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Amide-I excitations in molecular-mechanics models of a helix structures
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A three-dimensional model of an e helix is built applying a molecular-mechanics approach. The
potential-energy function describing the system is based on empirical data and implemented in the
molecular-dynamics computer program cHARMM. The time evolution of amide-I vibrations has
been examined numerically. In order to examine the coupling mechanism of an amide-I oscillator
to other amide-I oscillators along the backbone as well as along the so-called spines, a simple analyt-
ical model has been set up. From this model the coupling along the backbone is estimated to be
more than 50% stronger than the coupling along the spines.

I. INTRODUCTION

One of the main tasks in biophysics is to understand
how proteins work. A protein structure can be described
(roughly speaking) as a three-dimensional folding of a
linearly linked chain of amino acids. The three-
dimensional structure of proteins is in general very com-
plicated. However, a number of structural patterns have
been identified in proteins. Of particular interest is the a
helix because of its frequent occurrence and the concep-
tual simplicity of its structure. ' The helix is tightly coiled
about its longitudinal axis and is stabilized by hydrogen
bonds linking peptide groups together to form three
spines that span the length of the helix. These spines are
not exactly linear or parallel to the axis of the helix.
However, the electric dipole moments induced by the
amide-I vibrations are essentially in the same direction as
the hydrogen bonds that define the spine. The a helix as
a whole constitutes a very strong dipole moment.

The energy supply for many enzyme reactions is pro-
vided by hydrolysis of adenosine triphosphate (ATP). An
ATP molecule binds to a specific site on the protein,
reacts with water, and releases under normal physiologi-
cal conditions 0.49 eV (11.5 kcal/mol) of energy. ' One
hypothesis is that the energy is converted to a vibrational
excitation within the protein, namely, the amide-I vibra-
tion. This vibration is primarily a stretch and contrac-
tion of the C=O bond —the energy of one quantum
amide-I vibration is about 0.21 eV or 1665 cm

Recently, considerable effort has been devoted to mod-
el energy exchange modes in proteins. " One of the
simplest structural units, namely, the a helix mentioned
above, has been used in these attempts. A variety of
models are based on the existence of the spines which has
been the main justification for applying very simple one-
dimensional (1D) dynamic models of a-helix structures
focusing in particular on the propagation of excitations.

The first attempt to model energy exchange modes in
proteins was formulated by Davydov ' who suggested
that the amide-I energy would stay localized (trapped)
through the nonlinear interaction of the vibrational exci-
tation and the deformation in the protein structure
caused by the presence of the excitation. Thus the

amide-I vibration in the Davydov model is coupled to
low-frequency phonon modes at around 100 cm '. The
coupling is modeled by inclusion of a nonlinear interac-
tion term in the Hamiltonian. The idea was applied to
the a helix but assuming the single-spine model. Scott
generalized this theory by taking dipole-dipole coupling
between the three spines into account. This theory
showed how a pulse could travel along the three
hydrogen-bonded spines of the a helix. The theory is
semiclassical in the sense that it considers one quantum
of amide-I vibration. Since then, a considerable amount
of work has been done on the original Davydov mod-
12—8

While the Davydov model and the related models have
considered intramolecular modes, another kind of model
has been set up which focuses on large-amplitude
motions, so-called lattice vibrations. " The proposed
lattice excitations are established solely through the non-
linearity and asymmetry of the hydrogen bonds that sta-
bilize the a-helix structure. These models also restrict
themselves to the 1D spines.

Recently, a three-dimensional (3D) model of an a helix
has been examined by numerical computations. ' The
model is completely classical in the sense that it is based
on a potential-energy function (i.e., an empirical energy
of molecular-mechanics type' ) from which Newton's
equations of motion are derived. The parameters used to
describe the interactions among the atoms are based on
experiments and have been tested in models of macro-
molecules (Ref. 14 and references therein). Numerical ex-
periments were performed in the spirit of some of the
theories mentioned above. In particular, the time evolu-
tion of excitations was examined. No localized pulses
were found. Further, it was concluded that for the nu-
merical experiments considered the system was linear,
which means that dispersion governs the time evolution
of excitations.

