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We study cellular structures moving at constant velocity, in a symmetric model of directional
solidification. This is done by employing Newton's method to solve a discretized version of the
integro-differential equation for the solid-liquid boundary. Our results indicate that there is a con-
tinuous band of allowed wavelengths and that there is a generic fold in the solution diagram. This
fold provides a maximum allowed wavelength for any given velocity. Also, we argue that the mech-
anism of microscopic solvability serves to fix the tip shape at fixed wavelength. The implications of
our results for wavelength and shape selection are briefly discussed.

I. INTRODUCTION

Solidification patterns have presented many challenges
to our understanding of nonequilibrium dissipative sys-
tems. ' One issue studied extensively to date concerns ve-
locity selection in free dendritic growth. The answer
turned out to involve a subtle solvability mechanism
which fixes the tip structure for given undercooling. This
selection mechanism has also been found to operate in re-
lated pattern-forming systems.

A different issue is that of wavelength selection during
directional solidification. ' It is well known that a solidi-
fying alloy may form a parallel array of cellular shapes
(see Fig. l) which upon increased pulling speed destablize
to form parallel dendrites. In the dendrite limit, the tip
region is again controlled by solvability mechanism for
free growth; that is, the neighboring dendrites do not ap-
pear to be of much importance. This is of course not
true for cells. In both cases, however, the wavelength of
the structure is a second length associated with the
overall pattern.

The first studies of periodic cellular patterns were per-
formed using weakly nonlinear methods valid near the
onset of Mullins-Sekerka instability of the planar inter-
face. The basic picture that emerged was that the transi-
tion could be either supercritical or subcritical (depend-
ing on parameters), that a band of allowed wavelengths
exists, and that an abrupt A, ~k/2 transition might
occur. These calculations were extended by the work of
Ungar and Brown (see also McFadden and Coriell ) to
larger velocities by means of a finite-element analysis of
the diffusion equations governing the growth. These re-
sults provided evidence that at least for velocities not too
far above threshold, a continuous band of solutions was
possible.

More recently, attention has focused on infinite cells in
the one-sided limit. That is, if we completely neglect
diffusion in the solid, it is possible to find cell shapes in
which the liquid phase extends all the way to y = —~

(see Fig. 2 for our coordinate system). The possibility
that this limiting system might exhibit sharp wavelength
selection was put forth by Karma. ' Later work by Dom-
bre and Hakim" and Ben-Amar and Moussallam, ' how-
ever, showed that this initial conclusion was incorrect; a
band exists even for infinite cells. None of these papers
addressed the connection between deep but finite cells
and the strictly infinite case.

In this paper we return to the consideration of finite
depth cells, albeit with a different and possibly more
powerful calculational scheme. In particular, it has be-
come clear that the best way of studying steady-state
solidification problems is by .reexpressing the field equa-
tions and boundary conditions with a single integro-
differential equation for the interface. This equation is
then discretized and the resulting system of coupled non-
linear ordinary differential equations solved by Newton
iteration. This approach allows us to construct highly
accurate interface shapes far above the small amplitude
region. Although we do not attempt this in this paper, in
principle this method allows for the quantitative predic-
tion of the full range of steady-state solutions for fully
realistic models of thin-film alloy solidification, at fixed
velocity, thermal gradient, and thermodynamic parame-
ters.

The major purpose of this paper is to study the generic
behavior of cellular structures. Because of this, we will
employ some simple approximations and focus mostly on
the limit of equal chemical diffusion constants in the solid
and liquid. As we will discuss, a comparison of our
near-threshold results with the analogous ones of Ungar
and Brown for a more realistic system demonstrates that
the generic structure is independent of many of the fine
details. In a later publication, we will deal with a fully
accurate system of equations in an attempt to make quan-
titative comparisons to the experiments.

The outline of this work is as follows. In Sec. II we re-
view the basic equations of directional solidification and
the integro-differential formalism. We also comment on
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maximum allowed value of the wavelength k due to a fold
appearing in the steady-state band.

