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We present a Landau theory for transitions among tilted hexatic phases in liquid-crystal films.
Using the renormalization group, we then derive phase diagrams with four tilted hexatic phases:
the hexatic-I and hexatic-F phases, an intermediate hexatic-L phase, and an unlocked phase. If the
films are crystalline rather than hexatic, all these phases except the unlocked phase still exist. These
results are consistent with recent experiments on thermotropic and lyotropic liquid crystals. We
also study the five-armed “star” defect close to the hexatic-to-hexatic transitions. Near the first-
order transition from hexatic-I to hexatic-F, the thickness of the arms increases as |T — T;z| ~!/3
through a process similar to wetting. This thickening should be observable in thin tilted hexatic

films.

I. INTRODUCTION

Layered liquid-crystal systems have a rich variety of
phases with different types of in-plane two-dimensional
(2D) order. Among the most interesting are the tilted
hexatic phases. These phases have at least quasi-long-
range order in two order parameters: the orientation of
the six local in-plane bonds and the direction of the local
molecular tilt. They have only short-range in-plane crys-
talline order. Tilted hexatic phases can differ from each
other in the relation between the local tilt and bond
directions. In the hexatic-I phase, the local tilt (azimu-
thal) angle is locked along one of the local bonds. In the
hexatic-F phase, the local tilt angle is locked halfway be-
tween two local bonds, 30° from each. In the hexatic-L
phase, the local tilt is locked at an angle between 0° and
30° from a local bond.! There may also be an unlocked
phase, in which the bond and tilt angles fluctuate in-
dependently.?

Recent experiments have investigated transitions
among tilted hexatic phases in two different systems.
First, Dierker and Pindak® have studied tilted hexatic-
phases in five-layer films of thermotropic liquid crystals.
They observe a direct phase transition from hexatic-I to
-F. This transition is weakly first order, with large pre-
transitional anomalies. Second, Smith et al.! have exam-
ined the Ly phases of lyotropic liquid crystals. These
phases are probably hexatic because of dislocation buck-
ling (see Sec. V), but they may contain finite in-plane
crystallites. Smith er al. find three Lg phases: the Lg;
and L g phases and a new intermediate Lg; phase, which
are the lyotropic analogues of the hexatic-I, -F, and -L
phases. The Lg;-Lg; and Lg; -L gr transitions are second
order.

In an earlier paper,* we developed a Landau theory
with fluctuation corrections for transitions among tilted
hexatic phases. In this paper we discuss that theory in
greater detail, and we use it to investigate finite-size
effects. We also predict the behavior of the Dierker-
Pindak-Meyer “star” defect® near the hexatic-to-hexatic
transitions. These predictions could be tested by experi-
ments on thin tilted hexatic films.

The basic physics behind our model can be seen in a
simple mean-field theory. Let 6(r) be the bond-angle field
and ¢(r) be the tilt-azimuthal-angle field. As a first ap-
proximation, we neglect fluctuations in these fields. In
this paper we use the tilt-bond interaction potential

V(O—¢)=—hgcos[6(6—¢)]—h,,cos[12(60—¢)] .
(1.1)

Suppose that &, is fixed at a negative value, and kg de-
creases from positive to negative values as we adjust some
external field, such as temperature or humidity. The se-
quence of potentials is shown in Fig. 1. For hg>4|h,|
the only minimum is at 6_=60—¢=0° (mod 60°). The
system is in the I phase, with the tilt locked along one of
the local bonds. As hg passes through 4|h,|, the
minimum at _ =0° becomes quartic and then splits into
two equally deep minima at 6_=x1cos™(h¢/4|h,]).
We therefore have an Ising-type, second-order,
symmetry-breaking transition from I to L at hg=4|h,|.
As hg decreases from +4|h,| to —4|h,,|, the minima in
the L phase shift smoothly from 6_=0° to +£30°. At
h¢=—4lh,,| there is another Ising-type, second-order
transition from L to F, and F remains the stable phase for
all hg < —4|h,|. This behavior is essentially what Smith
et al.! observe by varying humidity in the L g Phases. By
contrast, if h,, is positive, then the potential passes
through the sequence shown in Fig. 2, and the system has
a direct, first-order transition from I to F at hy=0. This
behavior is essentially what Dierker and Pindak® observe
by varying temperature in thermotropic films.

The plan of this paper is as follows. In Sec. II we con-
struct a general Hamiltonian for the fluctuating fields
6(r) and ¢(r), and we define a complex order parameter
that describes all of the hexatic-to-hexatic transitions. In
Sec. III we discuss the mean-field theory introduced
above in more detail. In Sec. IV we use the renormaliza-
tion group to analyze the effects of fluctuations in 6(r)
and ¢(r) in two dimensions. Fluctuations change qualita-
tively the mean-field results sketched above at sufficiently
high temperatures or low elasticities. We derive phase di-
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FIG. 1. Sequence of potentials (1.1) with h,=—1 and

h¢=6,4,2,0, —2 —4, and —6 (top to bottom). In mean-field
theory, there are Ising-type second-order transitions at
he=x4|hy,|.

agrams showing the I, L, and F phases as well as the un-
locked phase, and we make several universal predictions.
We also discuss how our results are modified by finite-size
effects. In Sec. V we compare our phase diagrams with
experiments. In addition, we show that all the phases ex-
cept the unlocked phase exist if there is 2D crystalline or-
der as well as bond-orientational order. Our theory
therefore applies to the L phases whether they are hex-
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FIG. 2. Sequence of potentials (1.1) with ;=1 and he=2,
1,0, —1, and —2 (top to bottom). There is a first-order transi-
tion at hg =0.
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atic or crystalline.

In Sec. VI we examine the five-armed star defect of tilt-
ed hexatic phases. Dierker, Pindak, and Meyer>> have
observed this defect in thin films of thermotropic liquid
crystals, which have a direct, first-order I-F transition.
According to our theory, the arms thicken near the first-
order transition, and each arm contains a sliver of the in-
cipient, metastable phase. Through a mechanism analo-
gous to wetting, the thickness of the arms increases as
|hg| 7173 or, equivalently, as |T —T,z|~!/°. This diver-
gence is cut off when the arm thickness grows to a size
proportional to the square root of the arm length. This
thickening should be observable in thin tilted hexatic
films. It may also be possible to observe the star defect in
materials that have an L phase. According to our theory,
inside the L phase the five arms become five wide petals.
Each petal contains the mirror image of the bulk L
phase.

