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Structure and anisotropy of colloid aggregates
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We study the complex, disordered structure of clusters formed by several kinetic aggregation pro-
cesses. By expanding the structure factor into spherical harmonics, detailed information about both
the structure and anisotropy of the clusters at all length scales is obtained. The scaling of the ex-
pansion terms with cluster mass and order of the expansion is investigated. For cluster-cluster ag-
gregates, we find that the fractal dimension, which reflects the scaling of the orientationally aver-
aged structure, also describes the scaling of the spherical harmonics, which reflect the anisotropies
of the structure. By contrast, clusters formed by single-particle diffusion-limited aggregation do not
appear to exhibit the same degree of scale invariance. Cluster-cluster aggregates are found to exhib-
it considerably more anisotropy than those formed by single-particle diffusion. The consequences of
the anisotropies for quasielastic light scattering experiments are discussed.

I. INTRODUCTION

Random growth processes, such as colloidal aggrega-
tion, typically form highly disordered, complex struc-
tures. Nevertheless, many of these structures can be
quantitatively characterized in terms of their behavior
upon change of length scale and the dilation symmetry
which they exhibit. This is frequently expressed in terms
of a single exponent, the fractal dimension df, which
reflects the scaling of the mass of the cluster with its ra-

3dius, M ~R . ' The internal structure of the cluster
can also be described in terms of the fractal dimension by
means of the pair-correlation function, which also exhib-
its a scaling form, g(r) ~r, in three dimensions. This
description of the structure has led to great strides in our
understanding of the physical properties of the clusters as
well as the kinetic growth processes which lead to their
formation. However, the pair correlation function
reflects an orientationally averaged description of the
cluster and can not, by itself, fully describe the very com-
plex structure of an aggregate. By its very nature, a ran-
dom aggregate is not radially symmetric, and a descrip-
tion that goes beyond the fractal dimension is needed to
fully describe its structure. Indeed, there are many physi-
cal properties of aggregates that explicitly depend on the
anisotropies of its structure.

In this paper we consider one description of the struc-
ture of random aggregates which explicitly accounts for
their anisotropy. Their structure is expressed as an ex-
pansion in terms of spherical harmonics. Such a decom-

position has been performed in real space, and has been
used to investigate second-order light scattering. How-
ever, second-order light scattering depends on three- and
four-particle correlations. Here we consider only two-
particle correlations, and study the multipole expansion
in momentum space. We use the Fourier transform of
the pair-correlation function, the structure factor, which
for a fractal aggregate also reflects the fractal geometry in—d
its scaling with wave vector, S(k) ~ k f. The scaling of
the multipole expansion terms, both with cluster mass as
the aggregate size increases and with length scale,
through the k dependence, for a given cluster, was deter-
mined. To compare with experiments we use aggregates
generated by two different models for cluster-cluster ag-
gregation, diffusion-limited cluster-cluster aggregation
(DLCA) and reaction-limited cluster-cluster aggregation
(RLCA). To further elucidate their properties, the scal-
ing of the multipole terms of these clusters was compared
with those generated by single-particle diffusion-limited
aggregation (DLA).

The fractal nature of colloidal aggregates has been es-
tablished experimentally through light, neutron, and x-
ray scattering. These static scattering experiments deter-
mine orientationally averaged quantities, and provide a
measure of the fractal dimension through the static struc-
ture factor. These measurements average out all the
asymmetries in the structure of the aggregates. By con-
trast, quasi-elastic light scattering, which probes the fluc-
tuations of the scattered light due to the diffusive motion
of the aggregates, is directly sensitive to the structural
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anisotropy when kR ) 1. Both translational and rota-
tional diffusion of the aggregates contribute to the decay
of the autocorrelation function of the scattered light mea-
sured by quasielastic light scattering. A study of these
rotational contributions allows the asymmetries of the ag-
gregates to be investigated. This leads in a natural way to
a decomposition of the temporal autocorrelation function
into an infinite series of multipole terms representing the
anisotropies of the aggregates in increasingly fine detail,
with each term having a characteristic relaxation time.
This directly reflects the structural anisotropies of the
clusters, since the initial value of the autocorrelation
function is just the static structure factor. This connec-
tion between the anisotropies of the structure and their
importance for the dynamic behavior raises the issue of
possible scaling forms for the multipole terms, since they
add up to S(k) which scales as kR ~ for kR & l.

