
PHYSICAL REVIEW A VOLUME 39, NUMBER 6 MARCH 15, 1989

Brief Reports

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of
scienttftc quality, does not warrant a regular article (.Addenda to papers preuiously published in the Physical Review by the same
authors are included in Brief Reports )A .Brief Report may be no longer than 3~ printed pages and must be accompanied by an
abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors

Jaynes-Cummings model with intensity-dependent coupling interacting
with Holstein-Primakoft'SU(1, 1) coherent state

Vladimir Buzek
Institute ofPhysics, Electro Physical -Research Center, Slovak Academy ofSciences, Dubravska cesta 9,

842 28 BratislaUa, Czechoslovakia
(Received 29 September 1988; revised manuscript received 8 November 1988)

We show that in the Jaynes-Cummings model with the intensity-dependent coupling interacting
with the Holstein-PrimakoA'SU(1, 1) coherent state the revivals of the radiation squeezing are strict-
ly periodical for any value of initial squeezing. The expression for the atomic population inversion
exhibiting the exact periodicity of the population revivals is obtained.

I. INTRODUCTION II. THE MODEL

Recently Gerry' has studied the time evolution of the
variances of the field quadratures for a squeezed vacuum
state, described as an SU(l, 1) coherent state (CS), in-
teracting with a two-photon generalization of the
Jaynes-Cummings model (JCM). ' The field operators in
the Hamiltonian for the two-photon JCM have been writ-
ten in terms of the same SU(1,1) generators [see Eq. (2.7)]
as those on which the SU(1, 1) CS has been built. Gerry
has found that if the variance of the field quadrature is
squeezed at the initial moment, then the squeezing of the
variance can recur at later times. These revivals of
squeezing are not periodical in the two-photon JCM; nev-
ertheless, it can be observed, that the higher the initial
squeezing, the more regular the oscillations become.

In the present paper we want to turn attention to
another generalization of the JCM, namely, on the JCM
with the intensity-dependent coupling, ' whose interac-
tion terms can be expressed through the SU(l, l) genera-
tors. The realization of the SU(1,1) Lie algebra in the
present paper [see Eq. (2.4)] is different from that con-
sidered by Gerry. In fact, we consider the special case of
the Holstein-Primakoff realization of the SU(1, 1) Lie alge-
bra. ' " We will study the time evolution of the field
quadratures of an SU(1, 1) CS built on this Holstein-
Primakoff' realization of the SU(1, 1) Lie algebra. ' ' We
will show, that in such a model the revivals of squeezing
are strictly periodical for any value of the initial squeez-
ing.

We will suppose the Hamiltonian for the JCM with the
intensity-dependent coupling in the rotating-wave ap-

proximationn

(fi = 1 ),

H=coocr3+coa "a+A(R cr +Rcr+), (2.1)

R =a&N, R =&Nat,
with the commutation relations

[R,R ]=2N+1, [R,N]=R, [R,N']= —R

(2.2)

(2.3)

where N =a a is the photon number operator. One can
say that the Hamiltonian (2.1) eff'ectively describes the
intensity-dependent coupling between the atom and the
radiation field.

Since the SU(l, l) Lie algebra for a single-mode field
may be realized as

K+ =R, K =R, KO=X+ —,
' (2.4)

with the commutation relations for the generators Eo
and K+,

[K Ko]:2Ko [Ko K+ ]:+K+ (2.5)

where o.3, cr+ are the pseudospin atomic operators. The
constant A, is a real number; m and coo are the frequencies
of the atom and the field, respectively. The operators R
and R are constructed from the single-mode field opera-
tors a and a ([a,a ]=1),
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the Hamiltonian (2.1) may be rewritten in the following
way:

14 & =(1—II I')'" g g" l~ &
—= g g. In & .

n=0 n=0
(3.2)

H =co oo 3+co(KO —
—,
' )+X(K~cr +K cr+ ) . (2.6)

The form of the Hamiltonian (2.6) is the same (up to con-
stant factors) as that in Gerry's paper. ' But the realiza-
tion of the operators Ko and K+ is fundamentally
different —Gerry has analyzed the case with

The wave function of this SU(1, 1) CS is not a Gaussian
one. It should be mentioned that the SU(1,1) CS (3.2) is
the special (one-photon) case of the multiboson Holstein-
Primakoff SU(l, l) CS as discussed by Katriel and co-
workers. ' ' In Sec. V we will show that the state (3.2)
can be a squeezed state.

Ko=(a a+ —,')/2, K+ =(a ) /2, K =a2/2 . (2.7)
IV. EVOLUTION OF THE SYSTEM

III. SU(1,1) COHERENT STATES

We will define the SU(1, 1) CS in the usual way, '
' I/2

(3.1)

where ~m, k & are the eigenvectors of the Casimir opera-
tor C=KO —(K+K +K K+)/2=k(k —1)I, where k
is the so-called Bargmann index, and g= ~)~exp(iP)
(0~ /g/ ~1).

The standard oscillator realization (2.7) of the SU(1, 1)
Lie algebra is labeled by k =

—,
' and k= —,'. The k= —,

' rep-
resentation is what was used by Gerry' and the corre-
sponding SU(1, 1) CS is the usual squeezed vacuum state
with the Gaussian wave function.

