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Packing flexible polymer chains on a lattice
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We study the problem of arranging p self-avoiding flexible chains of molecular weight M on a hy-
percubic lattice of X sites with lattice coordination number z using a field-theoretic approach. The
thermodynamic limit of pM becoming infinite, with the packing fraction f =pM/N ranging from
zero to 1, is considered. Hence the dimer, the Hamiltonian walk, and the single self-avoiding walk
problems are included as particular cases. Mean-field theory is of the Flory type and it becomes ex-
act at z = ~. Systematic corrections in powers of z ' can be evaluated. We calculate the weight-
and volume-fraction-dependent connectivity constant and site entropy to second order in z ' and
compare it with known results in two and three dimensions. The site entropy, which vanishes at
f =0, is a convex function off (for any M) with a maxitnum at f ~ 0.6 that moves towards higher f
as either M or z increases. We also discuss the most efficient packing of M-mers at a given volume
fraction and dimensionality.

I. INTRODUCTION

Combinatorial problems on regular lattices arise in a
variety of physical problems. Long ago, Mayer' suggest-
ed that the entropy of mixing of liquids consisting of long
polymer chains and small solvent molecules (or voids) can
be calculated within a lattice approximation in which
every site is either occupied by a solvent molecule (mono-
mer) or by a chain segment. Similar lattice models were
proposed to explain properties of the absorption of a gas
of diatomic molecules (dimers), triatomic molecules (tri-
mers), etc. , on a regular surface. ' When the energy of
mixing vanishes, all thermodynamic properties of these
models can be obtained from combinational factors, that
is, by counting all possible arrangements of a given num-
ber of monomers and polymers on a regular lattice.

Lattice models have played a very important role in
helping to explain many features of the melting transition
of polymers, liquid crystals, ' polymer blends, poly-
mer incompatibility, and segregation, ' and other ther-
modynamic properties of fluids containing macro-
molecules, " thus generating an extensive literature on
these combinatorial problems. In one dimension, these
models are, in general, easily solved. In contrast, for
dimensionality d =2 only very few of them possess exact
solutions such as the dimer problem on regular lat-
tices' ' and Hamiltonian walks on two-dimensional
Manhattan lattices. ' For d ~3 none has been exactly
solved and approximate methods are required. Approxi-
mations of the mean-field type (Flory, Huggins, and
Bethe approximations ' '' '

) are commonly used but
also other approaches such as series expansion
methods, ' ' ' transfer matrix techniques, ' and field
theoretic methods have been employed for some of
these problems.

In this work we use an exact field-theoretic representa-
tion ' for the problem of counting the number of
configurations of p self-avoiding and flexible chains, occu-
pying M contiguous lattice sites on a hypercubic lattice of

X sites with periodic-boundary conditions. The volume
fraction f =(pM/N) is the fraction of the total lattice
sites which are occupied by polymer segments. Figure 1

illustrates a typical configuration of a system of self-
avoiding tetramers (M =4) on a square lattice. Recently,
employing field-theoretic techniques we have considered
the limit of a single infinite self-avoiding walk (SAW)
from infinite dilution (f =0) to the compact limit of a
Hamiltonian walk at f =1 (N~ ao, M~ oo, p =1, with
0 f ~ 1). Bawendi, Freed, and Mohanty and other
authors have studied the problem of M-mers on a
lattice using similar methods, in the thermodynamic limit
of infinite flexible chains of finite molecular weight at
finite volume fractions (N ~ ao, p ~ ~, with 0 (f ~ 1).
Here we generalize both results studying a more general
thermodynamic limit in which the product of pM is
infinite with the fraction f ranging from 0 to 1 (N~ ~,
pM~ ac, with 0~f ~ 1). Obviously, this last limit con-
tains the other two as special cases. Hence, we provide a
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FIG. 1. Typical configuration of flexible and mutually avoid-
ing tetramers (M =4) on a square lattice with periodic bound-
ary conditions.
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unified description of several combinational problems on
regular lattices such as the Hamiltonian walk problem,
the dimer problem, and the counting of configurations of
a single SAW.