II. HAMILTONIAN AND ORDER PARAMETER

In our theory we extend the work of Nelson and Halpe-
rin? by using a more general tilt-bond interaction. We
consider the Hamiltonian for a 2D tilted hexatic mem-
brane,

H
T [ d*[1K4|VOI2+ 1K, (Vo[

+gVo-Vo+V(6—¢)] . (2.1

The coefficient K¢ is a Frank constant for variations in
the bond orientation 6(r), K, is a stiffness constant for
variations in the tilt angle ¢(r), and g is a gradient cross
coupling. In this Hamiltonian we neglect elastic anisot-
ropy, which we will discuss in Sec. V. The function
V(6—¢) is a general tilt-bond interaction potential. Be-
cause of the local hexagonal symmetry, it can be ex-
pressed in general as the Fourier series

V(O—¢)=— i hg, cos[6n(0—¢)] .

n=1

(2.2)

If the potential is smooth, then |hg,| decreases rapidly
with increasing n. Furthermore, we will show that hg,
becomes less relevant in the renormalization-group sense
as n increases. For these reasons, inside the I and F
phases the k4 term is the dominant term, and one can
neglect all the other terms, as in Ref. 2. However, our
aim is to find the behavior near the transition from I to F,
when h¢ passes through 0. Hence, we must also keep the
h, term, and we obtain the potential (1.1). :
In this paper we consider only low-temperature phases,
in which disclinations in 6(r) and vortices in ¢(r) are
rare. In the absence of these defects, we can treat both
fields as single valued. We can then simplify the Hamil-
tonian (2.1) by defining the linear combinations?
0, (r)=ab(r)+B¢(r) , (2.3a)
(2.3b)

where a=1—B=(K,+g)/(K¢+K,+2g).
6..(r), the Hamiltonian becomes

In terms of
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H
kT

= [d*[1K,|VO,|*+1K _|VO_P+V(6.)],

(2.4)

with K, =K¢+K,+2g and K_=(K,Ki—g*/K,.
The average value of 6_ is 0° (mod 60°) in the I phase, 30°
(mod 60°) in the F phase, and between 0° and +30° (mod
60°) in the L phase. Variations in 8 (r) and 6_(r) corre-
spond to ‘“‘acoustic”” and ‘“‘optical” modes, respectively,
with in-phase and out-of-phase variations of bond and tilt
angles.’

To describe all the tilted hexatic phases, we use the or-
der parameter M _ = (¢*°=). This order parameter is O
in the unlocked phase (where its correlations decay alge-
braically?), real and positive in the I phase, real and nega-
tive in the F phase, and complex in the L phase. There
are three ways-for M _ to go from the positive real axis to
the negative real axis: it can go continuously through O,
it can make a direct, finite jump from positive to nega-
tive, and it can go through the complex plane. In Secs.
III and IV, we will show that all three of these possibili-
ties occur in the phase diagram.

Before going on, we should make one more comment
about the Hamiltonian (2.1). In writing this Hamiltoni-
an, we implicitly assume that the membrane is flat. If the
membrane is curved, then in the Hamiltonian we must re-
place VO by VO+ A and V¢ by Vo+ A, where A is a
“vector potential” determined by the membrane curva-
ture.>”® However, when we change variables from 6(r)
and ¢(r) to 6,(r) and 6_(r), the vector potential only
affects the VO, term.’ Physically, because 6(r) and ¢(r)
can be measured relative to the same locally defined axis,
the difference 6(r)—¢(r) does not experience any frustra-
tion due to membrane curvature. For this reason, mem-
brane curvature does not affect the order parameter M _
or the phase diagram discussed in this paper.

III. MEAN-FIELD THEORY

As a first approximation, we neglect fluctuations in
6(r) and ¢(r) and simply minimize the potential (1.1). In
this mean-field theory, we determine how the minimum
shifts as k4 changes sign for fixed nonzero A ,.

In Sec. I we have already described the behavior for
fixed negative h,,. As hg changes sign, the potential
passes through the sequence shown in Fig. 1. At
h¢=4|h,| there is a second-order, symmetry-breaking
transition from the I phase, which has reflection symme-
try, to the L phase, which lacks it. This transition is
analogous to the Ising transition from the paramagnetic
to the ferromagnetic phase, with 44 analogous to temper-
ature and ImM _ to magnetization. Just below h {F,

ImM_ «t(h{E—hg)P, 3.1)

with B=1, as in mean-field theory for the Ising model.
As hg decreases from h¢{L to hk¥'=—4|h,,|, the complex
order parameter M _ passes through the complex plane

from the positive real axis to the negative real axis. Just
above h L%,
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ImM _ «t(hg—hiF)?, 3.2)
with B=1 as before. At héF reflection symmetry is re-

stored by a second-order transition from L to F.

If h,, is fixed at a positive value, the behavior is quite
different. As h¢ passes through O, the potential goes
through the sequence shown in Fig. 2. There can be local
minima at 6_=0° and 30° (mod 60°). For h¢>0 the
minimum at 0° is deeper, and the system is in the I phase.
For hg <0 the minimum at 30° is deeper, and the system
is in the F phase. At hg=0 there is a direct first-order
transition from the I phase to the F phase. The order pa-
rameter M _ jumps discontinuously from the positive real
axis to the negative real axis. We therefore obtain the
phase diagram of Fig. 3.

Our mean-field theory of hexatic-to-hexatic transitions
is analogous to the mean-field theory of surface tilt-angle
transitions in nematic liquid crystals.!° The surface tex-
ture of a nematic liquid crystal may be homeotropic
(director normal to the surface), conical (director between
0° and 90° from the surface), or planar (director parallel
to the surface). As the temperature changes, the surface
texture may have a direct first-order transition from
homeotropic to planar, or it may have a second-order
transition from homeotropic to conical followed by
another second-order transition from conical to planar.
The homeotropic and planar textures correspond to the I
and F phases, and the intermediate conical texture to the
L phase. The polar angle of the surface tilt corresponds
to the angle 6_; the azimuthal angle of the surface tilt is
an additional degree of freedom with no analogue in our
theory. The surface tilt-angle transitions have been
modeled by a potential similar to Eq. (1.1).

We can extend our mean-field theory by considering
higher-order Fourier coefficients in the potential ¥ (6_).
First, consider nonzero hg. If h;, < —6|h /|, there is a
pair of second-order transitions as above. If &, >2|h ],

4he

HEXATIC I

HEXATIC L

HEXATIC F

FIG. 3. Mean-field phase diagram as a function of k¢ and
hy,. The double lines represent first-order and the single lines
second-order transitions.
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there is a direct first-order I-F transition. If
—6|hgl <h;;<2|h3| and h,5>0, there is a first-order
I-L transition followed by a second-order L-F transition.
Likewise, if —6|A 3| <h,, <2|hg| and kg <O, there is a
second-order I-L transition followed by a first-order L-F
transition. Next, consider nonzero h,,,h3y,... . If
these terms are sufficiently large, there may be several L
phases and several first-order transitions among these
phases. However, we would be surprised if V(6_) con-
tains this much fine structure.