This last behavior is directly connected to the k~A, /2
transition noted by Ungar and Brown. Similar behavior
has been found in a study' of periodic patterns in
Taylor-Couette systems, and can be traced to O(2) sym-
metry (translations and reflections) of the bifurcation
problem around the planar steady state. We comment
briefly on the possible relevance of this behavior for the
issue of wavelength selection. Section VI summarizes our
findings and describes calculations currently in progress.

II. REVIEW OF DIRECTIONAL SOLIDIFICATION

FIG. 1. Typical cellular structure seen in thin-film direction-
al solidification of pivalic acid (see Ref. 17) (courtesy A. Lib-
ch aber).

the singular nature of the one-sided limit. In Sec. III, we
specialize to a quasisyrnrnetric model and describe our
computational scheme. Section IV is devoted to results
close to the ones of the Mullins-Sekerka instability, where
we find agreement with both the analytical studies and
the previous work of Ungar and Brown. Section V
discusses behavior far above the aforementioned thresh-
old. We discuss the tip selection problem at fixed wave-
length, especially with regard to the limiting form of this
issue for small surface tension. This allows us to connect
our findings with the aforementioned work on infinite cel-
lular shapes. Also, we demonstrate the existence of a

Directional solidification refers to a process whereby
an alloy is solidified in the presence of an externally im-
posed temperature gradient. This gradient allows for the
imposition of a fixed average velocity for the solid-liquid
interface, under the usual assumption of equal thermal
diffusivities for the different phases. The only dynamical
fields are the concentrations of the alloy components.
For a binary alloy, we are left with a single independent
variable, with boundary conditions to be satisfied at the
moving interface.

We assume that the alloy is characterized by the phase
diagram of Fig. 3. The concentration obeys the diffusion
equation

BC
DI V c= inside the liquid,

at

BC
(l)

DsV c = inside the solid .
at

The concentration far in front of the interface approaches
c which is fixed for a given process. At the interface,
local thermodynamic equilibrium requires that the tem-
perature be the same on both the liquid and solid sides.
Using the phase diagram given in Fig. 3, the dependence
of interface temperature on concentration in the two
phases is found to be

S M S S

TLi TM CL WL

US

X= P X=O X=P

FIG. 2. Coordinate system for our analysis of cellular shapes. FICr. 3. Phase diagram for a binary alloy.
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do(0)=do(l —ecos40) . (2)

Combining these results, we derive the concentration gap
(sometimes called the tie line)

where ms and ml refer, respectively, to the slopes dT/Bc
in the liquid and solid and phases, and c; to the concen-
tration on the respective sides of the interface. TM is the
melting temperature for the pure material (c =0).

As is well known there is Gibbs-Thomson shift in this
temperature due to curvature; T~ = TM [1—do(8)v],
where the capillary length do =a /L for surface energy o.

and latent heat L can depend on the angle 0 between the
interface normal n and the crystal axes. For fourfold
crystals, we will always take

(DLn V )L
—(D&n Vc)&= —v„(1—k)cI

We specialize to the case of an interface moving with a
constant velocity denoted by v and transform our equa-
tions to a moving frame of reference in which the inter-
face is stationary. Recall that we are interested in pat-
terns which are periodic with spatial period k. It is con-
venient to define dimensionless variables by measuring all
lengths in units of the diffusion length u/2DL. We can
define a Peclet number corresponding to the ratio of a
half wavelength to the diffusion length, p =vA, /4DI. In
our units, p is exactly one half wavelength. The final
form of the equations is then

v„(cL cs ) Dl (n Vc )L Ds(n V—c )s (4)

where v„is the normal velocity of the moving solid-liquid
interface.

