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"Onsager-molecule" approach to liquid structure:
The one-component plasma in two and three dimensions

Y. Rosenfeld
Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190, Israel

D. Levesque and J. J. Weis
Laboratoire de Physique Theorique et Hautes Energies, Universite de Paris —Sud, 91405 Orsay, France

(Received 29 August 1988)

The structure of the strongly coupled uniform one-component plasma (OCP) in two and three di-

mensions and the density profile of a three-dimensional OCP near a hard wall are calculated by the
"Onsager-molecule" approach. We demonstrate that the structure of a strongly coupled plasma can
be calculated very accurately (nearly within the simulation uncertainty) by employing only the lead-

ing term in the strong-coupling expansion of the bridge function.

I. INTRODUCTION

The pair structure of a fluid of particles interacting by
the pair potential P(r) is uniquely determined from the
simultaneous solution of the Ornstein-Zernike (OZ) equa-
tion'

h(r) =c(r)+p Idr'h ( ~r
—r'~ )c(r')

and the closure relation

c(r) = f3/(r) —In[—g(r)]+h(r) B(r) . — (1.2)

Here p is the density, P is the inverse temperature I /ks T,
h(r) and c (r) denote the pair and direct correlation func-
tions, respectively, and

g(r)=h(r)+1 . (1.3)

Equation (1.2) contains the so-called bridge function'
B(r) which is a unique functional of the pair correlation
function h(r), i.e., B (r) =B

I h(r) I. Although it is known
in the form of an expansion in highly connected h-bond
diagrams, ' the convergence of the expansion is generally
too slow for it to be applicable to calculations of the high-
ly correlated dense fiuid phase.

Neglect of B ( r ) in Eq. (1.2) constitutes the
hypernetted-chain approximation (HNCA), which is at
best qualitative in the strongly correlated phase. The
most significant improvement over the HNCA has been
obtained by approximating the bridge function in (1.2) by
that of hard spheres, the adjustable hard-sphere diameter
being determined by imposing consistency between the
different routes to the thermodynamic properties. This
approach gives quantitative predictions for a variety of
potential models and over a wide range of state condi-
tions including the strongly correlated region and
gives support for some kind of universal behavior of the
bridge function at short range. '

Here we follow a different route which consists of ap-

proximating the bridge function by its asymptotic high-
density limit (AHDL). It has been shown recently by one
of us how the latter can be derived from the AHDL of
Eq. (1.2). For plasmas, which we will primarily be con-
cerned with here, the asymptotic strong-coupling state
associated with Eqs. (1.1) and (1.2) can be characterized
as an "ideal" state (called Onsager state) in which the
thermodynamics are given by the sum of the individual
contributions of entities called "Onsager atoms" (OA's)
and "Onsager molecules" (OM's), which will be defined
below. This ideal state is unphysical in the sense that the
sum of the excluded volumes of the hard cores of the
"molecules" and "atoms" is equal to the volume of the
system. However, an expansion about this state is be-
lieved to be rapidly convergent over a wide range of cou-
pling parameters of physical interest. Preliminary results
for the three-dimensional (3D) one-component plasma
(OCP) in a uniform background have indeed shown that
this novel theory, which contains no adjustable parame-
ters and is thermodynamically fully consistent, nearly
reproduces the pair correlation function near freezing
within the statistica1 error of the computer simulations.

The purpose of the present paper is to present more
elaborate numerical results for the 3D OCP as well as re-
sults for the thermodynamics and pair structure of the
2D OCP and for the density profile of a nonuniform 3D
OCP in the vicinity of a hard wall.