In this paper we show that these multipoles do indeed
have scaling properties. They describe the anisotropies
on all length scales smaller than the cluster size. Howev-
er, we find that the introduction of the multipole terms
does not require the introduction of additional fractal di-
mensions. We show that for cluster-cluster aggregates
the scaling of the multipole terms is determined solely by
the value of d&. Furthermore, we find that DLCA clus-
ters have a larger anisotropy than RLCA clusters, as is
intuitively expected, since their fractal dimension is lower
and they are less dense. By contrast, DLA clusters do
not seem to exhibit the same scaling behavior as the
cluster-cluster aggregates.

II. BACKGROUND

The structure factor of the clusters is given by
2

S(k)= g e

To calculate the multipole expansion terms S&(k), we
use clusters generated by off-lattice computer simulations
using various aggregation models. In order to compare
to experimentally realizable conditions, we restrict our-
selves to three dimensions, and examine clusters obtained
from simulations of diffusion-limited cluster-cluster ag-
gregation (Refs. 10 and 11) and reaction-limited cluster-
cluster aggregation. ' In DLCA, the colloid aggregation
process begins with a set of monomers which are free to
diffuse. When two monomers touch, they form a per-
manent, rigid dimer. This process continues, with both
clusters and monomers diffusing and bonding to form
larger and larger clusters, with most growth occurring
through collisions of clusters of roughly equal size. For
RLCA there is only a small probability that two clusters
will stick together when they collide. Many collisions are
required before two clusters stick, allowing all possible
bonding configurations to be sampled. Reaction-limited
aggregation is slower than diffusion-limited aggregation,
and forms denser clusters. This is reflected by the fractal
dimensions, which are 1.8 for DLCA and 2. 1 for RLCA.
Reaction-limited aggregation produces a much broader
distribution of cluster sizes, with growth occurring by
combination of clusters of all sizes with nearly equal
probability. Both aggregation conditions have been ob-
served experimentally, ' and the measured fractal dimen-
sions are in accord with those obtained by the computer
simulations. For comparison, we also examine clusters
generated by simulations of single-particle diffusion-
limited aggregation, ' ' in which single particles diffuse
freely until they touch a cluster grown from a seed parti-
cle. The chief distinctions between DLA and the
cluster-cluster aggregation systems are that DLA clusters
have a well-defined center and have a higher fractal di-
mension, d& =2.5.

III. RESULTS

S(k)=g S,(k),
I

(2)

where the summation extends over each of the particles,
at positions r;, which comprise the cluster. This struc-
ture factor directly reflects the polarized light scattered
by the cluster composed of X identical particles if they
are small compared to the inverse scattering wave vectork, so the scattering from each is isotropic. In order to
ensure that this structure factor properly reflects the total
scattered light, we have not normalized it by N, so that
S(0)=N . The position of each particle in the cluster is
given by a vector b, from the center of mass of the clus-
ter; this vector has an orientation 0, relative to an arbi-
trary axis fixed to the cluster. The orientationally aver-
aged scattering from the cluster can be written as a series
of multipole expansion terms

In Fig. 1 we show the multipole expansion terms S&(k)
for DLCA clusters with 900 particles, for / =0 to 7.
Each curve represents an average of 20 different clusters
of the same mass. For these clusters, the average radius
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S&(k)= g g j&(kb; ) Y& (0; )

m= —1 i=O

Here j&(kb; ) are the spherical Bessel functions of order 1,

and Y& (0;) the spherical harmonics of order l, m.

FIG. 1. Multipole terms averaged over 20 DLCA clusters of
900 particles each, plotted as a function of ka, where a is the
monomer radius. Multipole terms for / =0 to 7 are shown; the
uppermost curve is the sum of these terms.
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FIG. 2. Scaled l =2 multipole terms for DLCA clusters of
100 to 1000 particles. Each curve is the average of 20 clusters of
the same mass, with the amplitude of the rnultipole term scaled

by S(0).

FIG. 4. Scaled l =2 multipole terms for RLCA clusters of 50
to 1000 particles. Each curve is the average of several clusters
of the same mass, with the amplitude of the multipole term
scaled by S(0)~

of gyration is R = 19.7a, where a is the radius of a
monomer. Qualitatively similar results are obtained for
other clusters with diferent masses. At all length scales
larger than the cluster size, kRg & 1, the internal struc-
ture of the cluster is not resolved, and the cluster appears
as a point scatterer, which means that at small wave vec-
tors S(k) is a constant. In the multipole expansion, we
see that at small wave vectors the l =0 isotropic term is
constant, dominating all the other multipole terms, so
that the sum is independent of k. At larger wave vectors
corresponding to shorter length scales, kR ) 1, the inte-
rior structure of the clusters is resolved. Here the l =0
term decreases, and the higher-order multipole terms be-
corne important. Each of the higher-order terms is small
at low wave vectors, rises to a maximum value at some
intermediate wave vector, and then decreases at higher k.