The derived mean-field (MF) approximation, which is
similar to that of Flory-Huggins (FH), becomes exact in
the limit of infinite lattice coordination number z = ~. A
systematic expansion that produces corrections to the
MF approximation in powers of z ' is obtained from the
exact field-theoretic representation of the problem. We
define a generalized volume fraction and molecular-
weight-dependent connectivity constant which coincides
with the usual connectivity constant in the limit of a sin-
gle SAW at infinite dilution. The connectivity constant
and entropy per site of M-mers on hypercubic lattices as
a function of M and f are evaluated to 0 (z ).

In Sec. II, we discuss approximate methods required to
study the problem of packing M-rners on regular lattices
and the known exact results for a few special two-
dimensional cases. Section III presents a field-theoretic
representation of the packing problem from which our
MF approximation and corrections to 0 (z ) for the
connectivity constant and site entropy are derived in Sec.
IV. Finally, in Sec. V our findings are analyzed in view of
known results for these combinatorial problems.

II. THE PROBLEM OF PACKING M-MERS
ON A LA'I"I'ICE

In this section we review several results for the prob-
lem of counting configurations of M-mers on a regular
lattice, and discuss some mean-field approaches to illus-
trate the interesting combinatorial aspects of this prob-
lem.

We start by introducing our mean-field result, derived
in Sec. III, for the total number of configurations of a sys-
tem of p polymer chains of molecular weight M on a lat-
tice of N sites, given by the following p-chain partition
function Z:

Nf zZ—
2~p!(N —pM)! N

p(M —1)

It can be understood as follows: the factorial term
[N!/(N —pM)!] gives the number of ways of choosing
(pM) sites in a sequential order so the "first" chain occu-
pies the sites numbered from 1 to M, the "second" one
fills the sites with labels from (M+1) to 2M, etc. The p!
term is due to indistinguishability of the chains, while the
2 p term results as the two ends of a given chain cannot
be distinguished. Since only the first monomer of a given
chain has about N choices, but all (M —1) sequential po-
lymer segments have (due to chain connectivity) only
about z choices, each chain requires a correction factor of
(z/N) '. The older and widely used Flory-Huggins' ''
approximation replaces z by (z —1) to eliminate immedi-
ate self-reversal.

We now define a weight and volume fraction-
dependent connectivity constant p(M, f ) from the asymp-
totic behavior of the partition function (of course, the
connectivity constant also depends on the type of lattice
and on lattice coordination number)

Z pM/ (2)

in the thermodynamic limit of

N~~, Mp~oo, 0~f =pM/N~ 1 . (3)

This limit contains as special cases the two limits recently
studied by Refs. 22—26 using a field-theoretic representa-
tion of the problem. For infinite chains, the quantity p
reduces to the f-dependent connectivity constant which,
for a square lattice, was recently evaluated by Duplantier
and Saleur. ' This, in turn, becomes the usual connectivi-
ty constant (also known as efFective coordination number)
in the f =0 limit.

For short chains in the infinite dilution limit, the exact
values of p can be easily obtained either by direct count-
ing or by using the field-theoretic representation of the
problem of Secs. III and IV which yields exact results in
these cases. For example, the connectivity constant for
the smallest M-mers on a hypercubic lattice of coordina-
tion number z is

9(2,0)=(Nz/2)'/

p(3, 0)= [Nz (z —1)/2]'

p(4, 0)=[Nz(z —1) /2]'i

p(5, 0)= [Nz [(z —1) —(z —2)]/2j '

(4)

In this limit off =0, the p partition function is that of an
ideal gas of indistinguishable dimers, trimers, etc. As the
molecular weight increases it becomes more difticult to
obtain p in closed form.

The connectivity constant for infinite self-avoiding
walks on regular two- and three-dimensional lattices has
been calculated by several authors using enumeration
studies together with resurnmation techniques such as
Fade approximants and the ratio method. The quantity
p( ~,0) has also been calculated for hypercubic lattices in
four, five, and six dimensions. Table I shows the best-
known values of the connectivity constant for SAW's on
hypercubic lattices with dimensionalities from 2 to 6.