IV. RENORMALIZATION-GROUP ANALYSIS

To go beyond mean-field theory, we must consider fluc-
tuations in 6_(r). The effect of these fluctuations de-
pends on dimension. In a 3D stacked tilted hexatic sys-
tem with many interacting layers, fluctuations produce
only small corrections to the mean-field theory discussed
above. Fluctuations are not expected to change the to-
pology of the mean-field phase diagram of Fig. 3, al-
though they may change the shape of the second-order
lines near the “multicritical point” at hgo=~h,,=0. If
h,, >0, fluctuations have no major effects on the first-
order I-F transition. If A, <O, they reduce the critical
values |h/E| and |hLF|, and they change the exponent 8
in Egs. (3.1) and (3.2) to 5~=0.31, the value for the 3D Is-
ing model. By contrast, in a 2D system fluctuations in
6_(r) may qualitatively violate mean-field theory and can
change the topology of the phase diagram of Fig. 3. The
films studied by Dierker and Pindak? are only five layers
thick, and hence are effectively 2D. Likewise, the Lg
phases studied by Smith et al.! exhibit no correlations
across bilayers, and hence may also be effectively 2D. To
understand these experiments, we must assess the
significance of fluctuations in 2D by using the renormal-
ization group.

In our renormalization-group calculation, we follow
the method of Kogut.!! We work to second order in the
potential ¥ (6_) and use smooth momentum-space slic-
ing. We impose a momentum-space ultraviolet cutoff
A=a "', where a is a typical intermolecular spacing. In
the renormalization-group transformation, we integrate
out the high-momentum components of 6 in the smooth-
ly defined range from e ‘A to A and then rescale dis-
tances by a factor of e’. In our notation hg, and K _
(with no explicit / dependence) are the initial coefficients
at /=0, and hg,(]) and K_(I) are the effective
coefficients at the length scale e'a. For a general V(6_)
of the form in Eq. (2.2), we obtain the differential recur-
sion relations

dhe, (D [ on2
a2 k- )hﬁ"(”
4o imh (Dhg, (1)
K _(DA? [U_%:,,Jm 678 T om

- 2 jmhﬁj(l)th(l) >

j+tm=n
(4.1a)
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dK_(D7' = 162a,n*hg, (1) @1b
i ,21 K_(PA* 1)

where a; and a, are positive constants of order 1 that de-
pend on the details of the momentum-slicing procedure.'!
Szeto and Dresselhaus'? have derived similar recursion
relations for two symmetry-breaking fields using a
different method.

The recursion relations (4.1) have terms at first and
second order in the A’s. If we consider only the first-
order terms, then K _ is a constant of the renormaliza-
tion group, and hg, is relevant for K_ >K_¢,, where
K6, =9n2/2m. If we include the second-order terms,
then K _(I) increases with increasing /, and hence the
critical initial stiffnesses are K¢, 9n2/2m. The critical
initial stiffnesses K¢, are nonuniversal because they de-
pend on all the relevant and irrelevant A’s. The correc-
tions to K,¢, are of order V/K_A% Two critical
stiffnesses, K, ¢ and K, ,,, are particularly important to
our theory. At K_=K_¢59/2m, there is a “lock-in”
transition'> above which kg is relevant and
M_':‘(eéw*) acquires long-range order. Similarly, if
he=0, there is a lock-in transition at K _ =K_,, S 18/,

) ) 12i6_ "

above which 4, is relevant and (e ) acquires long-
range order. The value of K¢ at 4, =0 should be close
to 9/2m because it is only renormalized by %, and
higher-order irrelevant variables. Likewise, the value of
K., at hg=h, =0 should be close to 18/m because it is
only renormalized by 4,3 and higher-order irrelevant
variables.

Note that hg,h,, ..., only become relevant at
stiffnesses much higher than the stiffnesses at which A
and h,, become relevant. Even if they are relevant,
hig(D,hyu(l), ..., grow less rapidly than hg(l) and
h,,(1). For this reason, the higher-order coefficients can
affect the physics only in the very small region of the
phase diagram where h¢ and h, are initially both small.
We therefore neglect the higher-order coefficients and
consider only the h¢ and &, terms. We truncate the set
of recursion relations (4.1) to obtain

aheh [ 9 366t (D (D)
dl 7K _(1) |'® K (DAL
(4.2a)
dhlZ(l) 36 9a1h6(1)2
T -, 4.2b
dl 222k "0 koA (4.2b)
dK _ ()71 162a, i 2
d K (1)3/\4[”6‘” +16h, (D] . (4.20)

If K_>K_g, an initially small value of |h4| increases
with increasing length scale. If K_ >K_ 5, an initially
small value of |4, | also increases. When ! =/* such that
max [|hg(I*)],|h,(1*)|]]=O(K _A?), our expansion in
powers of V(6_) ceases to be valid. At this length scale
we must match directly onto an approximation that is
valid for large V' (6_). The renormalized potential at this

length scale, V,+(6_), consists of a series of “valleys”

separated by high energy barriers. Fluctuations in 6_ are
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then confined to one valley. Four types of behavior are
possible.

(1) If K_>K_,,, both hg and h, are relevant. If
hy; <0, V,«(0_) consists of a series of valleys with Ising-
type internal structure, as in Fig. 1. Because 0_ is
confined to one valley, our problem is equivalent to a 2D
continuum Ising model with fluctuations. We therefore
obtain second-order, Ising-type I-L and L-F transitions.
If we neglect fluctuations in the Ising model, these transi-
tions occur when hg(1*)=+t4|h,(I*)|; with fluctuations
they occur at a reduced value of |Ah¢(/*)].

Using the nonlinear recursion relations (4.2), we can
find the critical initial values of 44 in two limits. First, in
the limit K_ — oo, the recursion relations can be in-
tegrated trivially. We find the second-order transitions at
hit=—hLtF=4]h |, just as in mean-field theory. This
result is not surprising, because in the limit K _ — o all
fluctuations between and within the valleys of ¥ (6_) are
quenched.