The dependence of the multipole expansion terms on
cluster mass, and on k for a given mass, provides new in-
sights into the scale invariance of these clusters. We be-
gin by studying the dependence on cluster mass, allowing
us to assess the variation of the cluster asymmetry with
its size.

All clusters, both physical and simulated, are objects of
finite extent. They possess a characteristic length scale,
the cluster size, which is conveniently measured by their
radius of gyration. If the multipole expansion terms ex-
hibit scaling between clusters of difterent masses, R
must be the only characteristic length scale for each clus-
ter. If the asymmetry is scale-invariant, the Yi (Il, )

terms in Eq. (3) will not depend on the size of the cluster.
Rather, the scale dependence will be reflected only in the
spherical Bessel functions, which depend on the radius of
the cluster through the argument kb;, and on the number
of particles N that make up the cluster, determining the
limit on the sum. This implies that the amplitudes of the
multipole expansion terms should be normalized by
S(0)=X to compare clusters of different masses. There-
fore, we investigate the scale invariance of the cluster
asymmetry by scaling the magnitude of the multipole
terms by N and scaling the wavevector by R . If the
asymmetry is scale invariant, the normalized multipole
terms should lie on a single universal curve for each value
of l.
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FIG. 3. Scaled I =7 rnultipole terms for DLCA clusters of
100 to 1000 particles. Each curve is the average of 20 clusters of
the same mass, with the amplitude of the multipole term scaled

by S(0).

FIG. 5. Scaled 1 =7 multipole terms for DLA clusters of 625
to 10000 particles. Each curve is the average of several clusters
of the same mass, with the amplitude of the multipole term
scaled by S(0).
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The results when this scaling is performed for the l =2
multipole terms for a series of DLCA clusters of
100—10000 particles are shown in Fig. 2. To reduce Auc-
tuations, each curve is the mean of the expansion terms
for 20 clusters of identical mass. The scaled amplitudes
for the l =7 multipole terms for the same set of clusters
are shown in Fig. 3. In both cases, the scaled amplitudes
of the multipole terms for each cluster mass fall on a sin-
gle curve. Similar results are obtained for all other mul-
tipole terms. Therefore we conclude that the structural
asymmetry of these DLCA clusters is scale invariant.

In Fig. 4 we show a similar plot of the l =2 multipole
terms for a series of RLCA clusters of masses 50—1800.
We again find scaling behavior, although there is consid-
erably more deviation between the individual curves than
exists for the DLCA clusters. Nevertheless, these are
random Auctuations, within which the asymmetry of the
RLCA clusters is scale invariant. For comparison, the
scaled amplitudes for the l =7 multipole terms for a
series of single-particle DLA clusters of masses
625 —10000 are shown in Fig. 5. While the overall shapes
of the curves are very similar, for the DLA clusters there
is a definite trend in the scaling behavior, as the magni-
tudes of the scaled multipole expansion terms decrease as
the cluster mass increases, for all kR . Thus the single-
particle DLA clusters do not exhibit the same scaling as
the cluster-cluster aggregates. This is consistent with
other simulation results' which indicate that two-
dimensional DLA clusters have a more complex struc-
ture than RLCA and DLCA clusters. For DLA clusters
more than one scaling exponent or fractal dimension may
be required to describe their structure. '

The contrasting behavior of the single-particle and
cluste-cluster aggregates is better demonstrated by inves-
tigating the variation of the peaks of the scaled multipole
terms with cluster mass. This is shown for the l =2 and
7 multipole terms for DLCA clusters in Fig. 6 and for the
l =2, 3, and 7 multipole terms for the RLCA clusters in
Fig. 7. In both cases there are fluctuations but no clear
trend, again illustrating the scale invariance of the asym-
metry of the cluster-cluster aggregates. By contrast, as
shown in Fig. 8, for the DLA clusters a clear trend is evi-
dent, as the scaled peak heights of all the multipole terms
decrease with increasing cluster mass. This implies that
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FIG. 7. The peak values of the L =2, 3, and 7 multipole
terms, scaled by S(0), for RLCA clusters.

the DLA clusters become more isotropic as their mass in-
creases. This mass dependence is most pronounced for
the l =2 multipole term, but still remains for the higher
orders. Thus the asymmetry of the DLA clusters does
not exhibit the same scaling between clusters of different
masses as that of cluster-cluster aggregates.