The general formalism leading to the AHDL limit of
B(r) is summarized in Sec. II. Explicit expressions for
the bridge functions are given in Sec. III. The inherent
consistency condition for the bridge functions together
with bridge function inequalities is discussed in Sec. IV.
In Sec. IV we also present and discuss the numerical solu-
tion of Eqs. (1.1) and (1.2) using the AHDL bridge func-
tion for the bulk OCP in two and three dimensions [we
shall call this the modified hypernetted chain equation
(MHNC)]. MHNC results for the OCP near a hard wali
are given in Sec. V. Implications of this work and sug-
gestions for further studies are discussed in the conclud-
ing section, Sec. VI.
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II. ASYMPTOTIC STRONG-COUPI. ING
EXPRESSION FOR THE BRIDGE FUNCTION

8(r) =h (r) c(—r) H—(r), (2. 1)

where H(r) is the "screening potential" defined by

H(r) =ln[g(r)]+/3i/i(r) . (2.2)

The pair potential of a D-dimensional QCP is

In this section we summarize the different steps which
lead to the asymptotic strong-coupling limit of the bridge
function. To begin with, it is convenient to write the
bridge function in the form

separation r. With Z and g denoting the compressibility
factor, P /pkii T, and inverse compressibility, P (BP /i)p) r,
respectively, then

q = —lim [(y—2Z)/I ]HNc~, (2.8b j

i.e., q is obtained from the "ion-sphere" approximation to
the equation of state, which in strong coupling coincides
with the HNC integral equation result for both B =0 and
for the self-consistent 8 ( r ).

To obtain the asymptotic contribution to H(r) it is
convenient to express H(r) in the form [derived from the
definition of g (r) in the canonical ensemble "]

P(r) =(Ze)'PD(r), H(r) = —P[F i"[r, (N —2)] FQ" [N—]I +P(r) . (2.9)

where

sgn(D —2)r, D&0
&D(")= ' —ln(r), D=2 (2.3b)

and Ze is the charge of an ion. A dimensionless coupling
parameter will be defined by

Here Fr, is the configurational (excess over ideal gas) free
energy of the N-particle system (in a uniform neutralizing
background) and F',"[r,(N —2)] is that of the same sys-
tem but with one pair of particles kept at fixed separation
r forming a two-site charge cluster. I' does contain the
intramolecular interaction P(r), so that H(r) is finite as
r ~0.

r =P(Ze )'a'-D

where a is the ion-sphere (Wigner-Seitz) radius

(2.4) In the limit I ~ ~ (Refs. g and 9)

(F0 [N]) =Nuo~, (2.10a)

a =[DI"(D/2)/(2~ ~ )]' (2.5) (Fi"[r, (N —2)]) = (N —2)uoA+ uoM(r), (2.10b)

[here I (x) is the gamma function]. Throughout the
remainder of this paper all distances will be expressed in
units of a.

In the asymptotic strong-coupling limit (i.e. , I ~ ~)
the following results have been shown to apply (denot-
ing by a superscript oc the leading asymptotic large I
contributions):

h (r)= —1, r ~2

c (r) = cHNcA(r) +bc "(r), r ~ 2

c "(r)= —H "(r)= PP(r), r ~2—
8 "(r)=0, r ~2 .

(2.6a)

(2.6b)

(2.6c)

(2.6d)

Recall that in the asymptotic strong-coupling limit
c (r), H™(r),—/3$(—r), and 8 (r) are of order I,
while h "(r)/I =0, so that

hc "(r)=—ql ai(r), (2.ga)

where co(r) =Q(r)/Il(r =0), and Il(r) is the overlap
volume of two D-dimensional spheres of unit radius at

8 (r)= —[c"(r)+H "(r)] .

In Eq. (2.6b), c HNcA (r) denotes the result of the HNC ap-
proximation [i.e. , Eq. (1.2) with 8(r)=0] which can be
expressed '' as the electrostatic interaction 4I of two uni-
formly charged spheres of unit radius, unit total charge,
and separation r,

c HNcA ( r) — F4( r)

The deviation of the asymptotic strong-coupling direct
correlation function from its HNCA value is

and

H "(r)=/3$(r) —/3uoM(r)+2Puo+ (2. 1 1)

uQM(r)=2uo~ for r ~ 2 (2.12)

lii accord with (2.6c).
An exact calculation of uoM(r) is straightforward, "

but has to be done numerically. The corresponding
H "(r) will be denoted HoM(r). The fact that uoM(r)
represents an optimal energy bound suggests analytic ap-
proximations. In particular, we shall consider the "On-
sager smearing bound" (OSB), which satisfies the dissoci-
ation property (2.12). In this approximation every molec-
ular point charge is uniformly smeared inside a sphere of
radius b (in units of a) which is determined by optimizing
the corresponding Onsager bound to u&M. An explicit
expression of HosB(r) for the 3D OCP can be found in
Ref. 8. However, at the present time, no analytic expres-
sion for the 2D case is available.

