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Calorimetric study of nematic to smectic-A tricritical behavior
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High-resolution heat capacity measurements have been made on six mixtures of 40.8 and 60.8, the
butyl and hexyl homologs of alkoxybenzylidene octylaniline. The nematic (N) —smectic-A (Sm-A)
transition becomes tricritical close to X =0.35, where X is the mole fraction of 60.8. The C~ data
for a mixture with X =0.35 are well described by the tricritical exponent a=0.5 and an amplitude
ratio A /A =1.6, which is not a universal quantity for tricritical measurements over the accessi-
ble range of reduced temperatures. The small value of A /A+ means that N —Sm-A tricriticality
is further from classical Landau tricritical behavior than is the He- He system. Analysis of C~ data
over an extended range shows the importance of several correction terms to the leading singularity.
In particular, there seems to be a small step discontinuity at T„which does not violate scaling at a
tricritical point as it would for a second-order critical point.

I. INTRODUCTION

The nematic (N) to smectic-A (Sm-A) transition in-
volves the development of a one-dimensional density
modulation in an orientationally ordered fluid of long or-
ganic molecules. The study of critical behavior at the
N—Sm- A transition is an active area of research. ' It has
been found experimentally that the effective critical ex-
ponents vary systematically with the temperature range
of the nematic phase. ' The exponent u characterizing
the critical heat capacity varies from values close to the
theoretical 3D-XY value of —0.007 in two cases where
the nematic range is wide, ' through intermediate posi-
tive values, to values close to +0.50 at tricritical
points that have been observed in five cases. ' ' For
sufficiently narrow nematic ranges, the N—Sm-A transi-
tion is first order. ' Each investigated system (pure com-
pounds and mixtures) is well described by a single
effective e value over a wide range of reduced tempera-
ture, and it is not clear whether the expected tricritical-
to-XY crossover' is too broad to be observed or whether
the measured exponents are asymptotic values.

Hexyloxybenzylidene octylaniline (60.8) has a nematic
range AT~ = Ter T~~ of 0.9 K and exhibits a strongly
first order N—Sm- A transition. ' Butyloxybenzylidene
octylaniline (40.8) has a nematic range of 14.7 K and ex-
hibits a second-order N—Sm- A transition with
a=0. 15+0.05. We have carried out high-resolution ac
calorimetric studies of the temperature variation of the
heat capacity associated with the N—Sm-A transition in
mixtures of 40.8 and 60.8. Such Cz(T) data have been
obtained for six samples with mole fractions X6O 8 be-
tween 0.10 and 0.50. We report the results of an exten-
sive analysis with emphasis on the sample having
X6O 8 =0.35, which is close to the tricritical composition.
A steplike correction term seems necessary for a good
representation of the tricritical excess heat capacity AC,
and its possible theoretical justification is discussed. Ad-
ditional higher-order terms needed to improve the residu-

al pattern for the tricritical data over a wide range of re-
duced temperatures have also been considered. The ap-
parent nonuniversality of the amplitude ratio A /A +

for bC at tricritical points is discussed. We have also
attempted to fit the tricritical AC data using two pre-
dicted forms for logarithmic corrections, ' ' and there is
no strong evidence for such corrections over the present-
ly accessible range of reduced temperatures.

II. METHOD AND RESULTS

The ac calorimeter used in this work is a
microcomputer-controlled instrument described in detail
elsewhere. ' The specific heat C is the heat capacity per
gram determined from

C (obs) —C (empty)
C =

m

where C~(obs) is the total observed heat capacity of the
sample cell plus the liquid crystal, C (empty) is the heat
capacity of the empty cell, and m is the mass of the liquid
crystal sample in grams. The structural formulas of 40.8
and 60.8 are

40. 8 C~H9-0~CH =N ~i CsH

and

60. 8 C6H )3-0~CH =N~CsH )7 .