The origin of this behavior for the DLA clusters is un-
clear. We emphasize that we have investigated clusters
only up to N =10000. It is known that many of the
features exhibited by DLA clusters are not manifest until
very large sizes are achieved. Thus it is possible that the
lack of exact scale invariance exhibited by these smaller
DLA clusters is not inherent to the clusters themselves;
rather it may reAect the fact that scale invariance is
achieved more rapidly for cluster-cluster aggregates than
for single-particle aggregates. Thus, at higher masses, it
is possible that DLA clusters will also exhibit the same
scale invariance and mass dependence as the cluster-

cluster aggregates. Nevertheless, it is clear that if it ex-
ists this scale invariance is achieved only at much larger
cluster masses. This may be due to the fact that the DLA
clusters have a very well-defined center, the seed parti-
cle, unlike the cluster-cluster aggregates. This effect may
be further exacerbated by the relatively higher fractal di-
mension which causes R to increase much more slowly
with N than for the cluster-cluster aggregates.

At present, relatively little is known about the struc-
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FIG. 6. The peak values of the I =2 and I =7 multipole
terms, scaled by S(0), for DLCA clusters.

FIG. 8. The peak values of the L =2—7 multipole terms,
scaled by S(0), for DLA clusters.
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ture of three-dimensional off-lattice DLA clusters. Quite
extensive simulations using both lattice and off-lattice
models indicate that the cluster radius of gyration grows
with increasing cluster size according to the power law,

R -N~,
where the exponent P has a value of about 0.40, corre-
sponding to df =2.50. However, measurements of the
two-point density correlation function and the general-
ized dimensions, ' D, indicate that the short-length-
scale internal structure can be described by a somewhat
smaller effective fractal dimension (or dimensions). We
do not have a simple model for the structure of either
two-dimensional or three-dimensional DLA clusters
which is consistent with all, or even most, of the results
obtained from simulations, which are necessarily finite
sized.

Figures 6—8 also allow a comparison of the relative
amount of asymmetry in the different types of clusters.
Since each l term is scaled by S(0)=A', they give a
quantitative measure of the anisotropy. For example, the
peak value of the l =2 terms for the DLCA clusters is
0.07, while for the RLCA clusters the peak value is 0.04,
rejecting the greater degree of anisotropy of the DLCA
clusters. Furthermore, the magnitude of the I =2 terms
of all DLA clusters from N =625 to 10000 is substantial-
ly lower than those of the cluster-cluster aggregates.
Thus there is a clear trend toward less asymmetry and
more isotropic clusters as df increases. This might be in-
tuitively expected, since as df decreases the objects natu-
rally become more tenuous.

Further insight about the k dependence of the mul-
tipole terms can be obtained by investigating the analytic
properties of the expansion in Eq. (3). The wave-vector
dependence of SI(k) is determined by the spherical Bessel
function jI(kb, ). If kR «1, then kb, «1 for all i and

jI(kb, ) ~(kb, )'. Thus, for 1~2 and kR &&1, Sl(k) &xk '.

Therefore, only the isotropic term So contributes
significantly for kR ((1,as expected, and as seen clearly
in Fig. 1.

A more interesting regime is found when kR & 1,
where the fractal structure is resolved. In this regime,
the static structure factor, which is the sum of all the

dfmultipole terms, scales as k . The k dependence of the
individual multipole terms is determined by the form of
the spherical Bessel functions. For large values of I the
first peak of jI(x) occurs when x =1. Hence higher-order
multipoles have their peak values at larger values of
kR, as seen in Fig. 1. Furthermore, for x ))I,
j&(x)=x 'sin(x —17r/2). Therefore, all the multipole
terms with kR ) l will be roughly equal in magnitude;
this result is also seen in Fig. 1. Due to the initial k '

dependence of the multipole terms at x (l, only those
terms which have reached or passed their peaks (kRg ) I)
will contribute significantly to the static structure factor.
Therefore, for any given value of kR ))1, the number of
multipole terms contributing will be roughly kRg with
each term contributing roughly the same amount. Since—d
the sum must scale as k, and the number of terms is
proportional to k, the k dependence of each term must be—(df + I )

k I, in the limit of large I and k.
To investigate the scaling of the analytic form of the

multipole terms, we calculate the mean amplitude of the
peak of each term, normalized by the N, for clusters of
100 to 1000 particles. In Fig. 9, we show a logarithmic
plot of these mean peak amplitudes for l from 2 to 11 as a
function of a&, where n'I is the value at which the 1th
spherical Bessel function reaches its first maximum. This
is given by

aI =(I + —,
' )+0.8086(1+—,

' )'