Next, consider the limit K _ —K ;. We assume that
in this limit |h4| <<|h,| near the second-order transi-
tions; we will later show that this ansatz is self-consistent.
We therefore neglect the h¢(/)? terms in (4.2b) and (4.2c).
We also neglect the h¢(I)h,(I) term in (4.2a) because we
iterate only until & ,,(/) grows to O(K _A?). We there-
fore obtain the approximate recursion relations,

dheth _ 1y 9 p (4.32)
dl 7K () [ e
dh(1) 36
T —‘2 K D hy, (D), (4.3b)
dK (7! 2592a,h 1,(1)?
=— T (4.3¢)
dl K_(IPA
These recursion relations have a fixed point at

h¢=h;,=0 and K_=18/m. We linearize about this
J

3w
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fixed point and solve the linearized equations by the
method of Kosterlitz.!* Figure 4 shows the resulting
renormalization-group flows in the (k,,,K_!) plane.
The incoming separatrices give chllz as a function of 4 5,

-y _ T "72\/—‘;2|h12|
Bl ™ag T oA

We begin at the point labeled 4. The renormalization-
group trajectory is given by

4.4)

ho()=hgexp EHE (4.5a)
2
hy(h=——3C (c1+D), (4.5b)
41V a,
K (D) '=Z+7C ot +D) (4.5¢)
- 18 ' 36 ’ :
where
87V a,|h (K - —K, 5)
C~ 2 N (4.6a)
9A
2
sinD = —A_C— . (4.6b)
41r\/a2|h12|

We iterate until we reach the length scale /* given by
|h,(1*)|=0(K _A?). Equations (4.5) and (4.6) give

Y — .
1 C 4.7)
At that length scale h ¢(]) grows to
ho(I*)~hgexp | 2% 4.8)
6 =he€Xp |55 |- .

Because the critical values of h4(/*) are approximately
+4|h ,(1*)|, with small corrections for fluctuations, the
critical initial values of /4 are given by

81A2

hit=—hlF=K_A’exp ~K _A’exp

2C

as K_—K.J,. Near the transitions, |h¢(l)| <<|h ()]
for all / <I*, thus confirming our ansatz.

(2Q)IfK_>K_;and h, >0, both hg and h,, are again
relevant. In this case V,.(ev) may have valleys at
6_=0° (mod 60°) and 30° (mod 60°), as in Fig. 2. If
h¢ >0, the valleys at 6 =0° (mod 60°) are deeper, and 6 _
fluctuates inside one of those valleys, in the I phase. If
h¢ <0, the valleys at 6_=30° (mod 60°) are deeper, and
0_ fluctuates in the F phase. As kg passes through O,
there is a first-order I-F transition.

B)If K. ¢<K_ <K, then hg is relevant but h, is ir-
relevant. If the initial value of h¢ is small, the potential
V(6_) iterates to V,+(6_)=—hg(I*)cos66_. If he>0,
6_ fluctuates in the I phase, and if A4 <0, 6_ fluctuates

172
32'\/(—1_2|h12|(K~_Kc,12) ] ]

(4.9)

in the F phase. If hy=0, then V(6_) iterates to O, and
our problem becomes a 2D xy model with no symmetry-
breaking field. In that case there is no long-range order
in 6_. We therefore obtain a second-order rather than a
first-order I-F transition as h¢ passes through 0. The line
of critical points at h=0 for K. <K _ <K_, is a fluc-
tuation effect, peculiar to two dimensions.'3

(4) If K_ <K_g, then hg and h,, are both irrelevant.
The potential V(6_) then iterates to 0, and there is no
long-range order in 6_. We therefore obtain the un-
locked tilted hexatic phase studied by Nelson and Halpe-
rin.2 In this phase 6(r) and #(r) fluctuate independently.

By combining the behaviors in regimes (1)-(4), we ob-
tain a phase diagram in the initial parameters kg, h,,
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h, k* P
=T

Va N

FIG. 4. Renormalization-group flows in the (4 ,,K ') plane
for hg=0. The points labeled 4 —D are discussed in the text.

and K_'. Figure S presents two cross sections of that
phase diagram for fixed positive and negative h,,. For
K _ — « mean-field theory is valid, because in that limit
all fluctuations are quenched. For K_ > K| 5, the phase
diagram depends on the sign of h,. If h; <0, the phase
diagram shows I, L, and F phases with second-order,
Ising-type I-L and L-F transitions. The L phase boun-
daries come together at K_=K_,, with an essential
singularity as in Eq. (4.9). If h,, >0, the phase diagram

Y
hG
(a) h,>0
HEXATIC I
UNLOCKED _
mfm_ K -1
Kc1,1z Kc,s K.
HEXATIC F
hG
4|h
hye (b) hy, <O
HEXATIC I
HEXATIC UNLOCKED
Keh Kle K
HEXATIC F
_4|h|2|

FIG. 5. Two cross sections of the theoretical phase diagram,
for (a) constant h, >0 and (b) constant 4, <0, as a function of
he and the temperaturelike variable K —!. The double lines
represent first-order transitions and the single lines second-
order transitions. The arrow in (a) indicates the approximate
position of the I-F transition in Ref. 3.

(a)

ALONG —

SECOND-ORDER
I-F BOUNDARY

IN UNLOCKED
PHASE

1
Kene Kele KZ'

A

AM. {

(b)

2_.
- Y st
Kc,uz Kc,s K

M.
(c)
he

FIG. 6. (a) The renormalized 6_ stiffness constant K® as a
function of the temperaturelike variable K Z!, for h,=0 and
fixed h;,50. Universal limits at K¢ and K, ;, are shown. K*®
approaches its universal value at K, with a square-root cusp
(see Ref. 13). (b) The discontinuity AM _ across the first-order
I-F transition as a function of KZ!. (c) The order parameter
M _ as a function of h near the second-order I-F transition, for
K (<K_<K_.
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shows a first-order I-F transition, which now ends in a
tricritical point at K_=K_ ;. For K (<K_<K_,,
both cross sections of the phase diagram show a direct,
second-order I-F transition. For K_ <K, g, both cross
sections show the unlocked phase.

We define the renormalized 6 _ stiffness constant as

KR E[um K_(I). (4.10)

The behavior of K® as a function of the initial stiffness
K _ is shown in Fig. 6(a). Although the critical initial
stiffnesses K¢ and K, are nonuniversal, the renormal-
ized stiffness K® has some universal limits. Along the
second-order I-F phase boundary, for hy=0 and
K, (<K_ <K, Egs. (4.2) imply the universal results

lim Kk =18 , (4.11a)
K A'KCTIZ m

lim +K’i —% (4.11b)
K "Kc,e

Similarly, in the unlocked phase, for K_ <K_ ¢ and all
J

M _(hg,hy,K_)=exp

[, 9
fodl = ]M_(h6(1),h12(l),K_(l)) .
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values of kg, we find
lim KR=-— . 4.12)
K_—K 27

The limit (4.11a) can be derived by examining the
renormalization-group flows beginning at points such as
B and C in the (h;,,K ') plane of Fig. 4. The limits
(4.11b) and (4.12) can be derived by examining flows in
the (h¢, K —!) plane near the fixed point hg=h, =0 and
K_=9/27.