The phase diagram presented in Fig. 1 includes tem-
peratures for the N—Sm-A and N-I transitions obtained
from the ac calorimetric data and also from a differential
scanning calorimetry (DSC) study. Both ac calorimetry
and DSC were used to study samples with X6O 8=0.10,
0.20, 0.30, 0.35, 0.40, and 0.50; DSC measurements were
also made on samples with X6o 8=0.65, 0.83, 0.89, and
0.95. The variation of C through the N—Sm-A and N-I
transition regions in pure 40.8 is shown in Fig. 2. In this
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with coexistence regions 0.1—0.2 K wide. The variation
of C through the 1V—Sm-A and N-I transitions in pureP
60.8 is shown in Fig. 3. In this case, the nematic range is
only 0.87 K (M=0.998), and the N Sm—A-transition is
strongly first order with a coexistence region of 0.11 K.
The variation of C through the N—Sm- A and N -I transi-

P
tions is shown in Fig. 4 for the X60 8 =0.35 sample, which
we believe to be closest to the tricritical composition.
For each sample, the curve Cp(N I) wa-s subtracted from
C and the resulting excess specific heat converted to di-
mensionless units via

ACp = [C„Cp(N—I)]M/-R, (2)

540!- where

335L0
X60.8

FICz. 1. Phase diagram for 40.8+60.8 mixtures. Transition
temperatures were determined from ac calorimetry (~ ) and
DSC (o).

case, the nematic range is 14.72 K (often expressed as the
McMillan ratio M = Tz„/Tzt =0.958), and the N Sm A—-
peak is well removed from the N-I peak. The dashed
curve in Fig. 2 represents the background chosen for the
determination of the excess specific heat associated with
the N—Sm-A transition. This background curve, which
will be denoted as C (N I), represents -the specific-heat
variation to be expected if only the N-I transition oc-
curred. The N-I transitions were all weakly first order

M —X40.8 M40. 8 +X60. 8M 60. 8

X40 8 and X60 8 are the respective mole fractions,
M408=365.56 gmol ' and M608=393.61 gmol ' are
the respective molecular weights, and R =8.314 J
K 'mol ' is the gas constant. M is thus the eft'ective
molecular weight of the mixture. The temperature varia-
tion of b, C /R is shown in Fig. 5 for all the investigated
samples except pure 60.8. These excess heat capacity
values were used in the analysis of the N—Sm-A critical
and tricritical behavior presented in Sec. III.

The N—Sm-A transitions were all studied on a cooling
run followed by a heating run. Over a period of —100 h,
we have observed an average drift rate dT, /dt for these
samples of —0.13 mK h ', which is very small compared
to those reported in many other systems. Figure 6
shows a comparison of the heating and cooling data
over the range !T—T „kl ~0.1 K for the samples with

X60 8 =0.30, 0.35, and 0.40. Data points close to T, that
lie between the short vertical lines were omitted from the
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FIG&. 2. Specific heat of 40.8. The dashed curve represents
C~(N-I), the background curve used in Eq. (2) to determine the
excess heat capacity associated with the N—Sm- A transition.
The points marked with a cross at the top of the N-I peak are
apparent C~ values obtained in a two-phase coexistence region.

FIG. 3. Specific heat of 60.8. Both the N-I and N—Sm-A
transitions are strongly first order. Points indicated by a cross
( X ) are anomalous values obtained in two-phase coexistence re-
gions.
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FIG. 4. Specific heat of the tricritical 40.8+60.8 mixture
with mole fraction X608=0.35. The dashed curve represents
C~(N-I) as described in the text and in the legend of Fig. 2.
Note the very large value of C~ at the N—Sm- 3 transition.

least-squares analysis of b, C (T)/R. The heating and
cooling data clearly disagree near the C peak for the
X=0.40 sample, indicating a coexistence region of about
50 mK. Similar differences between heating and cooling
data near the C peak for the X=0.50 sample extended
over 130 mK, indicating an even wider coexistence re-
gion. Comparison of the heating and cooling data for the
X=0.35 sample indicates that if a coexistence region ex-
ists for this sample it must be narrower than 34 mK, and
this range of data has been omitted from the subsequent
analysis. The heating and cooling data disagree slightly
in magnitude near the C peak for the X=0.30 samp1e,
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FIG. 5. Excess heat capacity AC /R, in dimensionless units,
associated with the N—Sm- A transition in mixtures of
40.8+60.8. In each case, data are shown over the range
—3 K & T —T, (3 K. The values of the mole fraction X of 60.8
are Xl =0 (pure 40.8), X~ =0.10, X~ =0.20, X4 =0.30, X, =0.35,
X6 =0.40, and X7 =0.50.