—0.236 68( I + —,
'

)
' +

which approaches l for large l. A least-squares fit to
these data gives a slope of —2.86, very close to the value
of —(df +1)= —2.78, as predicted above. We can also
investigate the slope of an individual multipole term at
large k. We choose the l =11 term, which should come
closest to reaching the scaling limit. As shown in Fig. 10,
we find that the slope is —2.76, again very close to
—(df + 1), as predicted. Similar behavior is observed for
the scaled average of the multipole terms calculated from
RLCA clusters of 50 to 1800 particles. This is shown in
Fig. 11, which is a logarithmic plot of the peaks of the
multipole terms as a function of a't. Here the measured
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FIG. 9. The average peak value for S&(k)/S(0) for DLCA
clusters of 100 to 1000 particles, vs a&, the first maximum of the
1th spherical Bessel function.

FIG. 10. The 1=11- multipole term, averaged over 20 DLA
clusters each with 900 particles. The amplitude is scaled by
S(0)~
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FIG. 11. The average peak value for S&(k)/S(0) for RLCA
clusters of 50 to 1000 particles, vs a&, the first maximum of the
1th spherical Bessel function.

l(1 +1). In writing Eq. (6), we assume that the transla-
tional diffusion coefficient D can be described by a single
hydrodynamic radius RH using the Stokes relation
D =kz T/6~gR~. This approximation is suitable as long
as the overall anisotropy of the cluster is not too large, a
condition met experimentally. We also assume that
the rotational diffusion coefficient of a cluster,
6=k~ T/gn. re~, depends on the same hydrodynamic
radius. The experimentally measured autocorrelation
function would then be a sum over the dynamic structure
factors of all the clusters in the scattering volume, assum-
ing they are sufficiently dilute to be noninteracting.

We first examine the behavior in the hydrodynamic
limit (kR «1). We consider the first cumulant I, for
the decay of the autocorrelation function,

I,= —lim lnS(k, t) .
d

odt

slope is 3.1, in excellent agreement with our prediction of
d~+1=3. 1.

An intuitive understanding of the magnitude of the an-
isotropies for clusters with different fractal dimensions d&
can be obtained by comparing DLCA and DLA clusters,
with the same number of particles. We consider the
scaled structure factors S (x ) /N as a function of
x =kR . The scaled structure factors for both types of
clusters must have the same value as x ~0, and both
must begin to decrease with x —1. However, since
d&=2. 5 for DLA and d&=1.8 for DLCA, the scaled
structure factor for the DLA clusters must decrease more
rapidly than that of the DLCA clusters, so that for x ) 1,
S (x )oL~ & S (x )oLc~. Since the number of multipole
terms contributing to S(x) is roughly equal to x and is
the same in both cases, these terms must be smaller for
the DLA clusters than for the DLCA clusters. This is
indeed observed in Figs. 6 and 8. This interpretation
demonstrates that the anisotropies rejected in the mul-
tipole terms are a natural consequence of the scaling be-
havior of the clusters. Thus the existence of the anisotro-
pies does not necessitate the introduction of additional
fractal dimensions to describe the structure.

Using Eq. (6), for a set of identical anisotropic scatterers,
we have

QS((k)[k D+l(1+1)e]
r, = '

g S,(k)

In the hydrodynamic limit as k ~0, So(k)~ A and
Sz(k)~Bk, where A and B are constants; thus

~k'D+Bk4(k'D+6e)
lim I ]~k~0 3 +Bk

demonstrating that in the small wave-vector limit, the
first curnulant is due purely to translational diffusion, as
expected.

The situation is somewhat different in the case of the
second cumulant, I 2. To investigate this, we consider the
Q factor, defined as I 2/I &, which is often regarded as in-
dicative of polydispersity for isotropic particles. We ob-
tain

QS, (k) g[k D+l(l+l)e] S,(k)
1 I

g[k D+l(l +1)B] S(( k)

I

IV. APPLICATIONS TO QUASIELASTIC
LIGHT SCATTERING

The results obtained here have direct consequences for
dynamic light scattering from fractal clusters and have
been used to determine the contributions of rotational
diffusion to quasielastic light scattering. Here we inves-
tigate some interesting consequences of the scaling behav-
ior of the multipole terms on the autocorrelation func-
tion. We can express the temporal autocorrelation func-
tion in terms of the dynamic structure factor,