If the radius b is not optimized but taken equal to 1

then

In Eq. (2.10a), uo~ is ' the self-energy of an Onsager
atom consisting of a point charge at the center of a neu-
tralizing unit sphere having the background charge densi-
ty. Similarly '

u&M is the self-energy of an Onsager mol-
ecule consisting of a pair of ions separated by a distance r
in a uniform neutralizing charge cloud of background
charge density. The shape of this molecule is determined
by the surface on which the electrostatic field vanishes.
Onsager molecules have the property to "dissociate"
whenever the distance between the two point charges is
larger than 2, i.e.,
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H "(r)=[H "(r)]„,„, ,;;„dQSB

=I 0'(r)= CHNCA(r) . (2.13)

BQM(r)/I = ', —t—/3 —t +2t /3,
A.QM(r)/I =2+t —2t

(3.4)

(3.5)

Since these estimates represent decreasingly accurate
lower bounds to a free energy, they do obey (as can also
be verified by straightforward electrostatic calculation)
the following exact inequalities: ' B. OCP in three dimensions: Po(r)=1/r, q =

—,
'

HQM ( «) —HQSa ( r ) ——c NHCA ( &) (2.14)
From the analytical expressions for 4'(r) and ru(r) it

follows that

BQM(r) —BosB(r) 6c (r) (2.15)

As a result the corresponding asymptotic bridge func-
tions satisfy bc (r)/I = —(1 —3t/2+t /2)/5,

CHNcA(&)/I = —(1.2 —2t +3t /2 —t'/5) .

(3.6)

(3.7)

B„„;„,„„,(r) = —hc "(r)=qI co(r) . (2.16)

It thus represents the universal component of the strong
coupling B(r), which can be conveniently written in the
form

In the range relevant to the scattering problem of strong-
ly coupling plasmas, r -1 [as g(r ~ 1)=0, in strong cou-
pling], the deviations between the three estimates of
H "(r) in (2.14) are less than 1%. However, the corre-
sponding deviations in the B(r)'s are much larger and
may exceed 50%.

The bridge function as obtained from the nonoptimal
OSB is universal, i.e., it is the same for all potentials, and
equals

I

~ ~ (0)-~ ~ ~ ~ ~ tt tt ~
~ ~

~ 0 ~2—

~ ~ t ~ . ~ ~ ~

Results for HQM(r) and HosB(r) are presented in Table I,
along with similar results for D =1. Note that the On-
sager smearing results are very accurate, yet in Fig. 1 we
find that the corresponding differences in A,(r) are much
more pronounced, especially in the region r ) 1 which is

BOM, OSB( ) ~OM, OSB(r)Buuiversal(r)

= A,QM os/(r)q I co(r) . (2.17)
1.5—

The function ROM QSB(r), i.e., either AQM(r) or AQSB(r),
which must obey [cf. (2.15)]

~ ~
~ ~

~QM, osB( r) —1 (2.18)
0 0.5

I i I i I i I c I i I i I a

represents the deviations of the asymptotic bridge func-
tion from its universal part. B„„;„„„I(r)always provides
an exact lower bound to the asymptotic bridge function.

III. BRIDGE FUNCTIONS
FOR STRONGLY COUPI. ED PLASMAS:

EXPLICIT EXPRESSIONS FOR THE ONE-COMPONENT
PLASMA IN ONE, TWO, AND THREE DIMENSIONS

I
r

I
&

I
&

I
r

I

(b)-

The results of Sec. II apply quite generally to a D-
dimensional plasma. Here we give explicit expressions
for D =1, 2, and 3, whenever they are available. They
correspond to the range r ~2. We recall that B (r)=0
for r ) 2. We define t =r/2 (r in units of a).