0
-0.1 0 0.1

FIG. 6. A detailed comparison of heating (~ ) and cooling
(+ ) data near T» for mixtures with X6o 8 =0.30, 0.35, and 0.40.
Typical scanning rates were 30 mKh '. AT= T —T„where
the T, values are given in Table I. The data for the X=0.35 and
X=0.30 samples have been shifted by +7 J K '

g
' and +14 J

K 'g ', respectively. The vertical lines define the range of
data points omitted from the least-squares-fitting procedure.

III. DATA ANALYSIS

The initial analysis of AC /R data has been carried out
using the usual renorrnalization-group form

and the peak is rounded over a 39-rnK-wide region that
has been omitted from the subsequent analysis. Similar
rounding of 24 and 31 rnK and slight disagreements in
cooling and heating peak heights were observed in the
X=0.10 and X=0.20 samples. This sma11 rounding of.
liquid-crystal transitions is generally attributed to impuri-
ties and is quite common. We believe that the tricritical
composition lies between 0.30 and 0.35 and is closer to
X=0.35 than to X=0.30, as discussed in Sec. III.

The DSC measurements were carried out using a
Perkin-Elmer DSC-4C instrument. It is convenient to
define the quantity DH&„=AH~~ +6H~~, where AH&~
is the latent heat associated with a first-order discontinui-
ty in the enthalpy, and 6H&~ is the pretransitional Auc-
tuation contribution. The DSC and ac calorimetric data
have been combined to obtain the values for DH~~,
AH&~, and 5H&~ as functions of X60.8. The resulting
values are presented in Fig. 7. The total enthalpy change
across the 1V—Sm-A transition is seen to increase mono-
tonically with X6o 8. The latent heat AH~~ varies non-
linearly with X6o 8, it varies rapidly near pure 60.8 and
goes to zero slowly at the tricritical point near
X60, =0.35. The pretransitional (fluctuation) contribu-
tion 5H&„=f b, C dT reaches a maximum in the vicinity
of the tricritical composition and decreases for larger or
smaller concentrations of 60.8.



39 CALORIMETRIC STUDY OF NEMATIC TO SMECTIC-A. . . 3151

l(

~ D, HN)t

Total enthalpy

0
0

&&6o.a

FIG. 7. Variation with composition of the latent heat AH»
(~ ) and the total N—Sm-A enthalpy (0) DH&„=EH» +5H».
Note that the integrated fluctuation enthalpy 5H~„= f b, C~dT
is given by DHzz —AH&z.

(4)

where r =(T—T, )/T, is the reduced temperature and
the + superscripts denote above and below T, . The
coeEcients D, are the amplitudes of the first
corrections-to-scaling terms, and 6, has been taken to be

The temperature-independent constant B, is the crit-
ical contribution to the regular C variation. ' The re-
sults of fits using Eq. (4) over the range ltl ~3X10 are
presented in Table I. It should be noted that the parame-
ter values are cited with more digits than are justified by
their standard deviations as obtained from the least-
squares-fitting procedure. Although not all these digits

are "significant" in terms of describing the accuracy of a
given parameter value, they are useful for generating the
fitting curve over a large AC /R range without apprecia-
ble roundoff errors.