In the dense limit of f =1, there are exact results for
dimers (M =2) on regular two-dimensional lattices. ' '
This is the celebrated dirner problem, first solved on a
square lattice by Kasteleyn and by Ternperley and Fisher,
independently. ' Later, it was shown that regular two-
dimensional-lattice zero-field Ising-model partition func-
tions can be written as dirner problems on appropriate
decorated lattices. The dilute dimer system (monomer-
dimer problem) in two dimensions, which is closely relat-
ed to the Ising model in a field, has not been exactly
solved in two dimensions. Several workers have treated
the monomer-dirner problem in two and three dimensions
using Bethe and similar approximations. ' Also, series
expansion techniques were used to evaluate the grand
partition function. ' ' The exact and the best-known
values of the full coverage dimer connectivity constants
on square and simple cubic lattices are shown in Table I.

The Hamiltonian walk problem consists of counting
the total number of configurations of a single SAW that
fully covers the lattice and it has been exactly solved' on
a two-dimensional Manhattan lattice and other special
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p, (M f ) =(z/e)(+/2z) ~
( 1 —f ) (5)

The Flory-Huggins (FH) approximation replaces z by
z —l. It is convenient to define the quantity R (M, f) as
the ratio

R (M f) =p(M f)/p(M f =1) .

Our MF result and that of FH predict R (M,f ) to be the
following universal function:

RMF(M f) (1 f)—(1—f)jf (7)

which is independent of the molecular weight and of the
type of lattice, and its value at f =0 is R "(M,O) =e. To
check this prediction, Table II shows either exact or best
known values of R (2,0) and R ( ~,0) for regular two-

lattices. ' For square lattices, this problem has been in-
vestigated by several authors. Gujrati and Goldstein
give the bounds

1.338. . . ~ p( at, 1) ~ 1.539. . .

(the dots above indicate that these values are exactly
known). Schmaltz, Hite, and Klein using strip methods
obtain p( ~, 1)-1.472. Orland, Itzykson, and de Domin-
icis employed field-theoretic methods to calculate the
number of Hamiltonian circuits on regular lattices of any
dimensionality and obtained a mean-field value of
p( ~, 1)=z/e, which (at z =4) is in surprisingly good
agreement with that of Schmaltz et al. They also
showed that one-loop corrections to their mean-field
value vanish. The quantity p( ~,f), 0~f ~ 1, numerical-
ly evaluated by Duplantier and Saleur' using transfer
matrix methods, is in excellent agreement with the best
known results at f =0 and at f =1.

The mean-field connectivity constant p(M, f) is easily
calculated from (1) and (2)

TABLE I. Connectivity constants and site entropies of M-
mers on hypercubic lattices.

Quantity

~(2,0)

~(2, 1)

p( oo, 0)

p( ~, 1)
(2, 1)

s(~, 1)

Dimension
Exact or best-
known value

(2N)1/2

(3N)' '
0.5740. . . N'
p 671N I/~ b

2.6385'
4.6838'
6.7680
8.8313

10.8720
1.472'
0.2915. . . '
P 447
0.387'

Second order
(this paper)

(2N) i/2

( 3N) 1/2

O.56N'"
O.67N'"
2.84
4.87
6.89
8.91

10.93
1.48
0.27
0.44
0.39

' Reference 12.
References 17 and 18.

' Reference 27.
Reference 28.

' Reference 32.

and three-dimensional lattices. The mean-field prediction
(7) for f =0 is much better for dimers than for SAW's,
and it always improves (as compared with known values)
as the lattice coordination number increases. As usual,
mean field predicts a wider universality than observed,
and of course, one expects that corrections to (7) should
be weight and coordination number dependent. In fact,
at equal z, they must also depend on the type of lattice.
For example, a simple cubic (sc) lattice has R (2,0) and
R ( oo, O) closer to MF values than a triangular lattice
does, although both have z =6.

TABLE II. Exact or best-known values of R (M, O) for dimers and infinite walks on regular two- and
three-dimensional lattices. The numbers in parentheses denote our results to 0 (z ) and the three dots
indicate exact values. Mean field predicts R "(M,O) =e =2.7182. . . . The quantity p( ~, 1) has only
been calculated (numerically) for square lattices. For other lattices the values of p( ~, 1), used to calcu-
late R ( ~,0), are the mean-field values.