The aim of the present paper is to evaluate the assump-
tion used in the development of 1D models, namely, that
the genuine 3D problem can be reduced to a 1D problem
by considering only the interaction along the hydrogen-
bonded spines. In order to undertake this evaluation we
use the 3D n-helix structure presented in Ref. 12. Fur-
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ther, we only consider the time evolution of amide-I vi-
brations which we examine numerically. Two cases are
investigated. In one case the surroundings of the helix
are a vacuum, while in the other case the presence of sol-
vent is modeled in a simple way. In the latter case the
presence of solvent is modeled using a distance-dependent
dielectric constant. If the system is in the linear regime it
is possible to generate a simple model which reproduces
the numerical results and gives an estimate of the
strength of the coupling of a single amide-I oscillator to
other amide-I oscillators along the backbone as well as
along the spines. The results of this investigation show
that the amide-I oscillators couple stronger to amide-I os-
cillators placed on the backbone than to oscillators
placed on the spines. In the following section we shortly
describe the method of calculation (which follows Refs.
12 and 14), outline the analytical model, and present the
estimated coupling constants.

II. METHOD OF CALCULATION

The energy function used for macromolecules in the
molecular-mechanics approach in the present work is
composed of terms representing bonds, bond angles, tor-
sional angles, van der Waal's interactions, and electro-
static interactions. The resulting form of the potential
energy function is

Ep„=0.5 g Kq(b —bo ) +0.5 g Ke(g —go)2
b 0

+0.5 g K&[1+cos(nP)]+0. 5 g K (cg ~o)2
Cc7

T- ij ij

This is a general form of the energy expression. The first
four terms represent the covalent potential which is as-
sumed to be harmonic in bond lengths (b), bond angles
(0), periodic and even in dihedral angles (P), and har-
monic in the improper torsion angle (co). ' The K's are
the associated force constants. Hydrogen bonds are not
included explicitly in the potential —the last two terms in
the expression take care of these. These terms represent
the noncovalent potential which is assumed to consist of
a Lennard-Jones potential and Coulombic electrostatic
contributions —here ri is interparticle distance, q, atom-
ic charge, and D is the static dielectric constant. In the
vacuum case, D =so. In order to model the presence of
solvent we have applied a distance-dependent dielectric
constant, i.e., D =eor;, which acts as an approximate sol-
vent screening term in which the electrostatic interaction
experiences a progressively larger attenuation as the two
charges are separated. Further, an extended-atom repre-
sentation has been used, i.e., one extended atom replaces
a nonhydrogen (carbon) atom and any hydrogen atoms
bonded to it. This approach has been implemented
in the molecular-dynamics (MD) computer program
cHARMM. Essentially, the various force constants (K )

have been obtained by fitting to vibrational data, while
the geometric constants (bo, etc. ) have been derived from
crystallographic data. ' The force constants and the

mass of the atoms determine the frequency of oscillation.
The numerical scheme used to integrate Newton's equa-
tions of motion is based on the so-called central-
difference approximation. It should be noted that the en-
ergy (kinetic as well as potential) can be partitioned into
contributions from single atoms or groups of atoms.

We have applied CHARMM to build the 3D model of an
a helix and to perform numerical experiments, see Ref.
12. The a helix considered is a polyalanine chain consist-
ing of 72 amino acids which corresponds to 24 amino
acids on each spine. Each amino acid consists of six
atoms: N, H, C, C&, C, and O. The termini were chosen
as -NH3+ and -COO . The total number of atoms is 435
(the dynamics of each atom is described by three ordinary
difFerential equations). For further details we refer to
Ref. 12.

III. NUMERICAL RESULTS

In this section we present results from numerical ex-
periments on the a-helix structure described above. The
time step was 0.001 psec. In the present model the elec-
tric dipole moments of the carbonyl groups interact elec-
trostatically through the Coulombic potentials in Eq. (1).
Phonons will propagate along the molecule. Further, the
amide-I vibration and the phonons are coupled through
the nonlinear potentials in Eq. (1). The amide-I vibration
is primarily a stretch and compression of the C=O
bond. Thus a reasonable mode of excitation has been
achieved by stretching the C=O bond in amino acid
number 36 a distance Aa (the C and 0 atoms have been
moved b, a/2 in opposite directions). We note that in the
present model such an excitation will inhuence the bond
angle and the torsion angle terms of Eq. (1) as well, albeit
only slightly.

In Fig. 1(a) the potential-energy increase b,E, is
shown as a function of ba. In this figure we have used a
distant-dependent dielectric constant, which is a simple
model of the effect of solvent. The picture is qualitatively
the same for a constant dielectric constant modeling vac-
uum. Figure 1(a) shows the total potential energy as well
as the contributions from the bond potential, the angle
potential, and the electrostatic potential. The contribu-
tions from the van der Waals potential and improper po-
tential are less than 1.15 kcal/mol and 0.23 kcal/mol, re-
spectively. In order to evaluate the importance of anhar-
monicities, the difference 5E „between a harmonic ap-
proximation for the potential energy and the actual po-
tential has been displayed in Fig. 1(b). The approxima-
tion has been determined from the relation AEh„,„;,
=0.5kh„,„;,Aa, where kh„,„;, is determined from
kh,„,„;,=2bE/ba and b,a=0.02. From Fig. 1(b) it is
seen that for Aa (0.12 the deviation between the har-
monic approximation of the potential energy and the ac-
tual potential energy is negligible. Thus the system is ex-
pected to be governed by dispersion in this range.