A. OCP in one dimension: PD(r) = r, q = 3—

1.5—

I i I i ! i I ~ I i I i I s I i I

0 0.5 15 2

HQM(r)/I = (1+t )

CHNcA(r)/I =
—,'+2t' —2t'/3

b,c (r)/I = —(1—t)/3,

(3.1)

(3.2)

(3.3)

In one dimension all required expressions can be ob-
tained analytically with the following results (denoting
t =r/2):

FIG. l. Asymptotic strong-coupling ratio, XQM Qsg( r )

+QM Qsg ( «) /B „„;„«»1( i), of the bridge function to its universal
component for the one-component plasma (see the text). (a) Re-
sults of exact Onsager-molecule calculations (large dots) and of
the Onsager smearing bound (small dots) for D = l (upper
curves) and D =3 (lower curves). (b) Exact Onsager-molecule
results for D =1,3 and the interpolation curve for D =2 [Eqs.
(3.5), (3.9), and (3.10), respectivelyj.
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D=3
H „/r H /r

D=l
—Hose /I —HQM /I"

TABLE I. Screening potential H(r) of the ID and 3D OCP.
HQM denotes the exact Onsager-molecule calculations and HQsB
the Onsager smearing bound (see the text).

koMt'""(r) = 1.773+0.984t —2. 818t + 1.061t (3.10)

where we have used the known values for Ao and A I [see
Eqs. (3.1)] and tz obtained from interpolation between its
values at D = 1 and 3.

Other asymptotic properties of the 2D OCP are
0
0.2

2
3

1
4
3

1.6
2

1.0573
1.0479
0.9619
0.8555
0.7254
0.6222

1

1.0573
1.0474
0.9536
0.8427
0.7171
0.6203

1

0
0.3171
0.5818
1.0420
1.3797
1.7090
2

1

1.0246
1.0817
1.2592
1.4561
1.7148
2

1

1.0251
1.0846
1.2714
1.4759
1.7302
2

H (0)= (0.75 —ln2) I -0.05691

BoM(0) = (ln2 —0.25)I -0.4431

koM(0) =4 ln2 —1 —l. 773 .

(3.1 1)

f3lto~: 31 /8 Z = I /4 +HNC~: I /2

c" (0)= —1/4, y"= —I /4, c "(0)=—I /2,

the most important from the standpoint of the solution of
Eq. (1.2). These results show that the nonuniversal
features of B (r) are significant. The function XoM(r) has
been fitted by a polynomial of the form

From these values and the analytical expression for the
overlap volume function one gets

bc "(r)/1 = —(2/~)[arccos(t) —t(1 —t )I~2]/4 .

XoM(r)=AO+AIt+A2t +A3t (3.8) (3.12)

goM(r) = 1.713+1.07t —3.24t + 1.457t (3.9)

which gives to =0.189. This fit represents the calculated
values' for r ~ 1.6 by better than 2%.

C. OCP in two dimensions: Po ( r) = —ln(r), q = —'

For D =2 no exact self-energy calculations for the On-
sager molecule are available to us. However, using the
procedure described above, we can determine an approxi-
mate ROM..

0.6—

The value of Ao is known exactly from the ion-sphere re-
sult for H (0), while A I =co(t =0)(1—Ao). Since we
further require that A, o(Mt =.1)=1, we are left with one
adjustable parameter which we determine by imposing
the position to of the maximum of AoM(t). This pro-
cedure yields the exact A,oM(t) for D =1 and turns out to
be convenient for determining A, (t) in two dimensions
where no exact calculations of koM(t) have yet been ob-
tained. For D =3 one has

The resulting asymptotic bridge functions for D =1,2, 3
and their universal components are presented in Fig. 2.