Dimension
Type of
lattice

Honeycomb
Square
Triangular
Diamond
sc
bcc
fcc
SC

SC

sc

Coordination number

3
4
6

6
8

12
8

10
12

R(2, 0)

2.4296. . . '
2.4635. . . (2.52)
2.6308. . . '
2.53
2.58' (2.59)

2.67
(2.63)
(2.65)
(2.66)

R (~,0)

1.67'
1.79'(1.91)
1.88'
1.96'
2.12'(2.20)
2.22'
2.27'
2.30'(2.34)
2.40'(2.42)
2.46'(2.47)

' Reference 13.
Reference 12.

"References 27 and 32.
References 17 and 18.

' Reference 28.
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Bethe and related approximations for the problems of
dimers ' and that of infinite SAW's (Ref. 5) have been
discussed at length in the literature. The Bethe approxi-
mation which is exact for Bethe lattices takes into ac-
count the effects of second-neighbor sites. For long, fiexi-
ble, and mutually avoiding walks, the Bethe approxima-
tion, also known as the Huggins theory, gives

tu
""'(,f)=(z —1)[(z 2f)—/z]

Xexp[ H—(P, P )],
M —1

—0;,)+ X 4';, A', )+—. ;4';,M —)
2 '

~ 2
' ' ~2

(12)

(13a)

lapping polymers of molecular weight M on a lattice of N
sites:

N

Z = D D ]+X;

X(1—f)
and for the monomer-dimer problem one has'

g )(z f)/2f-
Be(tie(2 f)— J

( 1 f )
() f)/f(eN— /2))/2

(z 2f)/2f-
Z

H=gt)), V, P

where the measure is

N M —1

D[0]D[4']=~ g Q d0;,.d0', .
i=1 a=1

(13b)

s =N 'lnZ (10)

in the thermodynamic limit of (3), and its mean-field
value [from Eqs. (1) and (10)] is

In this approximation, the quantity R (M,f} is not as
universal as (7) predicts since it now depends on both M
and z. For example, if z =4 one has R ""'(2,0)=2 and
R ""'(Oo,0)=2.54, in closer agreement with the known
results displayed in Table II. Still there is no dependence
on the type of lattice, but only on the coordination num-
ber.

The entropy per site is defined by

with A such that Z=1 when X;—=0, Vi. The Latin and
Greek subscripts denote lattice site and polymerization
indices, respectively. The matrix V, (propagator) equals
un&ty if the sites i and j are nearest neighbors, vanishing
otherwise and, in the Fourier representation, its inverse
can be written as

V;.= g exp[iq(r; —r )][Nf (q)] (13c)

where the sum over q extends over the first Brillouin zone
of the lattice, r, is the position vector of lattice site i, and

f (q } is the nearest-neighbor lattice structure factor

sM"=f ln(z/e)+(f /M) ln(Me/2fz) —(1 f) ln(1 f—) . —
f(q)= g exp( —iq a;), (13d)

For a given weight M, the MF site entropy vanishes at
f =0, reaches a maximum at f ~0.6 and then it de-
creases as f approaches unity. The maximum displaces
towards f = 1 as either the weight or the lattice coordina-
tion number increase. Tables III and IV show, respec-
tively, predictions of various approximations together
with known results for the site entropy and connectivity
constant of dimers and infinite SAW's on square, cubic,
and hypercubic lattices.

III. FIELD-THEORETIC REPRESENTATION
OF M-MERS ON A LATTICE

We use the following field-theoretic representation of
the grand partition function Z for a system of p nonover-

where a, are the vectors joining the site i with its z
nearest neighbors. All lattice dependence is included in
(13c). Here we specialize in hypercubic lattices but the
approach can be easily applied to other lattice types.

The internal symmetry (polymerization) index serves to
control the length of the chains. Also, to generate the
desired monodispersive system of chains with molecular
weight M, a complex field representation is required as
discussed by Freed. ' The expansion of the product
11; ( I+X; ) produces 2 terms. A particular contribution
has r factors of X associated with sites occupied by poly-
mer segments and (N r) factor—s of unity representing
unoccupied lattice sites, i.e., each site is either occupied
by a single polymer segment or it is vacant. Every contri-
bution can be viewed as a very large N-point correlation

TABLE III. Connectivity constants of SAW s at infinite dilution on hypercubic lattices: best-known
results and various approximations.