The inAuence of anharmonicity on the time evolution
of amide-I oscillations is shown in Fig. 2. Again we have
used a distance-dependent dielectric constant. Here the
kinetic energy of each amino acid (n being the number of
the amino acid) is calculated as the sum of the kinetic en-
ergies of its individual atoms. In Fig. 2(a), ha is below
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the threshold value for the onset of anharmonicities. In
Ref. 12 it was shown (by means of a power spectrum of
the total kinetic energy) that the main part of the energy
is preserved as amide-I vibration energy. In Fig. 2(b) the
anharmonicities influence the time evolution. A power
spectrum shows that a large range of frequencies are ac-
tivated in this case. Thus a linear approximation based
on a single vibration frequency is not appropriate in this
case.

In order to further elucidate the influence of anhar-
monicity on the time evolution of amide-I excitations we
have displayed the kinetic energy as a function of time
for a selected carbonyl group of the helix. Figure 3(a)
shows the kinetic energy of the C=O group number 39.
Here Aa is below the threshold value for the onset of
anharmonicity. The excited mode is coherent in the
sense that most of the energy is preserved as amide-I os-
cillations. In Fig. 3(b) we show the response when b.a is
above the threshold value. Pronounced differences are
observed. A large range of frequencies is activated be-
cause of the initial excitation.

model was proposed in Ref. 12. This model is based on a
system consisting of point masses connected by linear
springs (i.e., the potential describing the interaction be-
tween two masses is harmonic). The masses represent the
amide-I oscillators and the springs represent the interac-
tion (bonded and nonbonded) between the amide-I oscil-
lators. In the following we show how the procedure
presented in Ref. 12 can be generalized to systems con-
sisting of n interacting residues. If periodic boundary
conditions are assumed, solutions to the simple model
can be found. Further, for single residue interaction the
solution can be approximated by a Bessel function pro-
vided the coupling constant is small. The results from
Sec. III indicate that each amino acid has two equal

25

IV. MODEL OF AMIDE-I EXCITATIONS
BASED ON NORMAL MODES

In order to describe analytically the time evolutions
observed for amide-I vibrations in the linear regime a
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FIG. 1. (a) Total potential-energy increase as a function of
C=O bond stretch for amino acid number 36, curve 1. The
most important contributions to the potential energy are bond
energy (2), angle energy (3), and electrostatic energy (4). (b) De-
viation of the total potential energy from a harmonic approxl-
rnation. The potential is harmonic for b a (0.12.
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FIG. 2. (a) Time evolution of an amide-I excitation for
Aa =0.1. Total kinetic energy of each amino acid as a function
of time (0—25 psec). Linear response. (b) Time evolution of an
amide-I excitation for Aa =0.40. Nonlinear response.
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nearest- (bonded) neighbor interactions plus a third- and
fourth-nearest- (nonbonded) neighbor interaction. The
nearest-neighbor interactions represent interaction along
the backbone, while the two other interactions represent
the nonbonded interactions through potentials, i.e., van
der Waals and electrostatic potentials. From the solution
to the simple problem an estimate of these constants can
be given. These constants give a quantitative measure of
the importance of taking the backbone coupling into ac-
count when simplifying the 3D models.

Using the approach from Ref. 12, it is straightforward
to express the force on the nth residue

mii„= —kou„+ g k (u„+ +u„—2u„),
j=1

n=1, . . . , N . (2)

Here u„ is the deviation of the internal coordinate (being
the C =0 group of nth residue) from its equilibrium po-
sition and m is the reduced mass of the C=O group.
The "spring" constant ko is connected to the amide-I vi-

bration frequency through the relation ko=mcoo. The
other coupling constants describe bonded and nonbonded
interaction constants. These constants are not given a
priori but must be determined from numerical
experiments. Using the expression cj =kj /(m coo)

(j = I, . . . , N), Eq. (2) yields

N

u„= —co()u„+co() g c (u„+ +u„—2u„),
j= i

n=1, . . . , N . (3)