To put the equations in final form, we recall that the
temperature is imposed externally as

T(y) =T~+ Gy

cL cs I TM[1 do(8)K] T;„](ms mL )

where T;„,is the actual temperature at the interface. Fi-
nally, conservation of matter requires that

V c+2 =0 for the liquid,
Bc

By

o;V c+2 =0 for the solid,Bc

By

(n Vc)I a(n V—c)z= —2(1 —k)cI 8'

Cs —y
k

(6a)

(6b)

(6c)

(6d)

do —do
UlLC ~

(5a)

77lL C
(5b)

which corresponds to the choice y =0 at T= TM. Let us
scale c by c and introduce the two lengths

where y=udo/2DL and /=viz. /2DL and a=D&/DL.
We can derive the integro-differential equation from

the above system as follows. Let c, be a field equal to c
everywhere in the liquid and zero in the solid. Similarly,
let c2 equal c everywhere in the solid and be equal to zero
in the liquid. From Eqs. (6) and the boundary condition
c~ 1 at ~, we can write

and set k =mL /ms. The above system of equations be-
comes

c( =1+ cLn'. V'GL — GL

cz = cso'n '-V'Gs Gs 2

(7a)

(7b)

Cs —y
cL = = —do(9)~,

lz-
where the Green's functions for the steady-state diffusion
equation are

G = 1
e

—
~v

—x'+Is —z'l~+
L 4 2p n=i

I

cos exp( —
Iy

—y'+ ~y
—y'~ [1+(n m/p ) ]'/

] )
p

[1+(n~/p) ]'
(8a)

G
—(y —y'+ y —y'I)/a+

4p' 2p

cos
n rr(x —x ')

exp( —j(y —y')/a+ ~y
—y'~[1/a +(n~/p) ]' ] )

[1/a +(n~/p) ]' (8b)

From the above equation, we can derive the final inter-
face equation by imposing the boundary condition (6c) on
the gradient of the concentration field. Using the easily
derived results

n. VcL =n.Vc, =P, 2h cI—
—an. Vcs= —an Vc2= —$2+2h c&,

Eq. (6c) reduces to P& =$2 =—P. Evaluating the general ex-

I

pressions on the solid side of the interface yields

0=1+f cL,
n'. V'GL —fQGL,

cs= — ncs&' V'Gs .

These equations, coupled with the explicit expressions for
cr and cz given above in (6d), serve to self-consistently
determine both the interface and the function P.
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There are two limits for which the above equations
simplify. First, let us take o.=1. Then, adding the two
equations above, we obtain the single requirement

The Stefan condition [Eq. (6c)] now reduces to the equa-
tion

es = cL cs n '.V'G, x+pk =(k —1)y
Bx

By
(14)

1 —k ———y~ n' V'G . (10)

We will refer to this case as the quasisymmetric model to
distinguish it from the symmetric model of Langer and
Turski; in that model, k was set equal to 1, after rescal-
ing of the dimensionless parameters to absorb the factor
1 —k in the right-hand side of Eq. (10).

The other limit is the one-sided model. If we define
this limit by the condition that an Vc2 approach zero as
a~0, then we immediately find the result P= —2R' cs.
Therefore in this limit Eq. (10) becomes

0= 1+f cL n ' V'GL + f 2R' '
c&GL

y(x) x x
(12)

for large y. Imposing the velocity condition

2(1 k) y
Bx g By

leads to the well-known result

(1 k) dx dy
x y

or y =yox '. This is the standard result, orginally
found by Scheil; for a discussion see Ref. 15. Now let us
do the same calculation with a finite solid diffusivity. To
a similar level of approximation, the concentration in the
solid is

c ky( )+k(P ) +0
ag y

This result can also be obtained directly by only consider-
ing the concentration in the liquid region. However, it
does not arise as the limit of the general problem as the
solid diffusivity is made small. This is because at all k&0
the concentration field cs varies along the interface, and
therefore will also vary inside the solid. In fact, for a
small diffusion constant, a boundary layer builds up in-
side the solid; we will see this explicitly in an asymptotic
solution for the "cusp" region. Thus this limit does not
actually exist unless the concentration inside the solid is
constant, which in our model can only occur at k =0.
The condition k =0 was used in an earlier study' of
growth from solution in a channel geometry. Here, how-
ever, the presence of a thermal gradient demands that we
assume that there does in fact exist a temperature at
which the material can solidify at c = 1, or in other words
k&0. Therefore the one-sided model cannot arise from
the limit +~0 of the full problem.