The fits described in Table I represent the AC /R data
well, as indicated by the g values; and the results for the
X6O ~=0.20 sample are shown in Fig. 8 as an example.
The effective e values exhibit an obvious trend with com-
position. An important aspect of these fitting results is
the evolution in the role played by the correction ampli-
tudes D&. For the X=0.30, 0.35, and 0.40 samples,
which are near the tricritical composition, the effect of

+the ( AD, )
—

ltl
' terms is to introduce a rounded step-

like C variation at T, . If o. and b i were exactly —,', these
terms would, indeed produce a discontinuous step
(A+D,+ —A D, ) at T, . It should be noted that the
D,+, D &, and B, values are strongly coupled and highly
uncertain when the o. value is close to —,'. A.s an example,
it can be shown that an equally good fit to the X=0.35
data over the ltl ~3X10 range can be obtained with
D, /D,+ fixed at the theoretically expected value of uni-
ty. ' ' Such a fit yields a =0.480, A + = 1.431,

/A+ =1.681, D,+ = —16 85, B,=14 5, and
T, =345.826 K with g = 1.52. Thus, when a is close to —,

'

and 5& is taken as
2

D
&

/D &+ can be fixed at 1 and the fit
merely adjusts the value of D —, to obtain the desirable
steplike correction. This is not the case when cz is
different from —,'. Fixing D& /D& =1 for a fit to the
X=0.20 data yielded X =1.96, twice the value in Table
I. It should be kept in mind that the unusual systematic
trends in D&+, D&, and B, parameter values shown in
Table I are an artificial effect of using Eq. (4) to mimic
the complex crossover from second-order to tricritical be-
havior.

As pointed out above and discussed further below,
steplike correction terms seem to arise naturally in fits to
the AC /R data near the tricritical point in 40.8+60.8.

TABLE I. Results of fits to the hC~/R data for 40.8+60.8 mixtures using Eq. (4) over the range l tl ~ 3 X 10 '. N is the number of
data points included in these fits. Standard deviations are given for each least-squares parameter value except T„ for which a stan-
dard deviation of +0.0002 K was obtained in all fits. The range of a values obtained by fitting this t range and the ranges ltl ~ 10
and ltl ~ 10 is given as ha.

0.10

0.20

0.30

0.35

0.40

36'

121

184

154

153

180

0.134
+0.015

0.222
+0.012

0.305
+0.006

0.456
+0.014

0.4.73
+0.012

0.524
+0.013

33.96
+8.9
15.50

+2.8
7.340

+0.65
1.723

+0.23
1.563

+0.21
1.104

+0.18

/A+

1.132
+0.16

1.284
+0.018

1.384
+0.013

1.621
+0.032

1.660
+0.035

1.675
0.046

D+

2.96
+0.15

6.90
+0.32
10.89

+0.45
10.82

+11
5.73

+24
1.89

+34

Dl

2.17
+0.09

3.41
+0.27

3.89
+0.36

0.82
+6.3
—3.29

+29
—6.66

+140

—78.3
+15
—67.2

+8.9
—56.2

+4.4
—24. 1

+17
—15.7
+34
—8.2

+42

T, (K)

336.877

339.549

342.707

344.226

345.826

346.642

2
Xv

1.10

1.57

0.98

1.71

1.50

1.42

0.123-0.152

0.222—0.243

0.305—0.320

0.456—0.471

0.473—0.486

0.524—0.540

'These earlier 40.8 data were obtained using a manually operated calorimeter where data points were obtained at a series of fixed tem-
peratures with fewer data points taken away from T, .
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In the absence of any clear indication to the contrary,
we have adopted the value —,

' for 6, at a tricritical point.
As a result, the first corrections-to-scaling term merges
with 8 and Eq. (5) becomes

bC
(1+D2 lt +D3++t+D~'tltl'")+8

(6)

where b,B=8+ ——8 &0 due to (A+Di+ —A D& )&0
and/or the role of the eighth-order terms in the free-
energy functional. Equation (6) can be trivially simplified
to

FIG. 8. Fit with Eq. (4) to AC~/R for the 40.8+60.8 mixture
with X6O 8 =0.20. The parameter values are given in Table I.