Now we introduce the variable x =na, where a is the
equilibrium distance between two C =0 oscillators along
the backbone and look for traveling-wave solutions to Eq.
(3) of the type u =e'"" ". Insertion of this function
into Eq. (3) gives the dispersion relation

N

co (k)=coo l+ g c, sin jka/2
j=l

(4)

In order to determine the relation between k and a we
assume periodic-boundary conditions

~n+N ~n

This assumption is of course only valid as long as the ex-
citation has not reached the terminations of the helix.
From Fig. 2(a) is seen that this assumption is valid for the
first 12.5 psec. In these experiments, however, the
boundary conditions at n =1 and n =N approximate
periodic-boundary conditions, i.e., the excitations are
reflected at the ends without any phase jumps. Insertion
of Eq. (5) into the traveling-wave solution yields

ka /2 =n m/N . . (6)
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Now the solution to Eq. (2) imposing the initial value
problem consisting of a single amide-I vibration is given
by

([2mn/N(j —jo)—co(n)t]N

n =1
(7)

where uj(t) is the displacement of residue j, co(n) is given
by Eq. (4), and the excitation has been initiated in residue
j0=36. Similar solutions can be found for other initial
excitations, e.g., a triple excitation, see Ref. 12. The solu-
tion of Eq. (7) represents the situation where all amide-I
oscillators interact.

In order to determine the constants c, , c3, and c4 we
have fitted the constants, such that Eq. (7) reproduces the
numerical results in Fig. 2(a). This has been done by
visual comparison. Using these constants the time evolu-
tion for the first 15 psec is reproduced extremely well, see
Ref. 12. The results are shown in Table I. The constant
c& determines the slow modulation, while the two other
constants influence the fine structure. The signs of the
constants c, can be understood from the geometry of the
helix —the spiral structure requires opposite signs for the
nearest-neighbor interaction constant and the two other
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TABLE I. Coupling constants describing bonded and non-
bonded interactions determined numerically.

t { psec) 25 CI C3 C4

FIG. 3. Time evolution of C =0 energy on amino acid num-
ber 36. (a) Aa =0.1, linear response. (b) Aa =0.4, nonlinear
response.
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If only single-residue interaction (i.e. , jth-nearest-
neighbor interaction) is assumed, we get for the modula-
tion of the displacement [being the real part of Eq. (7)]
for residue number i

A, (r) =( I /2~)
N

X g (2~/N) cos[(2m.n/N)(i io)—
n=1

+(c coot/2) cos(j2vr/N)],

(9)

which can be approximated by

A~ ( t ) = 1/(2mj) I dx cos[x (i i o ) /j—+ ( c~ coot /2 ) cosx ]
0

=J( )qj( c&not/2) (10)

Here i0 is the residue where the initial excitation is

constants. It is seen from Table I that the coupling along
the backbone is approximately 50% stronger than the
coupling along the spines. Thus the present rather ela-
borate, molecular-mechanics model shows no evidence of
spines, which can be used as an argument for the
simplification of the 3D problem to a 1D problem. It is
at least obvious that the coupling along the backbone
should be considered.

Finally, in this section we show how the solution to Eq.
(2), Eq. (7), can be approximated by a Bessel function if
only single-neighbor interaction is assumed and provided
that the coupling constant is small.

For ~c
~

&& 1, Eq. (4) can be approximated by

N

co(k)=coo 1 —0.5 g e [1—cos(jka)]

placed and J is the Bessel function of order (i —i o) /j.
This expression reproduces the first time interval (t & 7. 5

psec) in the numerical experiments, provided that
ha (0.12 A.

V. CONCLUSION

In the present work we have examined dynamic as-
pects of a-helical structures modeled in three spatial di-
mensions. The model is based on a molecular-mechanics
approach. Numerical experiments have been performed
in order to evaluate the assumption used in the develop-
ment of 1D models namely that the 3D problem can be
reduced to a 1D problem by considering only the hydro-
gen bonded spines in the helix.

First, we note that the system is linear for energies cor-
responding to an initial stretching, ha, less than 0.12 A,
which means that dispersion governs the time evolution
of excitations. In this region a simple linear approach
can essentially explain the time evolution of amide-I vi-
brations. For values of ha larger than this threshold
value a wide range of frequencies is activated.

Second, an estimate of the magnitudes of the coupling
constants can be obtained from the simple linear ap-
proach. Thus coupling along the backbone is found to be
the most important, while the coupling along the spine is
just two-thirds of the backbone coupling. The present,
rather elaborate, molecular-mechanics model shows no
evidence for the existence of nonbonded directions in the
helix which can serve as an argument for the reduction of
the 3D problem to a 1D problem.
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