Let us reconsider the derivation of the asymptotic
shape of a cell in the "tail" region. For the one-sided
model, we can approximate

For x of order pk, the cusp must stop and the interface
must remain finite. In other words, there is a lower
bound to the cell depth, of order k' ". For small k, this
depth can be quite large, but not infinite. It is interesting
to note that using a completely different argument,
McFadden et al. have derived a bound on cell size for
the case k ~ 1, a case which have not considered.

The above result regarding cell depth is valid indepen-
dent of the value of a. In fact, e has completely dropped
out of the above analysis since the concentration in the
solid develops a boundary layer on the scale o, so as to
satisfy the equation. Thus it is k that determines how
deep the cell can go; the smail values of k in actual physi-
cal systems is the real reason the one-sided model cusp
shape seems to agree with the experimentally observed
interface in the tail region.

III. COMPUTATIONAL TECHNIQUE

In this section we formulate a computational pro-
cedure f'or studying solutions of the interface equations
derived above. For simplicity, we deal here only with the
quasisymmetric model, Eq. (10). This limit is not applic-
able to most solidification problems ' ' but can be real-
ized by studying liquid-crystal interfaces. ' This model is
sufficient for our purposes since the structure of the
steady-state problem seems qualitatively independent of
this level of detail once the system is taken far above
threshold. A final quantitative comparison with experi-
mental results must of course await study of the full set of
equations.

We are interested in constructing solutions which are
periodic under X~X+A. and that are symmetric under
x ~ —x. Let us parametrize the interface as follows. We
pick points of equal arclength separation running from
i =0 at the tip to i =N at the half-wavelength point.
Then we define a midpoint j to lie between i =j—1 and
i =j; hence j runs from 1 to N in the same interval. Our
independent variables will be taken to be 0 =0(s ), for
interface normal angle n y=cosO. Hence there are N
such variables. The positions x, and y, are then fixed by
the formulas

x. =x&. ] +8$ cosOt

y, =y;
&

—ds sinO; .

By assumption x0=0 and ds is fixed by the requirement
that xz=k/2. Finally, yo is an extra independent vari-
able that needs to be found as part of the solution.

We now need N+1 equations. The first step is to
impose the integral equation at the points
i =1,2, . . . , N —1; that is, everywhere excluding the in-
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terval endpoints. We will shortly describe how to do this.
The last two equations arise from the requirement that a
physical solution has vanishing slope at both the tip and
at the symmetry point (tail). This gives rise to the
second-order accurate conditions 8(s =0)=—,'8, —

—,'82=0
and 8(s =s„,)= 38& —

—,'8~ &=0. It is sometimes con-
venient to temporarily suspend either one or both of
these conditions, replacing it by a constraint on, say, the
value of yo. This allows us to search through the space of
different interfaces for multiple steady states coexisting at
the same parameter values. We will see how this works
in Sec. IV.

The integral in the evolution equation can be evaluated
by the trapezoidal rule after handling two subtleties.
First, there is an extra 5-function contribution at the
point s=s' of magnitude —,'(1—k)(y//+yes) which must
be added explicitly. Second, BG/By' contains a logarith-
mic divergent piece which must be explicitly subtracted
out. To do this, we replace

, BG y'
6' ', —+ye'

with

—+@~' + —+ye ln(s —s'), (16), BG y', &y y 2' ay' g 4~

which has a finite limit as s ~s . The last term can be in-
tegrated analytically since none of the factors depend on
s' and the resulting expression can be added back in.
Once this is done, the integral is given correctly to
O(1/1V ) by the trapezoidal rule.

