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Free-energy fluctuations in a one-dimensional random Ising model
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The statistical characteristics of the free-energy fluctuations in a one-dimensional random-bond
Ising model are investigated by using the fluctuation-spectrum theory developed for the global char-
acterization of fluctuations. As illustrations the characteristic function, the order-q free energy, and
the fluctuation spectrum are calculated by generating the random coupling through chaotic dynam-
1cs.

where o.
, =+1 is the value of the spin on the site i, and J,

is the strength of the coupling between nearest-
neighboring spins, o.

, and o.;+1. In our system the cou-
pling J, is a random variable statistically independent of
the site i and is called the random bond. We note here
that the summation in Eq. (1) is extended over the whole
spins for both cases of a linear chain and a ring. Once a
distribution of random bonds I J, I is given, the partition
function of the N spin system is calculated as

Ztv (f3) = g exp( f1Htv ), —
I cr. =+1I

(2)

where P( = I /kit T) is the inverse temperature of the sys-
tem. We can easily obtain the following expression for
two cases of the one-dimensional random Ising chain and
ring from Eq. (2) as

N
Z (I'','=2 g g o h(PJ;),

There has been much effort devoted to the study of
disordered magnetic systems. ' There is also an in-
creasing interest in the fluctuation properties of random
magnetic systems with quenched randomness in connec-
tion with the fractal dimensions. Very recently, a new
statistical approach to the characterization of free-energy
fluctuations of disordered systems has been developed by
studying the sample-to-sample fluctuations of the free en-
ergy. ' This development is based on the establishment
of the multifractal theory of strange sets and the
fluctuation-spectrum theory of temporal fluctuations. "
The purpose of the present paper is to discuss the charac-
teristics of the free-energy fluctuations in a one-
dimensional random-bond Ising system by considering
how the free-energy fluctuation is reduced as the system
size is increased.

The Hamiltonian for a one-dimensional random Ising
chain of N spins is given by

N

Htv= —g J, o;o;+,

1 (for chain)
E

I +v, v~v3 vtv (for ring), (4)

where

1
gtv (P) = ——in[2 cosh(PJtv )0)v ~P)v —,1,

is statistically independent of N for a large N. The g, (P)
may be regarded as "the free energy of the ith bond. "
The free energy per spin f& & for a given sample is given
by

N

fit tv
= ——P 'InZ)v(I3)= —gg;(P) .

i =1

The stationarity of g)v(f3) for a large N indicates that as N
becomes large, the fiuctuation of f&)v reduces, and ft3 tt
approaches an average value ftt „.This should be com-
pared with the ergodicity assumption in the case of tem-
poral fluctuations. Namely, there is no sample-to-sample
fluctuation of the free energy in the thermodynamic limit.
If J, is independent of i (J, =J), then g, (13) does not de-
pend on i. However, for a random-bond system J; de-
pends on i and the randomness in I J, I produces the ran-
domness in Ig, (P)I, and therefore in f&~. In Fig. 1, the
bond-to-bond fiuctuations of g, (P) are illustrated, where
the distribution of random bonds J, is governed by the
one-dimensional chaotic map

x)v+, f (x)v ) —Ax)v(1 —X—)v ),

with v, =tanh(PJ, ). It is noted that as N~ co, P)v~ 1

for both cases of a one-dimensional Ising system. If a set
of random bonds I J, ) is determined, we can calculate the
partition function Z)v(p) for both systems, as described
above.

We mention here that Z)v()t3) is a random variable and
that the variable gtt(P) defined through"

Z)v(f ) ps~(p)

Z)v —)(P)

where where A is the amplitude of the map. The ith bond J, is
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the free energy as follows. Let pIq( f ', p) be the probabili-
ty density that fp z takes the value between f ' and

f'+ df '. ' If fp z has no fluctuation, PIq(f ';P) has a
sharp peak at f'=Ap(P). We assume that the probability
density is asymptotically expressed by

p~(f ';P) —exp[ PIJp—(f ')N ]

1 &

)!

N

) I
I

I

I

for a large N. By making use of the steepest-descent
method, the fluctuation spectrum crp( f ) is easily obtained
from the Legendre transformation of &(, (P). The rela-
tions among thermodynamic variables obtained from the
characteristic function per spin are written as

(Q
O

I

500

fl[
''

&
'I' ), jI

fp(q) =
&[q—~, (P)l,= a
Bq

, ax, (p)
crp(f p(q))=q'

Bq

&,(P) =fp(q) q'o p(f—p(q ) ).

(12)

(13)

(14)
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FIG. 1. Typical temporal evolutions of the dynamical vari-
able g&q(P) ( =—g&q) for (a) A =3.88, (b) A =3.98, and (c)
A =3.9999 with )Ci = 1.0 and c&l

= 1.0.

determined by J; =calx;, where co is a constant. Thus we
can obtain a set of random bonds I J; ] from Eq. (8) under
a suitable initial condition xo. Depending on the value of
A, the Ix~j have different statistical characteristics.
Then these cause the differences of the statistical proper-
ty of Ig, (P) J, depending on A.

