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Velocity distribution for a gas with steady heat flow
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An exact solution to the nonlinear Bhatnagar-Gross-Krook kinetic equation representing heat
transport in one direction is obtained. The velocity distribution function is given explicitly and il-
lustrated for both small and large temperature gradients. The Chapman-Enskog expansion for this
function is proved to be divergent but asymptotic. Also, the relationship of this solution to infinite
hierarchies of moment equations is discussed. In the following paper this special solution is ana-
lyzed in the context of more physical boundary-value problems.

I. INTRODUCTION

Recently, it was shown that the nonlinear Bhatnagar-
Gross-Krook (BGK) kinetic equation admits a solution
corresponding to steady heat flow with a temperature
profile that is linear in the appropriate coordinate. ' The
heat flux in this nonequilibrium state is given exactly by
Fourier's law, even for large temperature gradients. Oth-
er macroscopic properties were also found to be structur-
ally simple. For example, the velocity moments of the
distribution function are polynomials in the temperature
gradient. These results were deduced from properties of
a formal representation of the velocity distribution func-
tion, although the distribution function itself was not
constructed. The objective here is to remove this formal
element of Ref. 1 by giving explicitly the exact distribu-
tion function for this state. Consequently, a complete
description is obtained for an inhomogeneous steady state
arbitrarily far from equilibrium. Since exact solutions for
inhomogeneous states are rare, it is instructive to ex-
plore in some detail their properties in each case.

The usual method to describe nonequilibrium phenom-
ena is by the Chapman-Enskog expansion for the distri-
bution function. This generates a sequence of approxi-
mations to a solution as an expansion in the hydrodynam-
ic gradients. Such an expansion presumes a solution
whose space and time dependence is entirely character-
ized through the hydrodynamic variables, generally
known as a Hilbert-class or "normal" solution. The spe-
cial solution given here is also normal in this sense, and
the Chapman-Enskog series can be obtained from it by a
direct expansion in the temperature gradient. It is
proved in Sec. III that this series is divergent but asymp-
totic. Its domain of utility is illustrated by comparison
with the exact solution over a range of velocities, for
several values of the temperature gradient. Even for
small gradients, deviations from the leading Chapman-
Enskog order can be significant, particularly for larger
velocities directed along the temperature gradient. A
second method for describing nonequilibrium states is to
solve (approximately) an infinite hierarchy of equations

for the velocity moments of the distribution. An exact
solution to this hierarchy is also given here and the re-
sults are shown to be equivalent to the moments obtained
directly from the distribution function. The technical
problem of determining this function from the moments
is discussed briefly. For large values of the temperature
gradient (far from equilibrium) neither the Chapman-
Enskog expansion nor low-order moments are adequate
to characterize the nonequilibrium state.

The special normal solution described here is an ideal-
ized one in the sense that it applies globally. In general,
it is expected that there should be boundary layers and
that the normal solution would apply only locally in re-
gions far from these boundary layers. The relationship of
this idealized solution to those with more physical bound-
ary conditions is established in the following paper.

II. SOLUTION TO THE BGK EQUATION

The physical system considered is a low-density gas in
a stationary state with a nonuniform temperature. It is
assumed that the external sources responsible for this
state have a geometry leading to spatial variations only
along the x axis. An appropriate theoretical description
is provided by the nonlinear Boltzmann equation for the
distribution of velocities at each position, f (x, v). Here
we use instead the BGK equation which is obtained by
replacing the Boltzmann collision operator with an
effective single relaxation time model. Although approxi-
mate, the BGK equation preserves the most important
qualitative features of macroscopic transport. For the
stationary conditions considered it has the form

where v(x) is an average collision frequency whose x
dependence occurs only through a given functional
dependence of v on the density, n (x), and temperature,
T(x) [the specific form of v(T, n) depends on the intera-
tomic force law considered]. The macroscopic state is

characterized by the temperature, density, and local flow

39 320 1989 The American Physical Society



39 VELOCITY DISTRIBUTION FOR A GAS WITH STEADY HEAT FLOW 321

(The mass and Boltzmann's constant have been set equal
to 1.) Since the local equilibrium distribution is specified
by these macroscopic fields, Eqs. (1) and (2) must be
solved self-consistently.