Theory

Flory-Hug gins —Bethe
MF
Second order

(this paper)
Best known

3
4
2.836

2.638'

5
6
4.872

4.683'

Dimensionality
4

7
8
6.896

6.768b

9
10
8.914

8.831b

11
12
10.926

10.872

' Reference 27.
Reference 28.
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TABLE IV. Site entropy at full coverage: exact or best-
known results and various approximations.

cally as

lnZ =lnZ "+pM(H"'z '+H' 'z + ) (15)
Quantity s(2, 1) on s(2, 1) on s(oo, 1) on

sq lattices sc lattices sq lattices where K'"' denotes the molecular weight and volume-
fraction-dependent correction of order z " (more general-
ly, it also depends on the lattice type). To calculate
corrections to O(z ") one needs all clustered diagrams of
up to 2r bonds. There is only one one-bond diagram [Fig.
2(a)], there are three two-bond diagrams since the bonds
can either be sequential or nonsequential along the same
chain [Figs. 2(b) and 2(c)] or belong to different chains
[Fig. 2(d)]. Thus, for example, to calculate HI" in (15)
contributions from all these diagrams are required. For
computational convenience it is better to group the dia-
grams in clusters, as in Fig. 3 where we show all clustered
diagrams of up to four bonds required to perform a calcu-
lation to order z

The main difference with previous related ap-
proaches is that our clusters contain extra diagrams
absent in the works of Refs. 22—26. This is because we
study the problem in the thermodynamic limit (3) thus
generalizing the two limits studied before. For example,
for the two-bond cluster of Fig. 3(b) we have contribu-
tions from three diagrams, instead Refs. 23—26 (Ref. 22)
have non vanishing contributions only from the first
(second) and the third diagrams. The diagrams of Fig. 3
are evaluated to yield

Flory-Hug gins
Bethe
MF
Second order
Exact or

best known

0.049
0.261
0.193
0.269

0.305
0.440
0.396
0.443

0.099
0.405
0.386
0.396

0.261. . . ' 0.387'0.448

' Reference 12.
References 17 and 18.

' Reference 32.

function such that use of the Wick's expansion with the
propagator of (13c) produces unity for every allowed
configuration of p chains (p =1,2, 3, . . . ), each of molec-
ular weight M, and zero otherwise.

As usual, the magnetic-field-type source serves as a
chemical potential and since each chain in (13a) is initiat-
ed by the field h and terminated by h, every polymer has
a factor (hh ) associated with it. Thus, the p-polymer
partition function Z can be obtained as the following
derivative of the grand partition function:

1 (Y

p.'B(hht)I'
(14)

H' "(M,f)= —[(M —2)/M]+ [(M —1) /M ]f, M ~ 2;
The field theory of Eqs. (12)—(14) is an exact represen-

tation of the problem of counting the total number of
configurations of p-polymer chains of M monomers each
on a hypercubic lattice with periodic-boundary condi-
tions. One should mention that Orland et al. intro-
duced a similar representation to evaluate the number of
Hamiltonian circuits. However, these authors do not in-
troduce a polymerization index but rather fields that have
an ¹ ector symmetry with N =0. Their elegant formu-
lation, however, only works for single closed circuits
(M = oo ) that fully cover the lattice (f = 1).

IV. THE MEAN-FIELD APPROXIMATION
AND CORRECTIONS TO MF

H' '(2,f)=(f /12)+(f /8),
H' '(3,f)= —( —,')+(f/9) —(32f /81)+(32f /81),

(16a)

(16b)

(16c)

H' '(4,f)= —( —,')+(5f /8) —(27f /32)+(81f /128),

(16d)

H' '(M, f)= —[(3M —10)/2M]

+ [(3M —12M + 10 ) /M ]f
—[(M —1) (10M —22)/3M ]f

The mean-field approximation for the p-chain partition
function Z of Eq. (14) is obtained ' by just retaining
the q=0 modes of the fields, that is, by taking the field to
have some constant value independent of the lattice site.
The field integrals in (12) are just Gaussians and can be
easily performed to yield Eq. (1).