IV. NUMERICAL SOLUTION
OF THE MODIFIED HNC EQUATION

FOR THE BULK OCP IN TWO AND THREE
DIMENSIONS

A. Inherent (unimposed) self-consistency

The strong-coupling expression for the bridge function,
provided by the Onsager-molecule analysis in Sec. II, is
now used as an approximation for the bridge function to
solve Eqs. (1.1) and (1.2) for the pair structure at finite I .
The validity of the approach can and will be established
by comparing the pair correlation functions with "exact"
simulation results. However, it can be checked directly,
without relying on any such outside information, in the
following way. When accurate values of BoM(r) are
available (as is the case for the 3D OCP), then (2.8) which
is a basic ingredient in the derivation of BoM(r), will pro-
vide a self-consistency check of the calculations at
sufficiently high couplings. If B(r)=XI qco(r) is known
only approximately as is presently still the case for the
2D OCP and the OCP near a hard wall then it can be
checked to what extent the relation

I lcMHNc(r) cHNcA(r) —~c "(r)
I

0.3— -
I HNCA( ) cHNCA(r)l (4.1)

0—
0 0.5

I ~ I i I

1.5

FIG. 2. Asymptotic strong-coupling bridge functions
BQM(r)=A.QM(r)B„„;„„„,(r) for A,QM(r) given in Fig. 1(a) (large
dots), and its universal component B„„;„,„„l(r) (small dots) for
the OCP. From top to bottom, D = 1,2, 3.

is obeyed. The right-hand side of (4.1) provides a mea-
sure for the deviations from true asymptotic behavior.
By monitoring to what extent (4.1) is obeyed, and by re-
calling the inequalitities (2.15), we can even "invert" the
problem and use the MHNC results in strong coupling to
estimate the Onsager-molecule self-energy.

It should be noted that in Eq. (1.2) only the values of
B(r) in the region where g(r)~0 (typically for r ) 1.3, in
strong coupling) play a role in determining the MHNC
results for g(r). Yet our consistency check (2.8), i.e. ,
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(4.1), strongly emphasizes the regionion r &1.3. Also, a
correct trial bridge function [if BoM((r) is not available]
h ld give a solution of the MHNC equation, at hnite I,

that satisfies (2.11) to within entropic contributionsions to the
78OCP free energy ' (in particular, for var values close to

r =0).

B. OCP in three dimensions
I ~ ~ I I

2 3 r
I ~ ~ ~ I ~ ~ ~ i

4 5

All MHNC calculations were performed yrmed b a method
similar to that o g e .f N (R f. 13) using 2048 grid points and

~ ~

size of 0.02a, except for the highest density
(1"=313.6), where 4096 points were use . e
presented here supplement those given in . . gin Ref. 7. Figure
3(a) compares

bc(r)/r = [c(r)—CHNCA(r)]/r 0

r I I I

i i i I

3 4 5
r

6
e bc (r)/I, em-wit e

'
h the theoretical asymptotic va ue 6

r I =40, 100, and
e c ' '

and 4.1) is well
1 d to derive the bridge function, for I—

313.6. The consistency condition (2.8) an
satisfied even for the lowest value of I . gFi ure 3(b) shows
similar results at I =100 but for two expressions of the

(r). The consistencybridge function, BoM ( r ) and universal

I & I t ~l I I
I

I ~ I~T
(c) =

I0.2— I I I F

I
0 I I I 0 I ~ ~ I i a ~ i I i ~ I ~ ~ I ~ ~ I

3 „4

0.1—

FIG. 4. Radial distribution function g r for the 3D one-
l ma. Comparison of the modified HNC calcula-component p asma.

the Onsager-molecule bridge functions QM r so itions using e n

15 (dots, seelines) with the Monte Carlo results (Refs. 14 and
text): (a) I = 110; (b) I = 160; (c) I =313.6.