In order to study the global characteristics of the above
free-energy fluctuations, we introduce the characteristic
function A, as'

q

Xq(/3) = lim ln( [Z~(P)] q), ~0dA, (P)
x-~ NPq

'
dq

where q is a dimensionless parameter (
—ao &q & 0&l ).

The symbol ( . ) denotes the ensemble average over a
set of distribution for random bonds [J;). The present
approach for dealing with the fluctuation of free energies
can be applied to both uncorrelated bond randomness as
in Refs. 1 —7 and correlated bond randomness as in our
case [Eq. (8)]. Especially for an uncorrelated bond ran-
domness, Eq. (9) can be written as

(9)

k (P)=(Pq) 'in[2 (cosh q(13J))] .

As q goes to zero, Eq. (9) becomes

Ap(P) = —lim (inZ~(P) ) .1

x-~ N13
(10)

This is the average value of the free energy per spin
[Ap(P) =fp ]. Furthermore, A. (P) is related to the
asymptotic realization probability of the fluctuation of

Hereafter fp(q) will be called the order-q free energy.
The fluctuation spectrum cr p(f ') is a concave function of
f ' and has a single minimal value o p(f ') =0 at
f = &(,p(P ) =fp( 0 ) ~ In the one-dimensional random Ising
system, the behavior of the characteristic function A, (P)q

is the same for both cases whether the bond is ferromag-
netic or antiferromagnetic, i.e., Eq. (3) is invariant under
the change J;~—J; for a large N.

Numerical results of the characteristic function &(. (P)
are given in Fig. 2. The average free energy f (0)P
[=Ap(P)] is numerically obtained as —0.895 ( A =3.88),
—0.878 ( A =3.98), and —0.863 (A = 3.9999). The
order-q free energies per spin fp(q) are shown in Fig. 3
for several values of A. It is noted here that &(, (P) and

qfp(q) have similar q dependence, but the slope offp(q) at

q =0 is twice as steep as that of A, (P). We also calculate
the fluctuation spectrum of the free energy. In Fig. 4 the
fluctuation spectra o p(f) are shown for several values of
A. o p(f) expresses the rate of the decrease of the proba-
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FIG. 2. Numerical results of the characteristic function

q (p } ( kq ) foI thc configuratio of ralldom bollds generated
by the logistic map (8). The values of 3 for a, b, and c are the
same as in (a), (b), and (c) in Fig. 1, respectively. The number of
spins contained in the one-dimensional chain is 250. The aver-
age ( . ) is taken by the distribution of 1000 sets of random
bonds I J; I.
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FIG. 3. Numerical results of the order-q free energy f&(q)
[=f(q)]. T—he values of A for a, b, and c are the same as in (a),
(b), and (c) in Fig. 1, respectively.

FICx. 4. Fluctuation spectra o.&(f) [—=o (f)] of the free energy
are shown for (a) 3 =3.88, (b) A =3.98, and (c) 3 =3.9999.

bility density that the free energy per spin f& ~ of the X
spin system takes the value f as the number of spins is in-
creased. There appears the spectral structure of cr&(f)
due to the bond randomness. The intensity of the ran-
domness of Igz(p)) and thus I f& &] is evaluated, rough-
ly speaking, with the quantity

D=c)A, (P)/c)q[ =df&(q)/"dq( = /2

and the dispersion range

& =&„(P)—& „(P)=fp( ~ ) fp(
—~ ) —.

The D determines the curvature of o &(f') at its minimum
at f'=f&(0), cr&'(f&(0))=1/2D. So, although in com-
paring three sequential fluctuations of g~(P) in Fig. 1

with each other it is hard to get an apparent difference
among their statistical characteristics, one may clearly
distinguish them with the quantities X (p), f&(q), and
cr&(f ) For thr. ee values of A, we numerically get
(D, b, ) =(0.0012,0.018) for A =3.88, (0.0026,0.029) for
A =3.98 and (0.0063 0.053) for A =3.9999.

In the present paper we have discussed how we can sin-
gle out the statistical characteristics of free-energy fluc-
tuations in a one-dimensional random-bond Ising system.
Its global property is shown to be described with the
characteristic function k (p), the order-q free energy
f&(q), and the Iluctuation spectrum o&(f). Finally we
note that the present approach is also applicable to the
random-field Ising system, where the Hamiltonian is ex-
pressed as

X 1V

H~= —g Ja;o;+,+ g h;cr;,

hi being the quenched random field at the site i. In calcu-
lating the characteristic function A, (p), the averaging
procedure in the ensemble average ( . ) should be car-
ried out over the distribution of I h; I.
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