In our approach, MF theory is exact in the limit of
z = ~. The q&0 modes of the fields can be systematica1-
ly included to produce a perturbative expansion of Z in
powers of z '. These corrections due to correlations
among bonds are evaluated with the aid of diagrams con-
sisting of one bond, two bonds, etc. The diagrammatic
expansion of the partition function and rules to evaluate
diagrams have been discussed at length in previous
works. Here we summarize our findings and discuss the
differences with previous calculations.

The p-chain partition function can be written symboli-

+[2(M —1) /M ]f, M~5 . (16e)

Chains with less than five monomers have fewer than
four bonds; hence not all diagrams of Fig. 3 give contri-

e

d

(0)
FICx. 2. One- and two-bond diagrams required to calculate

first order in z corrections to the p-chain partition function.
There are three two-bond diagrams since the bonds can either
be sequential (b) or nonsequential along the same chain (c) or
belong to dift'erent chains (d).
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butions to their partition functions. For example, only
Figs. 3(b), 3(e), and 3(i) are required for the dimer prob-
lem.

Using Eqs. (2), (5), (10), (11), (15), and (16) we obtain
both the connectivity constant and the site entropy to
O(z )

3.0
z=4

q"'=& "exp(H' "z -'+ H'"z -'+ .
)

(2) MF+f (H(1) —1+H(2) —2+. . . )

(17)

(18)
R 2.0-

V. DISCUSSION

Equations (17) and (18), together with (16), (5), and
(11), give, to 0 (z ), the molecular weight M and
volume fraction f-dependent connectivity constant and
entropy per site of M-mers on hypercubic lattices of coor-
dination number z. The mean-field approximations (5)
and (11) are exact in the z ~ ~ limit and they agree with
the leading contribution of the Flory-Huggins and Bethe
approximations [Eq. (1) with z (z —1), and Eqs. (8) and
(9)]. In addition, our z corrections to these quantities
for infinite walks and dimers [Eqs. (16a), (17), and (18)]
are in accordance with the z ' corrections predicted by
the Bethe approximation since both include all correla-

1.0
00 0.2 04 06 08 1.0

FIG. 4. Quantity R (M,f) defined by Eq. (6) vs volume frac-
tion for dimers (M =2}on a square lattice (z =4). Mean-field
(MF) prediction (solid line) is lattice and molecular weight in-
dependent. The figure also shows R (M,f) corrected through
first order (dotted line) and second order (dashed line) in z
The exact value of R (2,0) is indicated by a black dot.

(b)

P

b

(c)

b b
~(')ib t s g)

tions of up to two bonds. Second-order predictions, how-
ever, already differ as the Bethe approximation is treelike
with no closed circuits, i.e., correlations among three and
four bonds are only partially included in the Bethe ap-
proximation but fully incorporated in our approach.

Figures 4 and 5 display, respectively, the quantity
R (M, f) defined in (6) as a function of the volume frac-
tion for dimers and infinite walks on square lattices. The

9o9 ~P~ 99 9 & 1 9

(e)
3.0

z = 4

b b b

i,",~t „'+I, ,+o, l-(I IQ)- t )(D- I)(l',)-(I) P'l+(I ',) R 2.0-

POP, t'+rTP9+9~~0+9'~~~+F7~- 090' 9 —rP'9 ' F79 9

1Q
00 0.2 04 06 08 1.0

FIG. 3. All clustered diagrams of up to four bonds that give
nonvanishing contributions in the limit (3). These diagrams
must be evaluated to obtain the corrections to the p-chain parti-
tion function to 0 (z ). In general, z " corrections require up
to 2r-bond diagrams.

FIG. 5. R (M,f) vs f for infinite walks (M = co ) on a square
lattice (z =4). The mean-field, first-, and second-order results
are indicated by solid, dotted, and dashed lines, respectively.
The dot-dashed line is the result of Duplantier and Saleur (Ref.
19). The best-known value of R at f =0 is indicated by a black
dot.
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3.0

MF

z=4

08--

z=4
M=2

0.6-
R 2.0-

0.4-

1.0
0.0 0.2 0.4 06 0.8 1.0 00 0.2 0.4 0.6 08 1.0

FIG. 6. Molecular weight dependence of R (M,f) to O(z ')
vs f. The MF prediction (dashed line) is also shown for com-
parison. Dimers are the closest to MF, and as the molecular
weight increases, corrections grow larger.