The last issue to be discussed is our evaluation of the
infinite sum in the diffusive Green's function. As is easy
to show, the sume can be performed analytically in the
limit of small p, reproducing the periodic Laplacian
Green's function. We make use of the result to rewrite G
as

G = ' + ' — ln i+e 2~ ~ —2cos ' '
e4p' 4~ p

+
2p m =1

cos
m ~(x —x')

—k ly
—y'I

e
k

—k ly
—y'I

e
(17)

ma(x —x')
m =1 p2p

where k„=m~/p and k =(1+k„)' . The last sum converges at least as fast as 1/m for arbitrary values of ~y
—y'~.

A similar analysis must be done for n '.V'G. Considering the derivative of the above sum, one term is of the form
—k ly

—y'I —k ly
—y'I

e ' e

mm'(x —x')
+sgn(y —y')& ' g cos (e ' —e "

)
m =1 p

m ~(x —x') —k ly
—y'I

e ' —e " 1+
X

& „'sin
m =1

These last two sums do not converge sufficiently well, and we therefore need to use another subtraction. We replace
these expressions with

—(y —y' ) oo

+sgn(y —
y ') g 8' ' cos

rn =1

m ~(x —x') —k ly
—y'I

e
ly

—y'I A 1—e '+
k.

with A =p ~y
—y'~ /2. This replacement then requires us to add to n ' VG the extra term

—(y —y')

27Tp
6 .'tan

e sin
m(x —x')

p

„~y y ~qp m(x —x')
i —e cos

p

+P '
sgn(y —y')ln 1+e ~"~-~' ' —2cos

m(x —x')
y y ~q~e

p



3046 DAVID A. KESSLER AND HERBERT LEVINE 39

This completes the derivation of a tractable expression
for the required Green's functions.

In a recent paper, ' Karma suggested that a useful
simplification of 6 occurs if one just drops the last term
in Eq. (17). This incurs a uniform error of (p/~) which
is typically small. A similarly useful approximation for
the normal derivative can be obtained by dropping the
final sum of Eq. (18), keeping the additional contribution
given above. We will use this approximate expression in
much of this work, occasionally checking that this trun-
cation makes no qualitative difference in the results.

The resulting set of nonlinear equations is then iterated
by using Newton's algorithm. We either start from pla-
nar interfaces with fixed amplitude constraints or from
initial guesses based on solutions in nearby regions of pa-
rameter space. The actual program used was the MIN-
pAcK routine HYBRD, with the iteration ended upon
reaching a relative accuracy of 10 . In practice, if there
is a solution for the set of parameters being tested the al-
gorithm converges quite rapidly and any desired accura-
cy can be easily achieved.

The parameter space for this problem is quite large and
therefore impossible to study exhaustively. Instead, we
fix several parameters, roughly in accord with the values
measured by de Cheveigne et al. ' in a CBr4 experiment,
using Br2 as the impurity. In particular, we use
throughout k=0. 16 and lT=1.21X10 U (pm/sec). The
physical value of the anisotropy is probably about
10—20 % (15 times the measured anisotropy in the radius
of an equilibrium bubble), although it has not been accu-
rately measured. As already mentioned, we will use a
quasisymmetric model although the physical diffusivity
ratio a is probably around 0.1. Finally, the measured
value of y is 0.89 X 10 U (pm/sec), but instead we chose
a larger value of 9.95 X 10 U (pm/sec) for computational
simplicity (see below).

Near threshold, we find that 25 points are sufficient to
find accurate solutions at the chosen value of y. Clearly,
as we increase the driving velocity, the number of points
needed to resolve the structure increases. At the final
stage of our current calculations, v =8v,.„;„100points
suffice. Had we used the physical value of y even more
would have been necessary. Since our aim is to study
generic behavior, we increased the surface energy as dis-
cussed above so as to cut down on our computer time re-
quirements. Since the time requirement of Newton's al-
gorithm scales as X, this repres'ents a considerable sav-
ings.