Although simple in structure, these equations are high-
ly nonlinear due to the coupling of (I) and (2) and, in gen-
eral, it is necessary to employ numerical methods. Here,
however, the simplicity of steady heat flow suggests that
it may be possible to "guess" the form of n (x), T(x), and
U(x). With these known, Eq. (1) becomes a linear prob-
lem whose solution is straightforward. Of course, it is
then necessary to verify the guess a posteriori by showing
that Eqs. (2) are satisfied. This is the procedure followed
here. As in Ref. 1, we note that the space dependence of
the coefficients of f in Eq. (1) can be eliminated by the
change of variables

do =v(x)dx . (3)

Next, we look for a normal solution, i.e., one for which
the dependence off (o, v) on o. occurs only through n, T,
and U. It seems physically reasonable to expect heat
transport at uniform pressure, p=n(x)T(x), and with
the local flow velocity equal to zero. Then the distribu-
tion function depends on o. only through the temperature
field, and the simplest form for the temperature is as-
sumed, i.e., a linear function of the variable o. . In sum-
mary, we look for solutions with the following properties:

f (a, v) =f(T(a),v),
U(a)=0,

p ( o. ) =const,

dT(tr ) =E=const
BQ'

(4)

(6)

(7)

[for simplicity, we have used the notation T(x (o ))
~T(o ), etc.] The BGK equation then can be written in
the simple form

+a f (T)=aft (T), a—:(eu )
a

aT (8)

where the velocity dependence of f and fL has been
suppressed. The solution for @=0 or U =0 is the local
equilibrium distribution f =fL . For finite a, the bound-
ary conditions are imposed on the half distributions, '

velocity U(x). These fields are the parameters of the usu-
al local equilibrium distribution function fL in Eq. (1)
and are defined by

n(x)= fdvf(x, v),
n(x)U(x)= Jdvvf(x, v),

n (x)T(x)= ,
' f—dv[v U(x)—] f (x, v) .

f+ (T—)=e — f (T—, )+j dt e ' "afL—(t),

(10)

where T+ and T are the values of T at which the
boundary conditions are to be specified. Since the tem-
perature profile has been assumed linear it has the
domain 0 & T ( ~ for an infinite system, and it is possible
to specify the boundary conditions on the distribution of
particles entering the system at the end points,
( T+ =0, T = &x ). We choose

f=ft.4(e* 0—»
e*(cr)=e&2/T(—a), g=vl&2T(o ) .

(13)

Equation (12) now leads to

P(e', g) =( e~g„~)
' J dt 6((1—t)sgng, )t

Xexp[(t —1)[(e*g,)

+k't ']i
In terms of P the consistency conditions (2) become

f dg fLQ (g)[p(e g) l]=0

Q ((,&)~(l,g„g').

(14)

These conditions are verified by direct integration in Ap-
pendix A. Consequently, Eqs. (12), or equivalently (14),
provide an exact solution to the nonlinear BGK equation.
As mentioned above, for e =0 we have f~fL, and there-
fore the dimensionless parameter e* provides a measure
of how far a given state is from equilibrium. The deriva-
tion places no restrictions on e*, so highly nonequilibri-
um states can be described. The qualitative features of
the velocity distribution function are illustrated in Fig. 1

for a*=0.1, 0.5, and 1.0. To restrict the number of vari-
ables, the quantity illustrated is the reduced distribution
for velocities along the x axis,

(5(e*,g )—:f dg, dg, f f dg dg, fL . (16)

f+(T=O)=O=f (T=~) .

The first condition indicates a "freezing" of the particles
at the surface with T=O, while the second result is due to
vanishing density at high temperature and constant pres-
sure. The solution is now completely specified,

Tf (T)= dt e ' "afL+(t),
(12)f (T)= —J dt e ' "af, (t) .