Now consider the order parameter M _. We make the
scaling ansatz

M_(ho(D,h (D, K _ (D))

=e®'M _(ho(l +80),h,(1+81),K_(1+81)) (4.13)
for 8/ <<1. For small h¢(l) and h ,(1), we find
9
=7 .14
13} KD (4.14)
By integrating (4.13), we obtain the scaling relation
(4.15)

It is interesting to consider the behavior of M _ in each of the four regimes discussed above.

(1) If K_>K_, and h, <O, there are second-order I-L and L-F transitions, and the L phase is characterized by
ImM _5£0. Near the transitions, ImM _ follows the power laws (3.1) and (3.2). Because of fluctuations within the val-
leys of V'(6_), the exponent 8 becomes 1, the value for the 2D Ising model.

(2) If K_>K_; and h, >0, there is a first-order I-F transition, across which M _ has a finite discontinuity AM _.
We are interested in the behavior of AM _ near the tricritical point at K ;. Consider an infinitesimal s above or
below the first-order transition. We again use the recursion relations (4.3). We begin at the point labeled D in Fig. 4
and iterate up to the length scale /* given by Eq. (4.7), where h,,(/*)=0(K _A?). The scaling relation (4.15) then im-

plies

. *
AMg(hlz,K_)Zexp - Ol dl;TKg—(l)

AM _(h,(I*),K _(I*)) .

(4.16)

Because h,(1*) is large, AM _(h,(I1*),K _(I*)) is of order 1. In the integral we approximate K _(I)=~18/7. We

therefore obtain

*

AM _(h,,K_ )= exp I

9A2

=~ exp

2

At the tricritical point, AM _ vanishes with an essential
singularity, as in Fig. 6(b).

(3)IfK_ ¢<K_ <K,y then hy, is irrelevant, and there
is a second-order I-F transition at hg=0. We are in-
terested in the way M _ vanishes as h¢—0. Using the re-
cursion relations (4.2), we begin with h¢ small and iterate
up to the length scale /* where |h¢(I*)|=0(K_A?). A
characteristic value for K _(I) during the iteration is K X.
We therefore obtain

KR
27KR —9

KR A?
1* = -
lhel

=~

In (4.18)

172
32’\/;2|h12|(K__KC‘12) ] l ’

(4.17)

At this length scale, |[M _(hq(1*),K _(I*))| is of order 1.
The scaling relation (4.15) then implies

9/(2rkR —9)

IM_(hg,K_)| o« |h| (4.19)

near the second-order transition. This power law is illus-
trated in Fig. 6(c).

(4) If K_ <K_4 then M_ =0 in the unlocked phase.
The behavior of M _ near the I-unlocked and F-unlocked
transitions has already been studied.!> At the boundary
of the unlocked phase, M _ vanishes with an essential
singularity.
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So far we have considered an infinite system. If the
system has a finite size L, we cannot iterate to any length
scale greater than L. Rather, we must cut off the itera-
tion at

L

a

[*=In (4.20)

At this length scale, 8_ has only one unintegrated degree
of freedom, the zero-momentum mode. We can then use
mean-field theory in this mode. Neither h4(/) nor A,(/)
can iterate all the way to O by the time / reaches /*. Both
Fourier coefficients can therefore affect the phase transi-
tions. Szeto and Dresselhaus'® have studied finite-size
effects in the 2D xy model using a similar argument.

In a finite system, if 4, <0, there is a small wedge of
the L phase for all K . Because the I-L and L-F transi-
tions occur at hy(I*)=+4|h,(I*)|, the critical initial
values of k4 are

hib=—hLF=4|h,| , (4.21)

—27/7K _
:

or the infinite-system values, whichever are larger. If
hi, >0, the I-F transition is at least weakly first-order,
with a nonzero discontinuity AM _, for all K_. To find
this discontinuity, we use the scaling relation (4.16).
Even if h,(I*) is very small, AM _(h,(I*),K_(I*)) is
of order 1, because in a finite system there is only one 6_
mode at this length scale. We therefore obtain the
discontinuity

—9/7K _

L
a

AM _(h,,K )=~ , (4.22)

or the infinite-system value, whichever is larger. In writ-
ing Eqgs. (4.21) and (4.22), we assume that K _ (/) does not
change much from / =0 to [*, and hence we use the ini-
tial value to estimate the exponents.

V. DISCUSSION OF PHASE DIAGRAM

In order to compare our theory with experiments, we
must examine two details about the Hamiltonian (2.1).
First, consider the effect of elastic anisotropy. In the
Hamiltonian (2.1), we assume that all the stiffnesses are
isotropic. However, on a microscopic length scale K|,
and g are really anisotropic tensors with eigenvalues Kf,
K3, gB, and gS, corresponding to bend and splay, i.e.,
variations parallel and perpendicular to the local tilt
direction, respectively. The stiffness K is always isotro-
pic because of the local hexagonal symmetry. When we
change variables from 6 and ¢ to 6, and 6_, the acoustic
*“polarization” constants a and 3 depend on the wave-
vector direction in reciprocal space (just as ordinary pho-
non polarization constants depend on wave-vector direc-
tion in anisotropic media). In general, K_ will also de-
pend on the wave-vector direction in a complicated way.
However, in the physically realistic limit K¢ >>K%, K7,
g, and g%, one can show that K _ reduces to the tensor
K. Nelson and Pelcovits'® have shown that the tensor
K| becomes isotropic at long length scales. By a straight-
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forward application of their recursion relations (4.8) and
(4.9), one can show that K% and K7 both evolve toward
their arithmetic mean (K®+K7%)/2. For that reason, on
long length scales we can use the asymptotic value
(K®+K7)/2 in place of K _ in the recursion relations.

