Let us define a field C, (C2) which equals C in the
liquid (solid) region and is zero elsewhere. This leads to
the general representation

C, =1+f n' V'G C + f Gtgt,

C2 = — n '.V'G, C, + G,

where the charge distributions Pt, P, are unknowns and

G&, G, are the diffusive Green's functions. The Stefan
condition requires tb, =PtDt /D, —=a Pt. Evaluating the
first (second) equation on the solid (liquid) of the interface
we have

0=1+f n'. V'G, C, —f Gtgt,
solid

0= —f n' V'G, C, + f G, a
solid

This set of coupled integrodifferential equations enables
us to determine both Pt and the interface position.

The above equations can be discretized and solved nu-
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merically in a straightforward manner; the details of this
have been given elsewhere. ' Here, we just note that the
interface is determined by solving for the angle made by
the normal vector and y axis, 0, at the midpoints of an
equal arclength grid running from the tip to the half-
wavelength point. Similarly, P, is discretized on the same
grid, and the resulting integrals are evaluated by the tra-
pezoidal rule once careful account has been taken of any
possible singularities. Once we have reduced the above
system to a set of coupled algebraic equations, we can
find an exact solution (at fixed u) by Newton's algorithm.

At any given set of parameters, solutions are possible
for a continuous band of wavelengths. This is in agree-
ment with the results of Dombre and Hakim and Ben-
Amar and Moussallam, and has been studied extensively
elsewhere. For fixed wavelength there is a discrete set of
possible shapes. We will assume that of this discrete set,
only the one with the sharpest tip will be linearly stable.
This criterion is directly analogous to that proved for
Saffman-Taylor fingers and for free dendrites. '

The experimental system to be considered is the direc-
tional solidification of a thin film of CBr4 with Br2 impur-
ity. " The thermal length and capillary length parame-
ters are given by

MC
lT=

(4)
o(8)

L MC

where M is the liquidus slope, C the impurity concen-
tration at infinity, TM the equilibrium melting tempera-
ture, G the imposed thermal gradient, o. the surface ener-
gy, and L the latent heat. A further constant is the crys-
talline anisotropy e defined via

o(0)=o(1—ecos48) .

Choosing to consider the case of 6 =120'K/cm, we find
from Table I of de Cheveigne,

IT=2.9X 10 cm,

do=2. 13X10 cm .

We also need k=0.16 and DL =1.2X10 cm /sec.
The only two unknowns are a and e. We guess that
e-0.15, corresponding to a 1% deviation of an equilibri-
um bubble from a sphere; this is a typical value for plastic
crystals. ' Finally, we do not know a, the ratio of solid
to liquid diffusivities. We have arbitrarily chosen a- —,

but will comment later on the effect of changing the solid
diffusivity.

For this choice of parameters, the Mullins-Sekerka in-
stability takes place at around U = 10 pm/sec. For
definiteness, we pick v=80 pm/sec. Our approach is
then to generate a solution (using 100 points) at fixed iL

and then to slowly change A, to track the allowed wave-
length band. When this is done, there is a maximum
wavelength past which solutions cease to exist. For this
set of parameters, the maximum value of p =vA. /2DI is
approximately 0.56+0.02. In physical units, A, ,„=35

I I I I i I I i I l I

—10
—15

i i i i I i I I I

—10

FIG. 1. Cell shape at v=80 pm/sec, with lengths scaled to
half-wavelength.

pm. The actual shape of the cell corresponding to this A,

is shown in Fig. 1. Note the bubble at the bottom, which
seems to be a necessary ingredient for obtaining a deep
cell solution.

There are several comments in order. First, the shape
of the cell in the intermediate region between the tip and
the bubble follows the expected Scheil power law. ' This
occurs because the partition coeScient is small and so
diffusion into the solid phase is negligible for a relatively
long distance away from the tip. Next, this shape evolves
continuously from the near-onset shapes studied by Un-
gar and Brown and others. This is one way of under-
standing why a continuous band of wavelengths is al-
lowed, since this fact is quite obvious near onset. Finally,
the computed shapes vary slowly over the allowed band,
if we rescale all our lengths with the wavelength.

As we vary the velocity, the maximum allowed value of
the wavelength scales is u

' . If we assume this depen-
dence, the quantity o. defined by

2doD

u(1 —k)A,

is roughly independent of velocity. Using our results at
U = 80, we find 0.=6 X 10 . This is in rough agreement
with the results of wavelength measurements in the CBr4
experiment; their best estimate of this number is 5 X 10
which corresponds to a wavelength of 30 pm at v=80.
This is quite satisfactory, considering that we have used a
rather arbitrary assumption of setting the physical wave-
length to the maximum of wavelength of the allowed
band. Clearly, a full dynamical theory of wavelength
selection (possibly including noise' ) is necessary before a
more detailed wavelength prediction can be made. Once
a rescaling to the actual wavelength is carried out, it
should be possible to compare the computed cell with the
measured one. On a qualitative level, the match appears
to be good.

As already mentioned, the solid diffusivity is unknown.
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We have investigated the effect of varying a, all other pa-
rameters remaining the same. A typical plot of what we
can learn is given in Fig. 2. We see that changing a by a
factor of 5 has at most a 10% effect on the cell shape.
We are therefore confident that should this ratio turn out
to be smaller than 0.2, the computed shape will be
affected only slightly, presumably becoming slightly
deeper. This is consistent with the idea that the most
crucial determinant of deep cell structure is the partition
coeScient k, and not the diffusion constant ratio.

In conclusion, this paper represents an attempt to
make a quantitative prediction for a directional
solidification pattern from the onset of the Mullins-
Sekerka instability. We obtain reasonable agreement
with the wavelength seen in the experiments, and our cell
shapes are at least qualitatively correct. A more detailed
shape comparison should now be possible, with only a
slight uncertainty due to unknown material constants,
most specifically the solid diffusivity.
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FIG. 2. Dependence of shape on solid to liquid diffusivity ra-
tio a.
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