The simplicity of this result is due to the assumptions
(4)—(7), so the crucial step to establish it as a solution is
the verification of Eqs. (2) using (7) and (12). To do so, it
is convenient to introduce a dimensionless function P by

f :—6(+u, )f, —

where 0 is the Heaviside unit step function. Then Eq. (8)
can be integrated to give the general solution,

As the local equilibrium distribution gives no heat flux
and since the heat flux is directed opposite the tempera-
ture gradient, there must be an excess population for
large negative velocities relative to the local equilibrium
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III. CHAPMAN-ENSKOG EXPANSION

The Chapman-Enskog method leads to an expansion of
the distribution function in gradients of the thermo-
dynamic variables. Here the only spatia1 variation is due
to the temperature, so the Chapman-Enskog solution is
identified as the expansion of P(e*,g) in powers of e*. In-
tegrating by parts N+ 1 times in Eq. (14) gives

P( e*,g ) =P'cr'( e*,g ) +R ' '( e*,g ) . (17)

0
3

Here PI-'r(e*, g) is the Chapman-Enskog expansion to or-
der N,

FIG. I. Reduced velocity distribution [Eq. (16)] for several
values of the dimensionless temperature gradient e*.

distribution. This excess grows rapidly for large negative
In addition, there is a maximum for g„)0 that in-

creases v ith e*.

P' '(e*,g)= g C„(g)e'",
n=0

C„(g)= n!g"L,',
—
(g ),

where L„'-'(g ) are Laguerre polynomials. The
remainder R ' ' in Eq. (17) is

R'r' '(e'*, g)=(sgnj )(N+ I)!(g„e*)J'dt 6((1—t)sg gn, )t 'exp[(t —1)[(e*g ) '+g t ']ILv/+, (g /t) . (19)
0

The convergence of the Chapman-Enskog series has been
the subject of much speculation, with few specific results.
On the basis of general arguments by Grad, it is expect-
ed that the series should be at least asymptotic for small
e* even if it does not converge. For the specific case con-
sidered here we can be more precise.

L,', '(g')= —— —e 'g n-' cos[2(ng )' ] +O(n ) .

(20)
Therefore the Chapman-Enskog series diverges. To
prove that the series is asymptotic requires (for fixed N)

lim (e*) R' (e*,g)=0 . (21)

(1) The Chapman-Enskog series diverges pointwise for
all finite g.

(2) The series is asymptotic as e*~0.

To prove (1) it is sufficient to show that C„(g)does not
vanish as n —~ ~. This follows from the dependence of
C„onLaguerre polynomials given by (18), which have
the asymptotic behavior for large n,

For positive values of the argument the Laguerre polyno-
mials have the bound

r(N+,'
)

~L 3/2(x ) &
'- x/2

N!I (=,') (22)

2j2t —(7/2+ N)Using (22) and the fact that e ~ / 't ' + ' has its max-
imum at g l(2N +7), we obtain the bound

~g ~~+tr(N+-')
exp[( —

( —,'+N)]
—(A'+ —)

[1—8(sgng„)e ] . (23)

Therefore the limit in (21) is verified and the Chapman-
Enskog solution is asymptotic.

To illustrate the useful domain for the Chapman-
Enskog expansion, Fig. 2 compares P(e*,g ) and
PcF(e",g ) at e*=0.1 for several values of N. Several
features may be noted. For large positive velocities the
Chapman-Enskog expansion is always a poor approxima-
tion, often leading to a negative distribution. The
discrepancies at large negative velocities are less dramatic
but quantitatively significant ~ The asymptotic nature of
the expansion is apparent; agreement improves with in-
creasing N up to 3, but is somewhat worse for N=4. Fig-

ure 3 shows the same comparison at e =0.5. Here, the
leading approximation is only qualitative and higher ap-
proximations are worse.