Next, consider how the phase diagrams of this paper
are modified if the membrane is crystalline rather than
hexatic. To be sure, recent theoretical work®!? has
shown that the free energy of an unbound dislocation is
negative for all 7> 0 in any 2D membrane that can buck-
le out of the plane. This result indicates that 2D crystal-
line phases cannot be in equilibrium for any 7 >0, and
that the hexatic phases are preferred. However, the ex-
periments of Smith et al.! do not actually determine
whether their Lg phases are crystalline or hexatic. The
dislocations could have very large core energies, in which
case the dislocation density would be very low and the
positional correlation length could be greater than experi-
mental length scales. Furthermore, interlayer interac-
tions could prevent the dislocations from buckling. Just
in case the L phases are crystalline, we consider how
crystalline order affects the results of this paper.

In a crystalline membrane, K¢ becomes infinite, and
6(r) is replaced by the fixed orientation 6, of the crystal
axes. In the Hamiltonian, we must now include the cou-
pling of ¢(r) to the lattice strain field u;;(r). Nelson and
Halperin? argue that the Hamiltonian for a crystalline
membrane becomes

H
kT

= [dr[pul+ i up + 1K, |Vo|?

Ftwlu;—38,up)ss; +V(0,—¢)], (5.1
where s=(cos¢, sing). By generalizing their argument to
h,50, one can show that the crystalline analogues of I,
L, and F are all stable phases. However, if w40 then the
state with M _ =0 becomes unstable. The coupling w is
relevant for K, R 1 /7. For that reason, w destabilizes the
unlocked phase and the second-order I-F transition. Al-
though our mean-field theory should be a useful guide to
transitions among the crystalline analogues of I, L, and F
phases, our renormalization-group analysis does not ap-
ply to these transitions. We still expect, however, either a
first-order I-F transition or a pair of Ising-type, second-
order I-L and L-F transitions for large K ;.

Dierker and Pindak’s observation® of a weakly first-
order I-F transition in five-layer thermotropic liquid-
crystal films fits into our theoretical phase diagram.
From Fig. 5(a), we expect a first-order transition if #,, >0
and K_ =K ,=18/m. Dierker and Pindak indirectly
determine the value of K_ at light-scattering length
scales. Their experiments measure KZ and K7 in the
smectic-C phase of a two-layer film. By extrapolating K f
and K7 from the smectic-C phase into the hexatic-I
phase, we can estimate those values in the hexatic-I
phase. From their Fig. 1(a) we estimate K§~70/7 and
Kf ~10/m (when normalized by kzT). The mean, which
plays the role of K_ on long length scales, is
KT=(K8+K7)/2=40/7. Because elasticities are
roughly proportional to film thickness, we expect
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K*=~100/7 in five-layer films. That value is indicated
by the arrow on our Fig. 5(a). It is well within the first-
order I-F transition region. Equation (4.17) shows that
the discontinuity in M _ increases very slowly with K _ if
the microscopic h,, << A2. It is therefore not surprising
that the observed I-F transition is only very weakly first-
order. Our theory predicts that this transition will be
more strongly first-order in systems with higher tilt elas-
ticities. It also implies that there will be a tricritical
point in systems where (K% +K7)/2 is reduced to ap-
proximately 18/7. However, the finite-size effects dis-
cussed in Sec. IV will smear out this tricritical point.

Dierker and Pindak have used light scattering to mea-
sure the optical-mode relaxation rate I' _. This relaxa-
tion rate is proportional to the restoring force at the
minimum of V(6_), which is

18|hg(ly)+72h (1) . (5.2)

In this expression, hg and h;, must be evaluated at
ly=In(A/a), where A is the inverse of the wave-vector
transfer. By linearizing the recursion relations (4.2), we
obtain
2-9/mK _

’ (5.33)

h6(10)zh6 a

hy(lg)=hy,

2—-36/7K _
] (5.3b)

Close to the I-F transition, we can write hg o< (T —Tf),
and hence (assuming no singularities in the dynamics of
this first-order transition),

I'_ o« |T—T|+const . (5.4)

The value of I'_ at the transition is proportional to
h,(ly). This value should increase with increasing tilt
elasticities.

The experiments on L phases by Smith et al.! also fit
into our theoretical phase diagram, no matter whether
these phases are hexatic or crystalline. If these phases
are hexatic, then Fig. 5(b) shows that the intermediate
Lg, phase should be present, and that the Lg,-Lg and
Lgp-Lg, transitions should be second order, provided
that h; <0 and K_ 2K, ,=18/7. If these phases are
crystalline, then we expect second-order Lg-Lg, and
Lgp-Lg, transitions whenever h;, <0 and K, is large.
To test our predictions, one should analyze the line
shapes to determine whether these phases are hexatic or
crystalline, and one should measure KT =(K%+K7)/2
in these phases.

There are three basic microscopic questions for a
theory of hexatic-to-hexatic transitions. First, the theory
must explain in which direction hg changes sign as a
function of temperature in thermotropics and lyotropics.
Second, it must explain in which direction h¢ changes
sign as a function of humidity in lyotropics. Third, it
must account for the sign of 4, at the transitions.

In both thermotropics and lyotropics. the I phase is the
higher-temperature phase and the F phase is the lower-
temperature phase. This observed sequence implies that
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h¢ changes sign from positive to negative as T decreases.
Sirota'® has developed a microscopic model for a general
liquid-crystal phase sequence, which includes the I and F
phases. In this model F is the lowest-energy, lowest-
entropy phase, and I is a higher-energy, higher-entropy
phase, in agreement with experiment. The basic assump-
tion of this model is that intermolecular “tilt-bonds”
have a much lower energy than ‘“flat-bonds,” which in
turn have a much lower energy than ‘“double-tilt bonds.”
This basic assumption about bond energies is only
justified by the known structure of the lowest-
temperature phase. Before this model can be a con-
clusive explanation of the phase sequence, that assump-
tion must be justified on a more fundamental, chemical
basis, perhaps using a theoretical intermolecular poten-
tial.

Among the Lg phases, the Lg phase is the higher-
humidity phase and the Lgr phase is the lower-humidity
phase, which implies that h changes sign from positive
to negative as humidity decreases. The major effect of
humidity is to increase the layer spacing, and hence to al-
low the layers to fluctuate more. For that reason, higher
humidity should favor the higher-entropy phase, in
which the layers are more disordered and need more
room to fluctuate. The higher-humidity phase should
therefore be the same as the higher-temperature phase. If
Sirota’s model is successful as an explanation of the phase
sequence in temperature, it will also be successful as an
explanation of the phase sequence in humidity.