IV. RESULTS NEAR THRESHOLD

stability as v is increased. In Fig. 4 we show the neutral
stability curve for the parameters chosen in Sec. III:

co=2Q+ (yq +lT ')[kQ+Q+2(k —1)] (20)

with wavelength A. =2~/q and

Q= 1+(1+ar+q )'

Q= —1+(1+ca)+q )'

k 1~=1+
(k —1) 2lT

and the limits g=n =1, we can directly carry over their
calculation of the third-order coefficient in the amplitude
equation

dy
dt

=coy —a y (21)

20-

18—

I I I I I I I

neutral sta bility

I I & I I

C3
O
CD

(Notice that the wavelength is scaled with the diffusion
length. ) The neutral curve is quite wide at the bottom
and we therefore might expect mixing of the initially un-
stable wave vector with its harmonics to occur rapidly as
we move beyond threshold.

There have been several analytical studies of the
weakly nonlinear problem slightly above onset. The most
general of these works are those of a Caroli, Caroli, and
Roulet (CCR) and Wolkind, Oulton, and Sriranganathan
which can be immediately adapted to the case at hand.
(These works disagree by a factor that in our case does
not alter the nature of the bifurcation. ) Using the formu-
las from Caroli et al. with the identification (CCR on the
left)

ao =e)/4,

cu=q /2,

/3/2 = — y,k

In this section we present the results of our study of
steady-state solutions near the threshold for the Mullins-
Sekerka instability of the planar interface. This study
was carried out with the purpose of verifying the picture
that has emerged from the analytical bifurcation theory
as well as the computational studies of' Ungar and
Brown. Afterwards, we proceed to study the highly
nonlinear regime encountered at larger velocities.

A planar interface solution for this system exists with

y = —IT/k. This solution undergoes a morphological in- el.

%0
0.2 0.5 2

wavelength
|.0

FIG. 4. Neutral stability curve for the quasisymmetric mod-
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bifurcation
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10.1 10.2 10.3

velocity

10.4

as v decreases it goes from a mode of wavelength A, to one
of wavelength A,/2, which is in fact identical with the
third branch. Most importantly, as we pass v = 12.1

pm/sec this branch merges with and annihilates the
upper branch. This seems to occur roughly where the tip
curvature goes to zero from above on the upper branch
and below, on the second branch. A schematic picture of
this behavior is shown in Fig. 8. This means that for ve-
locities past a critical one (around 12.1) there exist no
solutions at the primary unstable wavelength.

-1.0
(a)

FIG. 5. Amplitude vs velocity near onset. -1.2—

The result is that a
&

is positive, indicating a supercritical
bifurcation. In Fig. 5 we have plotted twice the ampli-
tude (in diffusion length units) versus v, verifying this re-
sult. For comparison, setting o;=0 gives rise to a, nega-
tive, in accord with the more usual behavior of realistic
solidification systems.

Let us now set e=O, X=1.2 and look for solutions, us-
ing N= 50 and the simplified Green's function. To this
end, we relax the boundary condition at the tip and in-
stead fix yo. In Fig. 6 we have plotted yo versus yo at
v=12 pm/sec, showing that there are three roots. The
root as largest yo is a direct continuation of the solution
which bifurcated from zero at the threshold for this
wavelength. This solution is shown in Fig. 7(a) as a func-
tion of the velocity. This curve is generated by starting
with the actual solution at v=12 pm/sec and slowly de-
creasing v while maintaining the condition y0=0. The
third branch is a solution which is actually periodic in
one half of the cell, i.e., actually has wavelength k/2; it
starts from the bifurcation for the A, =0.6 mode which
can be shown to occur at v —10.5 pm/sec. This behavior
is shown in Fig. 7(b).