(I+D~~ ltl+D ~
ltl'")+8-'-, (7)

Such steps have also been reported for C at the tricriti-
cal point in other nonpolar systems: 6010+6012 mix-
tures" and 10S5, which is nearly tricritical. ' However,
a step in C does not occur for tricritical N—Sm-A transi-
tions in polar nCB mixtures. ' These facts are consistent
with (A+D,+ —A D, ) as the source of the step. It is
reasonable to expect that D&+ -D& near a tricritical
point in agreement with second-order behavior, ' ' but
the tricritical amplitude ratio A /A+ is not universal
(see Sec. IV). For 40.8+60.8 and other nonpolar tricriti-
cal systems A /A+=1. 6, ' '" which would create a
step (A+Di+ —A Di )= —0 6A+D~ )0 since D& is

typically negative. ' For n CB mixtures
A /A+=1 00, ' andthus(A Di —A D& )=0.

The value of 6, is not well established at a tricritical
point. If 6

&
were significantly different from —,', the

ADi ltl correction terms could not generate a step at
T, for a tricritical sample. There is, however, another
possible argument in support of a tricritical step. The in-
clusion of the eighth-order term in the classical Landau
treatment of tricriticality will give (to a first approxima-
tion) a constant negative contribution to C for T (T, .
Thus this extended Landau treatment yields a step in the
"background" in addition to the leading term that
diverges like AT ' below T, .

Tricritical fits We now wis. h to focus on a more de-
tailed analysis of near-tricritical data. On the basis of the
magnitude of the hC peaks and the effective a values
discussed above, together with information presented in
Sec. II, we believe that X, is close to 0.35. All of the
remaining analysis is carried out on the data for the sam-
ple with X=0.35. This analysis is based on a more gen-
eral form for AC /R, which contains the first analytic

p 7

correction terms D3 t as well as higher-order nonanalytic
corrections-to-scaling terms,

where Dz+3=Dz++D3+ and D23 D2 D3 D 4+=D4+

and D4 = —D4.
The stability of fits with Eq. (7) on shrinking the range

of reduced temperatures has been tested. Three ranges
were used: range A ( ltl ~ 10 ), range 8 ( ltl ~ 3 X 10 ),
and range C (ltl ~ 10 ). For fits of type 1 and 2, a was
allowed to be a freely adjustable parameter and only one
asymmetric correction terms was retained: 8+&8 in
type 1, and D z& &D23 with B + =B =B in type 2. Table
II gives the range dependence of two significant fitting
parameters. The motivation for type-2 fits was the possi-
bility that 6, , the first corrections-to-scaling exponent, is
not —,

' near a tricritical point but a larger value such as 1.
There do not seem to be any theoretical predictions con-
cerning this point. It is clear from Table II that type-2
fits are inferior to type-1 fits. However, both types
showed a systematic pattern of deviations especially at
larger ltl values, which suggested the need for additional
correction terms.

The remaining range-shrink tests were carried out on
fits with a fixed at —,, which seems justified in view of free
a values that lie in the range 0.473—0.510. Three fitting
variants (types 3, 4, and 5) are summarized in Table II.
In type-3 fits, both a step in B and correction terms linear
in t are allowed. The constraint B+=B is imposed in
type-4 fits, but the number of adjustable parameters is the
same as for type 3. The type-5 fit is the most general
form and yields a significantly (at the 95% confidence lev-
el) lower y value for range C.

The complete set of parameter values for fits 1, 4, and
5, as obtained from fitting range C, is given in Table III.
These three fits represent the statistically and physically
most attractive possibilities. The AC /8 data and the
theoretical curve for fit 1 are shown over range C in Fig.
9. Although the overall quality of this fit is quite good,
systematic deviations are obvious on the residuals plot
shown in Fig. 10. The residuals obtained from fit 5 are
much smaller, as shown in Fig. 11, but the pattern of de-
viations is still not completely random for T & T, . A
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TABLE II. Partial results of five di6'erent types of fit with Eq. (7) to the X~,=0.35 data over three
ranges of reduced temperature. The minimum reduced temperatures for T & T, and T & T, are
t+;„=3.8X 10 ' and lt;„ l

=6. 1 X 10 ' in every case, but t,„ is varied. The constraints are as follows:
type 1, DQ3 D4 0; type 2, 5B =B+—B =0 and D 4*=0; type 3, a= —,

' and D4*=0; type 4, a= —,
'

and hB =B+—B =0; type 5, a= 2. Values in parentheses are held fixed at the specified values. y
values are given in square brackets.