FIG. 8. Site entropy of dimers on a square lattice. Mean field
is the solid line while s(2,f) to O(z ) is indicated by a dashed
line. A black dot shows the exact value of s (2, 1).

mean-field function R, Eq. (7), which always overesti-
mates R (M, f) is also shown for comparison. We find
that R (2,f) is much closer to the mean-field prediction
than R ( ~,0). The exact value of R (2,0) and the best-
known value of R (ac, 0) are indicated in the figures and
displayed in Table II. This table also shows the best-
known values of these quantities for other regular two-
and three-dimensional lattices, and of R ( ao, O) for hyper-
cubic lattices in four, five, and six dimensions. The re-
cently calculated' R ( ac,f ) is also shown in Fig. 5.

The M dependence of R (M, f) to O(z ) versus f for

square lattices is illustrated in Fig. 6. It is evident that
the mean-field prediction becomes more accurate, i.e.,
corrections in z ' are smaller, as the molecular weight
decreases. On the other hand, Fig. 7 shows the depen-
dence of R (ao,f) to O(z ) versus f on the dimensional-
ity of the hypercubic lattice. Of course, MF improves as
z increases, since it is exact at z = ~.

The entropy per site versus the volume fraction for di-
mers and infinite walks on square lattices are shown in
Figs. 8 and 9, respectively. The quantity s(~,f) of Ref.
19 together with the exact and best-known values of
s(2, 0) and s(co, O) are also displayed. In two dimen-

3.0 1.0

08--

z=4
M=m

0.6-
R 2.0-

04

02-

1.0
00 0.2 04 06 08 10 OQ 0.2 04 06 0.8 1.0

FIG. 7. Dependence of R on the dimensionality of hypercu-
bic lattices. We show R ( co,f) to O(z ) vs f for d =lz/2) =2,
3, 4, 6, and ~ (MF). As the coordination number grows larger,
corrections to MF become smaller.

FIG. 9. Same as Fig. 8 but for infinite SAW's instead of di-
mers. Also shown by a dot-dashed line is the prediction of Ref.
19 for s ( ~,f) The black dot at f = 1 indicat. es the best-known
value of s for Hamiltonian walks.
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12-

06-
S 0.8-
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04-

00 0.2 0.4 06 0.8 1.0
0.0

0.2 04 0.6 08 1.0

FIG. 10. Same as Fig. 8 but for tetramers.
FIG. 12. Same as Fig. 11 but for infinite SAW's.

sions, the mean-field approximation is very good for di-
mers at low fraction (f ~ 0.3) and for infinite walks near

f = l. Equations (16a), (16b), (16e), and (18) indicate that
corrections to the site entropy of dimers are ~f to
O(z ') and cc f to O(z ), while corrections for s of
infinite walks are ~(1 f) to O(z —) and, if f =1 they
are very sma11 in second order. For Hamiltonian walks,
the mean-field value and the z ' correction (which van-
ishes) are in agreement with the findings of Orland et al.
Furthermore, we find that for M-mers at full coverage,
first-order contributions are cc (M z) ' so, in two dimen-
sions and, say, for M =6, corrections to O(z ') are al-
ready less than 1% of the MF value and smaller than
second-order corrections ~ z

Curves s(2,f) and s(ao, f) of Figs. 8 and 9 have the
same qualitative shape. Mean-field theory always un-
derestimates (over estimates) the site entropy of dimers
(infinite walks) and corrections to MF are always positive
(negative). The M=2 [M= ~] chain on square lattice
has a mean-field site entropy maximum of s (2,f
=0.61)=0.64 [s ( oo,f =

—,
'

) =0.64] while to 0 (z ) the
maximum is s (2,f =0.64) =0.66 [s( 00,f =0.80)
=0.71].