The realization (2.4) of the SU(l, l) Lie algebra used in
the present paper is labeled by k =

—,'. The basis ~m, —,
'

& in

this representation is formed by the usual oscillator num-
ber states

~
n &, and for the relevant SU(1,1) CS we obtain

Following Gerry's idea we assume the initial state of
the radiation field to be an SU(1,1) CS built on the repre-
sentation of the SU(1, 1) Lie algebra in terms of which the
Hamiltonian of the system is written. In particular, for
the realization (2.4) the initial state of the field is defined
by (3.2). If the atom is supposed to be in the ground state

~

—
& at the initial moment (t =0), then the initial-state

vector
~ f(t =0) & of the system can be written as

lq(r =0)&=I(&l —&= y g. I

—,
n=0

(4.1)

Due to the fact that in the rotating-wave approxima-
tion the excitation number operator X+o.+0. is the in-

tegral of motion, we can find the exact solution of the
time-dependent Schrodinger equation,

lq(t) & =Hip(r) &,
. d
dt

(4.2)

for the state vector ~f(t) &. In the resonant case (co=coo)
for ~g(t) & we obtain

lg(~) &= g e
"

Q„[cos(n)r~ , n & i si—n(n)—r~+, n —1&],
n=0

(4.3)

where ~= A, t and E is the energy of the ground state of
the atom.

To see how the system under consideration evolves we
calculate first of all the mean photon number
n(t)=(a a &=AD(t) and the atomic population inver-
sion (API) W(t)=+(cr+o cr o+ —

&, for which the
following compact expressions can be obtained:

a =(ae'~ +ate '~ )/2

a2=(ae' ' —a e ' ')/2i.

Since the squeezed states of the radiation field are defined
as the states with smaller uncertainty in one quadrature
than that associated with the coherent field, it is con-
venient to define the functions S, (t) (i = 1,2),

and

~( )
— (1 ~g~2)

1 I/I cos2r
1 —2

I
g'I'cos2r+

[
g'f'

2

I+ ~(r)]

(4.4)

W(r. )

We can conclude that the API, as well as the mean
photon number, are periodical functions of time with the
period T=m /1, . The time evolution of the API for
~g~ =0.6 and 0.9 is given in Fig. 1.

00 ——

-0.5

V. SQUEEZING OF THE RADIATION FIELD -1.0

To analyze the squeezing properties of the radiation
field we introduce two Hermitian time-dependent quadra-
ture operators

FICx. 1. Time evolution of the atomic population inversion
W(t) with ~g~ =0.6 and 0.9.
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0

=4&(b,a, ) ) —1, (5.2)

where &(b,a, ) ) =&a; ) —&a;) and &(ha;) )„h=—,'. The
squeezing condition now looks very simply to be

-0.5—

S, (t) &0. (5.3)

Due to the fact that the variances of the quadrature
operators can be expressed through the mean values of
the photon operators & a ) =e '"' ~ A &(t), & a )
=e ' ' 'A2(t), and &a a) = Ao(t) (4.4), where

-1.0
0.5 1.0

A
&
(t) =

~g~ g P„[i/n sin(n)r sin(n + 1)w
n=0

+ i/n + 1 cos(n )w cos( n + I )r], (5.4)

FIG. 3. The function S, (t =0) vs g~ with P= m. /2.

A2(t)= ~g~ g P„[)/n (n +1)sin(n)csin(n +2)7
n=0

+i/(n +1)(n +2)cos(n)icos(n+2)r],

(5.5)

and P„=~Q„~ =(1—
~g'~ )~g~ ", the functions S, (t) can be

written as

S,(t)=2[ A, (t) A, (t)]+—4cos'/[A, (t) —A, (t)],
(5.6)

S,(t) =2[ A, (t) —A, (t)]+4 sin'P[ A, (t) —A, (t)] .

(5.7)

Now we can study the squeezing properties of the
SU(1, 1) CS (3.2), which is supposed to be the initial state
of the radiation field. The squeezing of the variance in
the first quadrature is described by the function S& (t =0).
The dependence of this function on the parameter P is
shown in Fig. 2. From here it is seen that maximum

squeezing can be obtained for P=vr/2 In F. ig. 3 the
dependence of the function S&(t =0) (with P=tr/2) on
the parameter ~g~ is plotted. We see that the bigger the
photon number [n = ~g'~ /(1 —

~g~ )], the stronger the
squeezing that can be obtained. Maximum (100%)
squeezing (S,~ —1) is obtained for n ~ ~ (~g ~1). So
we can conclude that the SU(1,1) CS (3.2) for P=tr/2 is
the squeezed state.

Further, we will analyze the time evolution of the func-
tions S;(t) with P=ir/2. As seen from the explicit ex-
pressions for A, (t) (4.4) and (5.4) and (5.5), S, (t) are
periodic functions (with the period T= ir/A)for a.ny
value of the initial squeezing.

The time evolution of the function S,(t) for ~g~ =0.6
and 0.9 is plotted in Fig. 4. From this figure it is seen
that in the first moments of the evolution the initial
squeezing becomes destroyed. Moreover, the stronger
the initial squeezing, the more rapidly the squeezing is re-
voked. To see this, we have to calculate the first and
second time derivatives of the function S, (t) at t =0.
The first derivative is equal to zero and for the second

S)
20— I(l = 0.9

1.5

0.5—

0.0

-05-

l

T[/2
-1.0

0

FIG. 2. The function S, (t =0) for ~g~ =0.6 and 0.9 vs the pa-
rameter P.

FIG. 4. Time evolution of the function S,(t) for ~g~ =0.6 and
0.9.
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one the relation

a's,
&0 (5.g)

quantities, particularly of the API and the squeezing, can
be destroyed only if the radiation field interacts with a
system of more than one two-level atom, or when more
than two levels of the single-atom model are taken into
account.

is valid, which proves the above statement.
After reaching its maximum value at t = TI2, the func-

tion S,(t) tends again to its initial value. The initial
squeezing is completely restored at t = T.

We conclude that in the intensity-dependent coupling
JCM described above the exact periodicity of the physical
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