Range

a free

Type 1

a hB
Type 2
a D2+,

Type 3
hB D 2+3

a= —' fixed
2

Type 4
D+ D+

Type 5
D+ D+

A

ltl & 10-'
0.477 13.3 0.495
[1.73] [1.85]

5.0 (8.8) ( —38) ( —55) (110) (2.1) ( —46) (33)
[1.77] [1.69] [1.69]

B 0.473
3 X 10 [1.52]

15.3 0.502
[1.78]

7.6 8.8
[1.60]

—38 —55
[1.48]

110 2.1

[1.46]

—46 33

C
ltl & 10-'

0.484 12.0 0.510 13
[2.77] [6.65]

16.3
[2.29]

—40 —42
[1.71]

7.7
[1.37]

—45 40

comparison of fit curve 5 with the data over range A

( l tl & 10 ) and a smaller range ( l tl & 3 X 10 ) is given
in Fig. 12. It should be stressed that no additional adjust-
ment of the parameters has been made to improve the fit
over these inner ranges. The curves in Fig. 12 are ob-
tained using parameters from the fit over range C. Note
that several omitted points on both sides of T, actually fit
curve 5 quite well; their inclusion in the data set would
not alter the values of the adjustable parameters in Eq.
(7).

It is well known that logarithmic corrections are ex-
pected at tricritical points since the upper marginal di-
mensional d„ is 3. We have fit the X=0.35 data using
two forms for the logarithmically corrected heat capacity
at a tricritical point. Using the scaling form given by
Lawrie and Sarbach' for the singular free energy, one
obtains the following result for the asymptotic heat capa-
city variation:

hC' = A*ltl '"(I+L'Inltl)&+B, ,

, ( I+L+lnltl)-&
eff

(9)

will asymptotically approach the classical limit of
A /A+= ao (i.e., A+=0) in agreement with the gen-
eral predictions of Stephen (see Sec. IV). If L+=L
and B, =B, is required for fits with Eq. (8), no improve-
ment over fits using a simple power law is achieved and
the L* values are close to zero. If L is set to zero then
fits of moderate quality are obtained with y =1.90 for
range A, 2.41 for range 8, and 3.16 for range C. These
fits are not as good as those given in Table II. For the fit
to range C one obtains A+=6.97, A /A+=0. 293,
L + = —0.299, L =0, 8, = —18.6, and T, =345.828 K.
The (1+L+lnltl)~ term can be viewed as a correction to
the amplitude A + or as the source of the unusual
effective background variation shown in Fig. 9. We
have also tried using the form predicted by Gorodetskii
and Zaprudskii' for the logarithmically corrected heat
capacity at a tricritical point,

where q = —6(n+4)/(3n +22)= ——', for an XY model
(n=2). If L is set equal to zero, then the effective am-
plitude ratio defined as

AC

R

+0.5
A

l l

ig2
1

b

b
+B, , (10)

TABLE III. Least-squares parameter values (with their standard deviations) for fitting hC~/R data on the near-tricritical
40.8+60.8 mixture with X=0.35. These fits were made with Eq. (7) over range C ( l tl & 10 ') and correspond to fits of type 1, 4, and
5 from Table II. Values in parentheses were held fixed at the given value. T, was a freely adjustable parameter and had the value
345.826 K for all three fits. A+value is given for range A (ltl &10 ) and range 8 (ltl &3X10 ') as well as range C; no further ad-
justment of parameters was made in evaluating the y„values for ranges A and B.