0—

0.2—I
'

I
'

I
'

I I
'

I
'

I
'

I
'

I
'

I
'

I

t of A, (r).is seen to be greatly improved by the effec
The pair distribution function g r) obtained with

B(r)=B (r) is compared in Figs. 4(a) and
~ ~

nd 4 b) with the
M C rlo calculations for I =100 annd 160 and in
Fig. 4(c) with the simulations for 1 =314. The g
ment is quite goo excep't d except for a small shift in the peak po-
sitions most visible at the lowest I values. Figure 5 com-

~l i
I

& I i &

I
I t w&

I
i i I I

I

0.1—

0—
I i I i I i I a I i I a I i I I i I i I

0 0.5 1 1.5 2
r

II

—
/''

I

B=o
Buniversa(

si

lyly+

FIG. 3. Modified HNC calculations for the 3D OCP using
the Onsager-molecule bridge function.n. (a) Deviation Ac(r )/I,
of the direct correlation function from y pits as m totic strong-
coupling prediction [check of Eq. ( . ],4.1)& for I =40 (closed cir-

), 100 (d' onds) and 313.6 (open circles). (b) Same for
I =100 (closed circles) featuring also the results or
(diamonds}.

Ig

Q
I I I I I I I I I I I I I I I ! I I I I I I I I I [ I I I

3 4 5
r

FIG. 5. Radial distribution function g
~ ~ r for the 3D one-

lasma for I =100. Results of Eq. (1.2) with B=0component plasma or
.17 with (3.9)].(HNC), B„„;„,„,„[Eq.(2.16)],and BoM [Eq. (2.17) wit
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TABLE II. Internal energy U and inverse compressibility g of the 3D OCP. The results correspond
to Eq. (1.2) with bridge functions B=0 (HNC) and BoM [Eq. (2.17) with A,oM given by (3.9)]. The
Monte Carlo (MC) results are from Refs. 14 and 15.

1

5
10
20
40
60
80

100
120
140
160
200
313.6

BoM

—0.589
—3.811
—8.068

—16.755
—34.350
—52.060
—69.825
—87.625

—105.448
—123.288
—141.141
—176.878
—278.498

V
MC

—0.572
—3.757
—7.998

—16.673
—34.255
—51.961
—69.725
—87.522

—105.345
—123.188
—141.036
—176.765
—278.35

HNC

—0.570
—3.732
—7.935

—16.537
—33.999
—51.597
—69.263
—86.973

—104.713
—122.475
—140.255
—175.856
—277.137

BoM

0.984
0.247

—1.027
—3.978

—10.538
—17.500
—24.682
—32.007
—39.436
—46.942
—54.510
—69.784

—113.783

1
HNC

0.718
—0.990
—3.424
—8.626

—19.555
—30.792
—42. 195
—53.703
—65.287
—72.929
—88.616

—112.097
—179.282

MC

0.730
—0.715
—2.619
—6.498

—14.345
—22.235
—30.145
—38.067
—45.997
—53.933
—61.873
—77.764

—122.94

pares the g (r)'s obtained with three different bridge func-
tions BoM(r), 8„„;„„„i(r),and B(r)=0 (HNCA) at
I =110. The use of 8„„;„„„&(r)improves already consid-
erably upon the HNCA approximation.

The thermodynamic data, internal energy, and
compressibility g ' are summarized in Table II, and
compared with HNCA and Monte Carlo results. The en-
ergy is very close to the exact result; however, a systemat-
ic deviation of -0. 1 seems to occur for I )20. The
compressibility is much more sensitive to the input 8(r)
The use of the Onsager-molecule bridge function greatly
improves upon the HNC results at large I but does not
entirely close the gap with the Monte Carlo results.

curacy obtained for g(r) using 8„„;„„,1(r) is already com-
parable to that obtained by solving Eq. (1.2) with the ex-
act bridge function (obtained by computer simulation) for
a short-ranged screened Coulomb potential. '

HNC
(a) Internal energy U

Buni versal ~oM

TABLE III. Internal energy U (a), and inverse compressibili-
ty g (b), of the 2D OCP. The results correspond to Eq. (1.2)
with bridge functions B=0 (HNC), B„„;„„„,[Eq. {2.16)], and
BoM [Eq. (2.17) with A.oM given by (3.10)]. The Monte Carlo
(MC) results are from Ref. 18.