S(k, t)=QS (k)e Dk (e ~ +

1

This is a sum over the multipole terms, each having its
own decay rate. At a given k, the temporal autocorrela-
tion function separates the contribution of each mul-
tipole, because the decay rate for each term varies as

(10)
Again, using only the l =0 and l =2 terms, which are the
dominant terms as k ~0,

A k D +36ABk 8 36B e
lim —1=
a-o g 2k4D~ D

2

Thus we obtain the surprising result that the Q factor
does not go to zero in the small-wave-vector limit, as
would be expected for pure translation of identical clus-
ters. Therefore the anisotropy can lead to changes in the
second cumulant, even in the hydrodynamic limit, where
one normally expects the internal structure of the clusters
to be unresolved. However, care must be taken in corn-
paring this calculated result for a set of monodisperse an-
isotropic scatterers to experimental measurements. Most
experimental samples exhibit a polydispersity in size,
which gives a contribution to Q due to their different de-
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cay rates from translational diffusion. Furthermore, as
k~0, the contribution of rotational diffusion to Q may
become undetectable under typical experimental condi-
tions, since rotational diffusion yields a very fast but very
small decay added to the large, slow decay due to transla-
tional diffusion. Thus the contribution of rotational
diffusion can easily be lost in the experimental noise.

We can also use the scaling of the multipoles to deter-
mine the first cumulant I,(k) at large values of kR . In
general, for a monodisperse system,

g S,(k)Ik D+l(l+1)B]
1,(k)=

g S((k)
l=o

(12)

We use the scaling behavior to write each multipole term—(df +1)
in its large-wave-vector limit, S&(k)= Ak f, where
2 is a constant, and take l(1+1)~l . Since only those
terms which are near or past their peak values will con-
tribute, the sums in Eq. (12) are restricted to I (akR,
where o. can be expected to be slightly larger than 1.
Therefore,

(akR )k D+ ~ (akRg ) 8
r, (k)=

akR
(13)

Using e= 3D /4R H,

A2
1,(k)=k D 1+

where P=RH/R is the ratio between the hydrodynamic
radius and the radius of gyration of the cluster. For
DLCA clusters, this ratio has been calculated to be
P=0. 87, while for RLCA clusters P=0.96. ' We can
compare these scaling limits to explicit calculations of

&
/k obtained from the multipole expansion terms.

For DLCA clusters, with P=0.87, the limiting value at
large kR is found to be I, /k = 1 7D. This gives
a=1.5 in Eq. (14), a value slightly larger than 1, as ex-
pected.

From Eq. (14), we see that I &/k can be considered the
"effective" diffusion coefficient measured by quasielastic
light scattering. It has a value of D, the translational
diffusion coefficient, when kR «1, and then rises to a
higher limit for kR ))1. Interestingly, the value of this
higher limit depends on the ratio of R& to R for the
clusters. However, it still scales with D, and therefore
with cluster mass, in the same way as the low-kR limit.
The intermediate values of I &/k, when kR =1, cannot

g
be determined by scaling arguments; however, explicit
calculations of I &/k generally show a smooth transition
between the two limits. We note that Ball has used a
completely different approach to find I, /k
~D(1+1/2P ) for fractal clusters in the large-wave-
vector limit. This is consistent with our result if 0.=&2,
which is close to the value of a=1.5 obtained from our
calculation.

V. CONCLUSIONS

We have performed a multipole expansion of the struc-
ture factors for three-dimensional clusters simulated with
several different aggregation models, allowing us to inves-
tigate the scaling of the anisotropy. The observed behav-
ior of the multipole expansion terms for DLCA and
RLCA clusters demonstrates that the anisotropies of
these clusters are scale invariant. We find that for
cluster-cluster aggregates, the scaling of the multipole ex-
pansion terms can be understood without the use of any
fractal dimensions other than the global fractal dimen-
sion. In contrast, for single-particle DLA clusters, the
anisotropy of the clusters decreases as the cluster size in-
creases, for the range of sizes we have examined. These
results are consistent with the ideas that cluster-cluster
aggregates have a self-similar fractal geometry but that
DLA clusters have a more complex, possibly self-affine,
structure. We observe increasing anisotropy in aggrega-
tion clusters with decreasing fractal dimension. Finally,
we demonstrated how the scaling of the multipole terms
of the cluster-cluster aggregates provides useful insights
into quasielastic light scattering from fractal aggregates.
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