For shorter chains (2 (M 5 10) it is found that correc-
tions to MF are always negative, unless for a small region
close to f = 1, where corrections are very small but posi-
tive. This is illustrated in Fig. 10 for tetramers (M =4).
The entropy per site to 0 (z ) versus f for dimers
(infinite walks) on hypercubic lattices of various dimen-

1.0

08-

06-

08--

06-

= 0.75

= 0.50

04-
0.4-

=1.00

02-
02--

=0.25

0.0
00 0.2 04 06 08 1.0 0.0

14

FIG. 11. Site entropy to 0 (z ) of dimers on hypercubic lat-
tices vs packing fraction for various values of z. As expected, as
z increases the entropy per site grows and the maximum dis-
places to higher packing fractions.

FIG. 13. Plot of the entropy per site to O(z ) as a function
of the polymer weight (integer numbers) for various values of
the volume fraction (the solid lines are a guide).
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TABLE V. Maximum values of the site entropy of M-mers on cubic lattices.

Dimension Smax

Mean-field theory
M max

Second order
M

0.761

1.042

1.267

1.453

1.610

10

14

18

22

7
8

9
10
11
12

0.734

1.023

1.255

1.444

1.604

10

14

22

0.77

0.85

0.89

0.91

0.92

sionalities is shown in Figs. 11 and 12. Qualitative shapes
of the curves are similar; as dimensionality increases the
site entropy grows and its maximum is displaced towards

=1
It is of interest to determine the most eScient packing

(to obtain maximum entropy) of M-mers on a hypercubic
lattice at a given volume fraction. In Fig. 13 we plot the
entropy per site s(M, f) to O(z ) at fixed values of f
(f =0.25, 0.50, 0.75, and 1) versus the molecular weight.
We find that at low volume fraction (f &0.25) dimers
have the highest site entropy, but as f increases s devel-
ops a maximum at a higher M (M ~ 8f for f )0.25 ),
while at full coverage dimers have the least entropy per
site and the maximum is s =0.52 at M =7. For higher
weight, the entropy slowly approaches to that of a Hamil-
tonian walk (for M=20 the site entropy is still about
25% higher than that of M = oo ).

Finally, fable V displays the absolute maxima of the
entropy per site for hypercubic lattices from two to six
dimensions as both the weight and the fraction f are al-
lowed to vary independently. On a square lattice, the
maximum of s =0.734 is at M =5 and f =0.77. This
can be contrasted against the exact s (2, 1)=0.291. . .
and the best-known s(~, 1)=0.387. Also, as dimen-
sionality increases, the maximum of s becomes higher and
displaced towards denser packing.

VI. CONCLUSIONS

walks at infinite dilution and at the most compact pack-
ing (the Hamiltonian walk problem).

The molecular weight and volume-fraction-dependent
connectivity constant is easily (exactly) evaluated for
short chains at infinite dilution (ideal gas of M-mers); in-
stead as M~ ~ (with any f) and when f&0 (for any M)
our approach provides a solution through a systematic
z expansion. The ratio R =[@(M,f)lp(M, 1)] is pre-
dicted by MF to be a decreasing function of f alone,
hence independent of lattice type and polymer weight.
This is checked against known data. Deviations are
much larger for SAW than for dimers but second order
(z ) corrections to R improve MF results substantially.
As expected, when dimensionality increases MF predic-
tions become more accurate.

The entropy per site, which vanishes at f =0, is a con-
vex function of f (for any M) with a maximum at f ~ 0.6
and is more asymmetric as M grows. Its maximum dis-
places towards higher concentrations as z or M increases.
At low f, dimers provide the most efficient packing (i.e.,
maximum site entropy at a given f) but as f approaches
unity dimers have the lowest entropy per site, which is
maximized when M=2z —1. As a concluding remark
one should mention that although we have only treated
hypercubic lattices, other types of lattices can be easily
considered using the appropriate structure factor. First-
order (z ') corrections are lattice independent but
second-order corrections already carry information on
the lattice structure.

We have used a field-theoretic representation for the
problem of packing M-mers on a hypercubic lattice and
considered a more generaL thermodynamic limit than pre-
vious related studies. Our approach can fully de-
scribe the crossover from dimers to infinite walks, and
from the limit of infinite dilution to unit packing fraction.
Hence, we have presented a unified description of several
combinatorial problems such as the dimer problem, and
the counting of configurations of single self-avoiding
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