IV. MOMENT HIERARCH Y

In many cases the most important properties of the dis-
tribution function are the low-order velocity moments,
such as those of Eq. (2). Then it is reasonable to study
the equations for the moments themselves instead of
looking for the full solution to the kinetic equation. For
example, the velocity moments are defined by



VELOCITY DISTRIBUTION FOR A GAS WITH STEADY HEAT FLOW 323

M k I ( cr ):—Id v U
' 'U 'f ( cr, v ) . (24)

6 =O. l
Then it follows from (1) and (3) that the moments obey a
hierarchy of equations,

a
Mk I q ) ( cr ) +Mk I ( 0 ):Mg I ( cr )

0-3 0

where Mk I'(cr ) are the moments associated with the local
equilibrium distribution. Various methods for determin-
ing the moments based on truncation of the hierarchy
have been suggested. It may be instructive to see how the
physically motivated assumptions (7) leads to an exact
solution for this hierarchy as well. First, define the di-
mensionless moments,

(26)

where f* is the dimensionless distribution function

f*(e*,g)=—p '2 / T' f (v)=tr ' e ' P(e*,g) . (27)

Since Mk*l depends on cr only through e*(cr ), the hierar-
chy equations become

2
[2(k —1)+l +1]M„*.(+, —e* Mk*(~) +Mk*(

0
0

(2k + I + 1)!!
(I + 1 )2k+I/2 '

0, 1 =odd .

I =even

(28)

FIG. 2. (a) Comparison of the velocity distribution function
at @*=0.1 with the Chapman-Enskog expansion [Eq. (18)] for
N=1 (

———
) and N=2 (* . - . ). (b) Same as (a) for N=3 ( )

and N=4 (0).

The form on the left-hand side of this equation suggests a
solution where Mk I is a polynomial of degree
2(k —I)+I. In fact, this is correct with the precise form
given by

M' =1 M* =1 M* =='
00 ~ 01 ~ 10

2(k —1)+I—
( I )l2

—(2k + I)
k, l

r=0
{I + r) =even

(2k +)I +r +1)!
[k —1+(I —r)/2]![k +(I +r)/2](l + r + 1)

(29)

N„(cr)=jdvtt„(v)f(cr, v) . (30)

The functions tt/„{v) are polynomials of order n, so the
N„are linear combinations of moments considered above.
To construct the distribution function, the P„arechosen

as may be verified by direct substitution into (28). The
last of Eqs. (29) applies for 1-+2(k —1))0. This result
was first obtained in Ref. 1 using formal properties of the
BGK kinetic equation.

Since the macroscopic variables n, T, and U here are
the same as in Sec. II, it is expected that the two solutions
are closely related. It is proved in Appendix 8 that all of
the moments calculated directly from the distribution
function (14) are the same as those given by (29). The in-
verse problem, construction of the distribution function
from the moments, is more difticult. To explore this pos-
sibility a new set of moments is defined,

I

to be a complete orthonormal set in the Hilbert space
with scalar product,

(a, b)= J dv W(v)a*(v)b(v) . (31)

To proceed it is necessary to choose a set of polynomials,
or equivalently, W(v). Commonly used examples are
Sonine polynomials and Hermite polynomials. In the
former case the tt/„(v ) are given by'

Pklm {4) Cklm Im { &( )k ~ (k —I)/2{0 (33)

A positive weight factor W(v) is required for the polyno-
mials to have finite norm, but is otherwise arbitrary.
Then, assuming f/W is also in this space, an expansion
of f in terms of the moments results,

f (cr, v) = W(v) g N„{cr)P„(v).
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where C&&,„arenormalization constants, k and I are posi-
tive integers with O~l~k, k+l=even, m is an integer
with —I ~ m ~ l, and Y& (0,$) are the spherical harmon-
ics. This choice corresponds to a Gaussian weight factor,
W(v)=fL(u). The hierarchy of equations for the new
moments Nk& (o ) is easily obtained from the kinetic
equation and the first several moments have been calcu-
lated explicitly. Convergence is assured if the norm of
P=flfl is finite,

1.8—

E
O l4—

/', l, in

(34)

Figure 4 shows the contribution to this norm from partial
sums up through k=6. The results strongly suggest that
the series does not converge. Since the moments N&t

obtained from the hierarchy equations are the same as
those calculated directly from Eq. (14), this implies that
the solution P of Sec. II does not exist in the chosen Hil-
bert space. A closer inspection of P shows for g (0 and
large g an asymptotic behavior,

I

0 O. t 0.2 0.5

FIG. 4. Norm of P calculated from (34) using partial sums
with k=3 ( . . ), k=4 ( ), k=5 ( ———), and k=6
(
———

)

P(e*,g)-n. ' '(e*lg„l) g exp g
—2

6 =05

' 1/2

(3&)

Thus (1,$) is finite, as required for normalization, but
(P, P) is infinite.