C. OCP in two dimensions

In two dimensions Eqs. (1.1) and (1.2) have been solved
using the numerical method proposed by Talman' and
previously applied to the solution of the HNC equation. '

The number of grid points used was 2048. Except for a
greater sensitivity of the results to the input B(r), the
trends for the 2D OCP are quite similar to those in three
dimensions. Both k= 1 and k from Eq. (3.10) substantial-
ly improve the HNC results for g (r) from the standpoint
of thermodynamic consistency and values for the energy
[see Table III, parts (a) and (b)]. The exact compressibili-
ty is best reproduced by the choice X = 1. However, this
choice gives a pair correlation function whose peak
heights are too low and peak positions shifted to higher
values as compared to the simulation results' (see Fig. 6).
With A, given by (3.10) the peak positions are nearly right
but the peak heights are somewhat too large. Thus ex-
pression (3.10), though being a good estimate to H(r),
should be somewhat smaller in the relevant region
r ) 1.4. The self-consistency check (2.8) and (4.1) as
presented in Fig. 7 reflects these defects.

To more fully appreciate the results of the Onsager-
molecule approach we can remark that the degree of ac-
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The density profile of particles in contact with a hard
wall can be treated as a limit case of a mixture in which
one particle type (the "wall" particle) grows in size and
diminishes in concentration. ' Taking this limit for Eq.
(2.8) properly generalized to mixtures (see, e.g. , Ref. 7),
the universal component ( A. = 1 ) of the wall-particle
bridge function is expressed through the fraction of the
particle's volume outside the wall when its center is at
distance z from the wall. Specifically, for an OCP
confined to the region z )0 against a wall at z =0 we ob-
tain

~wall-particle(

1 —3[(z+1)/2] +2[(z+1)/2], z (1
0, z~ 1

and

B„„,p„„„,(z) =X(z)(l /5)~„„1p„„„,(z), (5.2)
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FIG. 6. Radial distribution function g(r), for the 2D one-
component plasma. Comparison of the modified HNC calcula-
tions using the Onsager-molecule bridge functions BOM(r) (3.10)
(solid lines) and B„„;„„,j (small dots) with the Monte Carlo re-
sults (Ref. 18) (closed circles, see text): (a) I =40; (b) I =100.
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FIG. 8. Density profile of a 3D OCP in contact with a hard
wall. Dashed line, 8=0 (HNC); solid line, B„„;„„„[Eq.(5.2)
with A, = 1]; diamonds, bridge function from Eqs. (5.2) and (5.3);
closed circles, Monte Carlo results (Ref. 19). (a) I = 10,
A =1.7; (b) I =30, A =0.9.

FIG. 7. Modified HNC calculations for the 2D OCP using
approximate Onsager-Molecule bridge functions. Deviation
Ac(P')/I, of the dllect COI1elatlon funct1on froITl lts asymptotic
strong-coupling prediction [check of Eq. (4.1)], for B„„;„,„,„(dia-.
monds) and BoM(r) with A.(r) given by (3.10) (closed circles). (a)
r=100; (b) r™40.
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where we note that the value of q, —,', is unchanged from
its bulk value. ' The MHNC equation has been solved
for the density profile along the lines described in Ref. 19
(HNC case) for constant values for A, ranging from 1 (i.e. ,

B„„;„,„„&)to 1.7 and also for the choice

k(z)= A(1 —z), (5.3)

VI. CONCLUSION

In this work we used the Onsager-molecule approach
to calculate the pair structure of various strongly coupled
plasmas. We demonstrated that it can be calculated very
accurately by employing only the leading term in the
strong-coupling expansion of the bridge function around
the ideal Onsager state:

B(r, I )=[AoM(r)qco(r)]I +B,(r)I + (6.1)

The correction terms, probably led by a I term with
6~ —,', contain the long-ranged contributions to the

otherwise short-ranged [BoM(r ~ 2) =0] leading term.
These corrections are of the order of the entropic contri-
butions to the free energies involved in (2.9), which are
relatively small in comparison to the corresponding
potential-energy terms in strong coupling. Nevertheless,
they may be responsible for glassy-state features in the
pair correlations. As already discussed in Ref. 7, the
present result is in complete accord with the modified
HNC theory based on the empirical Percus- Yevick
bridge functions for hard spheres, BpvHs(r, g), and an
imposed thermodynamic consistency for determining the

which mimics the behavior of the bulk case in the region
r & 1 (cf. Fig. 1).