We do not yet have any microscopic explanation of
why h, >0 in the thermotropics studied by Dierker and
Pindak and why h;, <O in the lyotropics studied by
Smith et al. We cannot even be certain that A, will
have these signs in all thermotropics or all lyotropics. To
understand the sign of 4 ,, one must use some theoretical
intermolecular potential to calculate the free energy of a
lattice of tilted hexatic molecules as a function of 6 _, and
then project out the cos(126_) Fourier component. We
do not know of any calculations of an intermolecular po-
tential for thermotropics or lyotropics that can yield this
information.

VI. THE STAR DEFECT

Dierker, Pindak, and Meyer5 have discovered a re-
markable textural defect in thin tilted hexatic films. In
this section we discuss their theory for this defect inside
the I or F phase and point out the significance of the
acoustic polarization constants a and f3 of Eq. (2.3a). We
then predict the behavior of this defect close to the I-F,
I-L, and L-F transitions.

Thin liquid-crystal films can be drawn in the smectic-C
phase. In this phase there are quasi-long-range correla-
tions in both ¢(r) and 6(r), but the magnitude of the or-
der in 6(r) [which is induced by the order in ¢(r)] is very
small.2 When a film is formed, it can have a vortex about
which ¢(r) goes through an angle of 27. If the sample is
cooled into the hexatic-I phase, the magnitude of the
bond-orientational order becomes much greater, and 6(r)
is locked to ¢(r) by the h( term in the Hamiltonian. The
27 vortex in ¢(r) therefore becomes a 27 disclination in
O(r). To reduce its energy, this defect can break up into
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the N-armed star structure shown in Fig. 7. At the end
of each arm, there is a disclination of angle 27 /6 in 6(r).
At the center, there is a disclination of angle 27(1—N /6)
in O(r) and a vortex of angle 27 in ¢(r). Figure 7 shows
the case N =35, which is the only case that has actually
been observed so far. We consider nonchiral materials or
racemic mixtures, in which the arms are straight. In
chiral materials, the arms have a spiral structure.’

We can study this defect by changing variables from
6(r) and ¢(r) to O.,(r) and 6_(r). Note that 6 (r) and
6 _(r) are uniquely defined only in a simply connected re-
gion that does not contain a vortex or disclination. Each
arm has length R and width £ <<R. Across each arm
0_(r) jumps by 27 /6, but 6 (r) does not make any sud-
|

AE _ K N
kT 2

This integral excludes the cores of radius a about the de-
fects at the origin and the ends of the arms.'” We find the
minimum-energy configuration 6,(r,©) by solving
Laplace’s equation V?6,=0 in the wedge
—m/N <O <7 /N subject to the boundary conditions

+(m/N)N1—aN/6) if r <R

0+(ntm/N)=1410 /N ifr>R . (6.2)
We obtain

K_ . aNm
AE _ R+ a—aN)n R +eRN . 6.3)
kyT 36 a

The minimum-energy arm length is obtained by minimiz-
ing with respect to R,

R=%2C(12—a—aN)ya . (6.4)

36

where y =K | /ea. The corresponding energy is

FIG. 7. Structure of the five-armed star defect in the I phase
(from Ref. 5).

7/N ©
gstar 2__ no star|2 +eR .
f_wdefa rdr(|VOsar|2—|ygro star|2) L e RN
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den jumps. Therefore, across each arm ¢(r) jumps by
2ma/6 and O(r) jumps by —27f/6. In the physically
realistic limit K¢ >>K, and g, we have f=1—a << 1, and
hence O(r) jumps very little across each arm. In the
wedge of angle 27 /N between two arms, 6_(r) is con-
stant and 6(r), &(r), and 6,.(r) all advance by
(27 /N)(1—aN /6).

Following Ref. 5, we calculate the energy of a star de-
fect at the origin relative to the energy of a single vortex
and disclination of angle 27 at the origin. Suppose that
each arm has energy € per unit length (normalized by
kgT). In polar coordinates (r,©) the Hamiltonian (2.4)
implies

(6.1)

f

AE K ,aNm
=— 12—a—aN
kT 36 ( a—aN)
X [In [2Z(12—a—aN)y |—1 6.5)
36
A defect with N =5 minimizes the energy for

455y 5(1.2)°/%, and a defect with N =6 minimizes the
energy for ¥ 2(1.2)°/?2 So far only the five-armed star
defect has been observed, but the six-armed star defect
might be observed in a system in which 8 and y are
sufficiently large.

To find the arm width £ and energy €, consider a model
of a single, isolated arm. In the thin-arm approximation
& <<R, we assume that the arm is infinite and uniform in
the y direction and calculate the minimum-energy profile
6_(x). From the Hamiltonian (2.4) we obtain

X d’0_ _ av
T odx? do_ -~

(6.6)

Inside the I phase, far from any transition, we can neglect
all terms in V' (6_) beyond the A4 term. Equation (6.6)
then becomes

de_

K_ 2

=6h¢sin[60_(x)] . (6.7)

dx
The boundary conditions are 6_(—o)=0 and
0_(w)=2mw/6. This problem is a standard sine-Gordon
soliton problem. The solution is

0_(x)=1lcot™! |—sinh> |, (6.8)
where
E=1VK_/hg . (6.9)

From tne Hamiltonian (2.4), the energy of the soliton per
unit length is

e=4VK_h, . (6.10)
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8(x)

+2m/6 f‘
/6
a3y (W ¢

X

FIG. 8. Minimum-energy profile 6_(x) across one arm in the
I phase near the first-order I-F transition, for 0<hq <<h,,.
This profile can be viewed as two “half-arms” of width &, ,,
separated by a region of the F phase with width w.

The physics of this defect inside the F phase is the same.

As an aside, we note that 6_ defect lines also occur in
another context, outside of the star defect.’’ A film in
the I phase may contain distinct domains of, for example,
6_=0 and 6_=m/3. These domains are separated by a
domain wall, across which 0_ increases by 7 /3. Similar
domain walls can occur in the F phase. The physics of a
6_ domain wall is identical to the physics of an arm of a
star defect. Our theory of a star-defect arms applies
equally well to these domain walls.

Now suppose that a film containing a star defect or a
6_ domain wall is cooled toward the first-order I-F tran-
sition in a material with A, >0. Near the transition hg
becomes small, and we must consider the &, term in Eq.
(6.6). This equation has a simple analogy in classical
mechanics: it describes the motion of a particle of mass
K _ in the inverted potential — ¥V (6_), where 8_ corre-
sponds to position and x to time. Near the first-order I-F
transition, ¥ (6_) has local minima at 6_=0 and 7/6
(mod 27 /6), and hence — V' (6_) has maxima at those lo-
cations. The minimum-energy profile 6_(x) therefore
has the form shown in Fig. 8: 6_(x) goes from O to 7 /6
in a short distance &, ,,, it remains close to 7/6 for a
much longer distance w, and then it goes from 7/6 to
2w/6 in a distance &,,,. The total arm width is
&=w +2£,,,. The arm therefore contains a sliver of the
incipient, metastable F phase with thickness w. As
h¢—0+, this sliver of F thickens. Integration of Eq.
(6.6) gives

w=VY K,/th/nd(?_ 1
/12 VV(6_)—V(0)

1/2

.