Fit A /A+ D+ Dz~ /Dr+3 D+ D4 /D4+ y'.(C) y'.(B) y'.( A)

0.484
+0.002
(0.5)

(0.5)

1.402
+0.028

1.174
+0.006

1.163
+0.007

1.633
+0.008

1.578
%0.004

1.651
+0.011

—7.6
+0.2
—2.9
+0.6
—2.1

+0.7

—19.7
+0.4
—2.9
+0.6
—9.8
k2.9

(0)

—42
+13
—45
+15

5.0
+1.4

2.6
+1.0

(0)

86
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where a second logarithmic correction term
1.579(lnb /~ti) ' occurring for T ( T, has been ignored
since it is numerically much smaller than (lnb /~t~ )+
for our system. Gorodetskii and Zaprudskii explicitly

FIG. 11. Deviations A=hC~/R(obs) —AC~/R(fit) for fit 5 in
Table III.

predict that A /A + =3.56. This form cannot provide
even a qualitatively acceptable At to the data for the
X=0.35 sample since the experimental peak is close to
symmetric ( A /A = 1.6) while the equations given in
Ref. 16 predict almost no excess heat capacity for T & T, .
In particular, Eq. (10) yields the efFective amplitude ratio

A A
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FIG. 12. Fit 5 to the tricritical hC~/R data over range A

(it~ ~10 ) and the range it~ «3X10 . Data points omitted
from the fitting procedure are shown here as plus signs.
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with Eq. (10) is 18.3, Eq. (11) predicts that (A /A+), s.
should vary from 27 at ~t~ =10 to 43 at ~t~ =10
which is clearly inconsistent with our data.

IV. DISCUSSION

The effective N—Sm- A critical exponent a for mixtures
of the homologous compounds 40.8 and 60.8 increases
with X60 8 from a=0.13 for pure 40.8 to a =0.50 for the
near-tricritical mixture with X=0.35. It is thought that
this represents crossover behavior between 3D-XF
second-order behavior and tricritical behavior. However,
the general validity of the XF model for N—Sm-A transi-
tions in nonpolar systems is not well established, ' and
no quantitative crossover form for C exists. As shown
in Fig. 5, the magnitude of the N—Sm-A excess heat capa-
city increases monotonically from 40.8 up to the tricriti-
cal composition and then decreases as X increases fur-
ther. This occurs because the Sm- A Auctuations become
stronger as the nematic range decreases. When the tran-
sition becomes first order, part of the enthalpy change be-
comes a discontinuous latent heat and the pretransitional
integrated enthalpy decreases. ' ' " In terms of two-
scale-factor universality the increase in the amplitude of
the heat capacity can be related to decreases in the mag-
nitude of the bare correlation lengths as the nematic
range decreases.

For the near tricritical sample with X=0.35, the ex-
ponent a is very close to the expected Gaussian tricritical
value of —,'. Indeed, the data are fully consistent with
a=0.50 when correction terms are taken into account.
There is, however, the possibility that a is slightly less
than 0.50 for this sample (see fit 1 in Table III). It does
not seem likely that this is due to the composition being
different from the exact tricritical value X,. Figure 6 sug-
gests that X=0.35 may be slightly larger than X„and
one would thus expect a,~&0.5. A possible explanation
for an exponent value less than —,

' can be given in terms of
incipient Fisher renormalization. It is well known that
C values measured along a constant composition path
should asymptotically exhibit the renormalized exponent
a~ = —a/(1 —a), which equals —1 for a tricritical sys-
tem. The extent of such renormalization depends on the
magnitude of (dT, /dX) among other factors. The ob-
servation of an effective a value of 0.48 for C z at a tri-
critical point could thus be explained as due to the early
stages of crossover from a= —,

' to az = —1 as ~t~~0.
Complete renormalization has been observed in systems
with dT~„/dX ~230 K, ' ' and no evidence of renor-
malization is observed when (dT&~ /dX) ~ 10.8 K (see
Table III in Ref. 12). For a 40.8+60.8 mixture with
X=0.35, d T&~ /dX= 19.3 K, which might be large
enough to cause incipient crossover. Although we cannot
rule out this possibility, it seems more likely that fit 1

yields a=0.48 due to the neglect of important correction
terms.