The results are summarized in Fig. 8 and compared
with HNC results and Monte Carlo simulations. ' At
I =10 the value A =1.7 gives a very good overall agree-
ment with the simulation data. ' At I =30 we could not
reach values of 3 beyond 0.9 because the contact value of
g (z) comes very close to zero (as it should) and conver-
gence problems were encountered in the numerical solu-
tion of the MHNC equation.

As noted for the bulk case the use of B„„;„„„already
considerably improves upon the HNC result of A. =O. In
particular, the peak positions agree much better with the
Monte Carlo simulations though there remain substantial
differences in the amplitude of the oscillations. When
comparing with the simulation results of Ref. 19 one
should bear in mind that the latter pertain to the peculiar
boundary conditions of a OCP confined to a spherical
cavity. It has been argued ' that these results may be
affected by curvature effects even for system sizes of the
order of 1000 particles.

The results of 8„„;„„,] already compare well with the
(nonrescaled) results of Ballone et al. ' using appropriate
hard-sphere bridge functions. Incidentally, we remark
that their rescaling, which yields results comparable to
(5.3), should be physically interpreted by the "shift pa-
rameter" measuring the position of the wall in the refer-
ence hard-sphere system relative to that in the given sys-
tem. "

free parameter, ri(I ). The resulting BpvHs(r I ) features
the long-range oscillatory behavior, yet

B Y s(r, I )/I 0.2'(r)

p$(r) = c(r) = —p%(r),r-
MHNC

Pp(r)+BoM(r) = c(r) = —P+(r) PB„„—,„„,~(r),
oo

(6.2)

(6.3)

i.e., a change in the input potential that contains the ener-
gy of the Onsager molecule [i.e., B, (r)] gives rise to a
change in the output direct correlation function which is
given by the overlap volume function [i.e., B„„,„„,~(r)].
The first relation (6.2) was extensively checked numeri-
cally with the help of the results of the linearized theory,
namely, the mean-spherical model. The second relation
(6.3) can be checked via the consistency condition (4.1)
when carried to sufficiently large values of I . However,
for this test to be conclusive I must not be too large: due
to the increasingly larger exclusion region in g (r), B(r)
will be sampled over a smaller and smaller range of r
values (eventually only at values close to r =2). Thus the
range of I 's near freezing represents a good compromise
between the required large I 's and the required accuracy
of the results. In this respect, Fig. 3 represents the best
numerically meaningful numerical test that can be per-
formed in three dimensions, with results and trends that
certainly speak in favor of the soundness of Eqs. (6.2) and
(6.3). The higher sensitivity of the MHNC input-output
relation in two dimensions suggests that a somewhat
more stringent test could probably be performed as soon
as accurate calculations of uoM(r) in two dimensions will
be available.

In conclusion, the Onsager state provides, via the
Onsager-molecule approach, an ideal reference point for
deriving and analyzing correlations in dense plasmas. Al-
though at an unphysical point, which corresponds to the
confined-atom Thomas-Fermi theory, it is still a very use-
ful starting point to attain the physical quid region.

ACKNOWLEDGMENTS

This research was supported in part by the Fund for
Basic Research administered by the Israel Academy of
Science and Humanities. The Laboratoire de Physique
Theorique et Hautes Energies is Laboratoire Associe au
Centre National de la Recherche Scientifique.

for I ~oc.
The Onsager-molecule approach is based on the

correspondence between the asymptotic I ~ oc proper-
ties of the MHNC integral equation for nonsingular
bridge functions and the Onsager state. This correspon-
dence was established using the functional derivation of
Eqs. (1.1) and (1.2) and physically plausible argu-
ments. This implies that in the limit I ~ oc the pair
potential P and the direct correlation function c are relat-
ed by

HNC
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