This analysis indicates that there is no simple and
direct representation of the distribution function in terms
of its moments. The failure of P to exist in the Hilbert
space is of no physical importance beyond the above
comment. In fact, the Hilbert space I.2 admits the full
solution f. A basis set in this space would provide a sys-
tematic expansion, but the coefficients would generally
obey a more complex hierarchy than the simple velocity
moments and would have a more remote physical
significance.

V. DISCUSSION

6 =0.5

00 0
Q ~ ~

0 ~ t%

'e Q

0
0
0
0

~ 0

~ 0
0

~ 0
0
0
o
0
0

0 ~
0 ~
0 ~
0 ~
0 ~
0
0

I ~ I ol ~ ~ 0 I

I 2

FIG. 3. (a) Same as Fig. 2(a) at e =0.5. (b) Same as Fig. 2(b)
at @*=0.5.

In Secs. II—IV we have obtained and analyzed a none-
quilibrium distribution function that is an exact solution
of the BGK kinetic equation. This solution has been
used to study the range of validity of some approximation
methods commonly used in kinetic theory. To put these
results in context and clarify some points the following
comments are relevant.

(1) The validity of a kinetic theory is usually tested in-

directly by its hydrodynamic fields and transport
coefficients. The distribution function provides a more
stringent test since it includes all implications of the ki-
netic equation itself. Unfortunately, under typical labo-
ratory conditions the deviation from local equilibrium is
small and experimental measurement of the nonequilibri-
um distribution function is very dificult. " Large temper-
ature gradients may occur under more extreme condi-
tions, such as in solar flares or laser-compressed matter,
leading to highly distorted electron velocity distributions.
Also, there have been attempts recently to apply non-
equilibrium molecular dynamics simulation methods for
determination of the distribution function in low-density
gases. ' We hope the distribution function obtained here
will provide motivation for additional simulations.

(2) The divergence of the Chapman-Enskog expansion
does not have any serious physical consequences for the
macroscopic transport, since the heat flux is exactly
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8 lnT(x)
Bx

(36)

where 1(x)=[2T(x)]' /v(x) is the local mean free path.
Therefore, e* is the ratio of the mean free path to the
relevant hydrodynamic length (the distance over which
the temperature has a given relative change).

(4) It might be expected from the simplicity of the tem-
perature field and the heat flux that the distribution func-
tion itself would have a simple form for strong symmetry.
If this were the case, variational methods, such as max-
imizing the information entropy, could be used to con-
struct an approximate distribution function from limited
macroscopic data (e.g. , low-order moments). However,
the exact distribution function appears to be considerably
more complex both with respect to its e* dependence and
its behavior for large velocities. Further investigation of
this point is in progress.

(5) The relevance of the BGK equation as a model for
the Boltzmann equation in this case is supported by the
results of Asmolov et al. ' They show that the moment

linear in the temperature gradient. This is in contrast to
other conditions we have studied for the BGK equation
(combined Couette flow and heat transport) using the mo-
ment equations. ' ' In this latter case the divergence of
the Chapman-Enskog expansion is associated with a non-
analytic dependence of the fluxes on the velocity gra-
dient.

(3) The dimensionless parameter e* characterizes the
deviation of the distribution function from local equilibri-
um. According to Eqs. (3) and (13) it is related to the ac-
tual value of the local temperature gradient through

equations from the nonlinear Boltzmann equation for
Maxwell molecules have an exact solution for the same
state as considered here [Eqs. (5)—(7)]. As in Sec. IV,
they find the velocity moments are polynomials in the
temperature gradient and the heat flux is given exactly by
Fourier's law. This suggests that the corresponding dis-
tribution function should be qualitatively similar to that
given here.