The tricritical amplitude ratio A /A = 1.6 for
40.8+60.8 is similar to those observed in other nonpolar
mixtures' '" but differs from the value 1.0 observed in
polar cyanobiphenyls. ' This is not an issue of concern

since it is known that tricritical A /A+ ratios deter-
mined over accessible ~t~ ranges are not universal. Fisher
and Sarbach showed that the amplitude ratios at the tri-
critical point in an exactly solvable spherical (n = oo )

model were nonuniversal but functions of the single vari-
able z =(a/Ro), where a is the lattice spacing and Ro
specifies the range of interaction. This theory was suc-
cessful in explaining the experimentally available ratios
for He- He mixtures and for the metamagnet Dy&A150, 2

[dysprosium aluminum garnet (DAG)] with z=0.12 and
z=0.21, respectively. The amplitude ratios predicted by
Landau theory are recovered for z=0. Stephen has
pointed out the relation between the apparent nonuniver-
sality of amplitude ratios and the logarithmic correction
factor expected for real systems with d=3 and finite n. It
is predicted that the presence of the logarithmic terms
will slowly drive z to zero as ~t~ ~0 and restore the am-
plitude ratios to the Landau-theory values. The approxi-
mation of taking z to be a constant will work well if the
logarithmic corrections are small. Using the results of
Fisher and Sarbuch, we find A /A =(1—z )' /z,
which yields z=0.530 for A /A + = 1.6 and z=0.707 for

/A+=1. 0. The fact that the inclusion of logarith-
mic correction terms in Eq. (8) did not yield an improved
fit to the tricritical 40.8+60.8 data shows that logarith-
mic corrections do not play a dominant role. Thus the
constant-z approximation should work well for the
N—Sm-A tricritical point. Values of z such as 0.53 and
0.71 show that N—Sm-A tricriticality is further from the
classical Landau result (for which z=O) than the tricriti-
cal behavior in He- He mixtures or DAG.

The fitting results given in Tables II and III suggest
that higher-order correction terms may play ap impor-
tant role for the tricritical 40.8+60.8 mixture, especially
over a range as wide as

~
t~

~ 10 . It is seen from Table
III that the Dz~/Dii ratio is greater than 1, perhaps even
as large as 5. This is not necessarily inconsistent with the
general expectation that correction amplitude ratios
should be close to unity. ' Since both analytic and non-
analytic terms contribute to this correction term,
D2i/Di+i =(D2 Di )/(Dz+ +—D~+ ). Thus, negative
D z+ -D 2 values and positive D z+ -D

&
values with

~D2 ~
)D& could lead to the observed negative D2~& values

with a ratio Dzz /Dzz & 1. The D 4 values are very uncer-
tain and suspiciously large, especially D 4 . Unfortunate-
ly, there is a strong coupling between AB =B + —B
D2~, and D4. For fits 4 and 5, the A D2~~t~' terms
play a significant role even over range A (

~
t~ ( 10 ).

Since Dz& /Dz&) 1 and both Dz& and Dzz are negative,
these correction terms have an effect over range A that is
crudely analogous to a positive step bB. Large positive
D 4 values are then required to offset the negative contri-
butions of A —D2i~t~' over wider reduced temperature
ranges. Although the present data do not resolve the rel-
ative importance of several possible correction terms,
there is strong evidence for a steplike b C /R variation at
T, . It would be of interest to carry out a high-resolution
x-ray study of 40.8+60.8 to determine the critical ex-
ponents y, v~~, and v~ and to look for the possible appear-
ance of correction terms in the behavior of the suscepti-
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bility and the correlation lengths.
In summary, the e6'ective critical exponent a evolves

monotonically with the 60.8 mole fraction X in
40 8+60.8 mixtures. For the near-tricritical sample with
X=0.35, the C data are consistent with the tricritical
value ca=0.5. The nonuniversal tricritical amplitude ra-
tio A /A+=1. 6 can be understood in terms of the
Sarbach-Fisher model. Steplike correction terms seem
to be required for fitting data near the tricritical point. A
step discontinuity at T, would arise naturally as a conse-
quence of A /A+&1 if the first corrections-to-scaling
exponent 6, is —, at a tricritical point.
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