K_

h12

1
12

b
he

=~

In (6.11)

This behavior is similar to complete wetting. As
hi— 0+, the F phase “wets” the interior of the arm.

We can look at this system from a more macroscopic
point of view. We can think of the profile in Fig. 8 as a
pair of “half-arms,” each with width &, , and energy ¢, /,
per unit length, separated by a region of the F phase with
width w. By analogy with Egs. (6.9) and (6.10), we find

§1/2:T%\/K—/h|2 » (6.12a)
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I

FIG. 9. Form of the star defect in the I phase very close to
the first-order I-F transition. When the arms become this thick,
the divergence of w is cut off.

€1,=2V'K_h, . (6.12b)
The two half-arms repel each other with an interaction
energy of range &, , and strength Re, ,,. There is also an
energy penalty of 2h¢Rw for the region of the F phase be-
tween the half-arms. The energy of a whole arm per unit
length is then

e=25,/2+sl/2evw/g”z+2h6w . (6.13)

By minimizing this expression over w, we find that w in-
creases logarithmically as hy—0+ exactly as in Eq.
(6.11).

So far we have simply minimized the energy of an arm
in mean-field theory. At any nonzero temperature, how-
ever, the two half-arms can fluctuate. We can think of
the half-arms as random walks, each with diffusion con-
stant (12¢,,,)” !, which cannot cross. When the half-
arms are close to each other, they have less room to fluc-
tuate, and hence have a lower entropy. Several calcula-
tions?! have shown that the interaction between two ran-
dom walks that cannot cross can be expressed as an
effective entropic repulsion. By the argument of Fisher,*'
the entropic repulsion between two half-arms (per unit
length, normalized by kg T) is

1

- (6.14)
12¢, hw

eentropic -

This term must be added to the right-hand side of Eq.
(6.13) to obtain the free energy of a whole arm per unit
length. For w>>§, ,,, the entropic repulsion is much
greater than the exponential repulsion. Minimizing the
free energy of the whole arm over w gives the equilibrium
arm width

w=(12¢, ,he) 12 . (6.15)

Close to the I-F transition, hg < (T — Tz ). The equilibri-
um arm width therefore increases as (T — T;z)”'/?. This
1 power law has been found in other theoretical studies
of wetting in 2D.?*»23 The star defect may provide an op-
portunity to observe this power law.

We must make two comments about the power-law
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(a) SVCAN 1
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¥ ¥ 6.
6 6 6
(b) -V(9-)A
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ol4
oV

FIG. 10. Sequence of inverted potentials — ¥ (8_), and the corresponding forms of the star defect, in a material with 4, <0: (a)

he=hIL. (6)0<hs<hlL. (c) he=0. (d) hiF <hg<0. (e) he=hLE.

divergence of w. First, note that the arm energy & de-
creases toward the finite limit 2¢, , as h¢—0+. Hence,
as we approach the I-F transition the arm length R in-
creases and the defect energy AE decreases. However, R
remains finite at the transition. For this reason, the star
defect cannot be a nucleus for the growth of the F phase
until one undercools a finite distance beyond the first-
order transition. In contrast with some transitions in-
volving complete wetting, the first-order I-F transition
occurs with some (possibly small) hysteresis. Second,

note that the thin-arm approximation breaks down when
the defect arms thicken into the wide petals shown in Fig.
9. When we are this close to the transition, we can no
longer treat each arm as isolated and uniform along its
length. The power-law divergence of w is cut off when w
grows to the order of w,,, ~V R /¢, ,,. In experiments’
R =1 mm. Nevertheless, the . power law should apply
over a wide range of reduced temperature, as w grows
from microscopic lengths to w,,,, and the defect arms
thicken from the form in Fig. 7 to the form in Fig. 9.
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8.

FIG. 11. Profile 8_(x) across one arm for 0< hg <hi-. The
difference angle 6_=—6; (mod 27/6) in the L, phase and
+6, (mod 2m/6) in the L, phase. Across the arm, 6_ goes
from L, to L, in a half-arm of width §,,, and it goes from L, to
L, in a half-arm of width §&,,.

At the present time the star defect has only been ob-
served in thin films of thermotropic liquid crystals, which
have h;, >0. However, this defect might also be ob-
served in materials in which h;, <0. We therefore con-
sider the behavior of this defect near the I-L and L-F
transitions. To understand what happens to an arm near
these transitions, we return to Eq. (6.6) and its analogy in
classical mechanics. Consider the motion of a classical
particle in the inverted potentials — ¥V (6_) of Fig. 10. As
h¢ decreases toward hlL, there are no major changes in
the arm. At 4L the system undergoes an Ising-type tran-
sition from I to L. There are really two L phases, L, and
L,, which are mirror images of each other, like the spin-
up and spin-down phases of an Ising ferromagnet. One of
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these L phases is selected as the bulk phase by spontane-
ous symmetry breaking. Suppose that L, is the bulk
phase. The resulting profile 6_(x) is shown in Fig. 11.
The system goes from L, to L, in a half-arm of width &£,
(with line energy €,,), it remains in the L, phase for a dis-
tance w, and then it goes from L, back to L, in a half-
arm of width &,; (with line energy ¢,,). Because L; and
L, have exactly the same energy, there is no penalty for
the width w of L, inside the arm. Therefore, the thin-
arm approximation does not apply, and w can be of the
orLdFer of V'R /e;,+V R /g, for all hg between hiL and
hg'.

Note that the half-arm widths and the corresponding
energies are unequal, §,,5&,, and €,,54¢€,,, unless h=0.
The higher-energy half-arm is shorter, and the lower-
energy half-arm is longer. The star defect therefore goes
through the sequence of structures shown in Fig. 10. If
O0<hg<hlE, the defect has a chiral, “pinwheel” form
even if the underlying material is not chiral. The direc-
tion of the pinwheel is determined by the direction of the
vorticity and by the spontaneous symmetry breaking that
chose L, as the bulk phase. At hy=0 the defect is sym-
metric. If hé‘F<h6 <0, the defect is chiral again, but
with the opposite chirality. For k¢ <hLF, the system is in
the F phase, and the arms are thin again.
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