(6) The simplicity of the macroscopic state is due to the
absence of any boundary layer for the idealized infinite
system considered. More realistic boundary conditions
applied to a finite domain lead to deviations from the
linear temperature profile near the walls. It is generally
expected that a Hilbert-class or "normal" solution, such
as that given here, should apply far from the walls. This
question is addressed in the following paper, where the
relationship of this idealized solution to that for physical-
ly more realistic boundary conditions is given.
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APPENDIX A: CONSISTENCY CONDITIONS

In this appendix a proof of the consistency conditions
(15) is given. Let us start from Eqs. (17)—(19) with N=O:

P(e*,g)=1+(sgng„)f dt 6((1—t)sgng„)t ~ e "e ~" "~'L,~ (g /t) . (Al)

The first integral that must vanish is

f dge & (P —1)=2mf du(sgnu) f dt 6((1—t)sgnu)t 2Fz~—
1 0 &t e*u

(A2)

where u = g /g and we have introduced the auxiliary function

F„&(a)—= f ™dyy "e ~~e ~ Lz+ & (y ),
0

which has the properties

(A3)

aF„~(a)= — F„+,~(a), F4 Jv(0) =O=F„~,( ~ ) . (A4)

Now, if we make the changes u ~ —u, t ~1/t for u (0, Eq. (A2) becomes

f dge ~ (P —1)=2'f du f dt(t —1)Fz c +to u

=4vre* f du u f da aFz ~(a)
0 0

=0,
E de F40 a +aF& 0 e

3 0 BCX

(A5)

where in the last steps use has been made of (A4). The second consistency condition is
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(
—1)=2~ du u dt 6 1 —t sgnu t ' F30—

1 0 &t e*u

=2~f du u f dt(t ' +t ' )F3O
0

4
0 0

E*f dlx F4 o(ct)
3 0 aA

=0. (A6)

Finally, the conservation of energy is preserved:

f dge -' g (P —1)=2rtf du(sgnu) f dt 6((1—t)sgnu)t 'F4O—
1 0 &t e*u

=2'f du f dt(t ' t ')F, ,—
0 0 &t e'u

=0. (A7)

APPENDIX 8: VELOCITY MOMENTS

In this appendix the velocity moments of the distribution function considered in the main text are evaluated. Ac-
cording to the decomposition (17)—(19), one can write

ltfk*li(&*):~ "'fd4e ' k"k'0(e* k)™k*l"+~'k'I'

where

~ e(N( —3/2 f dg
—;g2kgl y(.V(

—3/2 t d ~ —-- r- kgl g (N(
/'/

(B2)

(B3)

Let us compute the term 6/, .'/ first. By making the same steps as in Appendix A, one easily gets

(N) eN 00 k —2+ (/ —N) /2—(N+1)!e' du(sgnu)u + dt e((1—t)sgnu)t" +' ' FN+I+2(k+((N
'tr 0' teu

( V + 1)( yN f d I+N f dt[tk —2+(I —N(/2
( 1 )I+Nt —k —(I —N)/2]F

vtE u
(B4)

Now, if we choose N =2(k —1)+l, we have 6(kI =0. (This excludes the cases k =1=0 and k=0, l= 1, which have
been considered separately in Appendix A. ) Therefore

2(/. —1)+/—3/2 y en ( f dg —;g2kgl+ nL 3/2(g2)
r) =-0

(/+ r1} even

2(/' —1)+ /
sn —x k +(/+n +1)/21 3/2( )V'~ „I+n+1 0

(/+ r1 ) even

/ 2=( —1)'
2(/, —1)+/

n=—0
(/ + n) even

~kr1
/. +(/+ n + 1)/2fl'+n +1 0

a
at

rt

e
—x/t

E
5/2

, 2 2(k (-I [k+(l+n)/2 -—1]! 1(k+(l+n+3)/2)
v'w

0 [k+(l n)/2 —1]! 1 +n +1—
(/+n) even

(B5)
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