Finally, the intermediate branch is shown in Fig. 7(c);

—14—

-1.8
0.0 0.2 0.4

ii.75

12.0
I i i s i I i i i I

0.6 0.8 i.o

—1.2

—1.5

V=12

1 7 I I I I I I I I I

00 0 1 0.2 0.3 0.4 0.5

I I I

I

I I I I

I

I I I I

I

I I I 1

I
I I I I

third branch (b)-

0.2 t ~ & ~

I

~ y

slope

1.3 I I I I

I

I I I 1

I

I I I I

I

I I I I

I

I ( t I

(c)

—l. .4

0.0 5

—1.6—

0 2 t i I t I s s i s I i ( i s I t & i i I & i i i I

-1.7 -1.6 -1.5 —1.4 -1.3 -1.2 —1.1
f 7 $ ) I j I ) I I I I I I j I I I I I I I I I I I

O. O 0.2 0.4 0.6 0.8 1.0

FICx. 6. Mismatch condition for ending multiple steady-state
solutions.

FICi. 7. Solution branches for 10~ v ~ 12 in units of pm/sec.
(a) Main branch, (b) A, /2 branch, and (c) mixed branch.
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has halved. There are no other branches, and so there
are in fact no steady-state solutions for v =30 pm/sec
past a specific wavelength. This maximum wavelength is
in general much smaller than one would guess by simply
looking at the curve of neutral stability. There is also a
minimum value of k, since we eventually approach the
neutral curve in the other direction.

Other points worth noting include the following.
(1) There is very little dependence on anisotropy in this

range. We have studied a=0. 1 in addition to @=0 with
no discernible qualitative change.

(2) We have occasionally used the full Green's function
(truncated to enough terms for relative accuracy of
0.01%), again with no qualitative change to the quoted
results.

(3) The behavior of the solution branch in this reason
seems to be qualitatively the same as that found by Ungar
and Brown in their model which had a subcritical bifur-
cation. We therefore will continue to assume that our
quasisymmetric system does not miss any important as-
pect of the physics of these steady-state solutions once
one is reasonably far above threshold.

V. THE HIGHLY NONLINEAR REGIME

As we increase the driving velocity, we reach a regime
that has yet to be studied by either computational or
analytical methods. We are particularly interested in two
issues. In the experiment of de Cheveigne et al. , upon
which our analysis is loosely based, the actual wavelength
was observed to vary as U

' . This appears to be a fairly
universal finding in studies of directional solidification.
We would like to see if any possible explanation of this
can emerge from our considerations here. First, howev-
er, we would like to elucidate the connection between the
solvability mechanism derived for other solidification sys-
tems and the tip selection problem here. To do this, it is
beneficial to consider what happens to our steady-state
solutions as the surface tension is taken very small.

In Fig. 11 we show the shape at V=80 pm/sec, X=0.6.
Notice the very small bubble caused by the surface ten-
sion. In Fig. 12 we show the results of varying the sur-
face tension y from its large value to the range of values
actually relevant for the CBr4 system. The important
fact to note is that there exists an intermediate asymptot-
ic regime in which the shape is independent of y. Even-
tually, at small enough x we reach the bubble which is
highly sensitive to surface energy, and the "universal"
curve breaks down. Presumably, a boundary layer
method of analysis could capture the behavior in this re-
gion. We can contrast this to the way in which the tip re-
gion depends on y. The tip seems to be going smoothly
to a particular limiting shape, in a way which is similar to
the behavior of the tip of a viscous fluid finger for small
surface energy.

The intermediate asymptotic behavior is in agreement
with the cusp region solution given in Sec. II, which also
did not depend on y. This feature shows that it is possi-
ble, in some sense, to define a tip region problem which
matches onto the universal curve and thereby drop the
necessity of solving for the interface all the way down to
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the bubble. This tip region problem, then, is character-
ized by trying to find a tip shape consistent with a given
velocity; it is quite similar to the familiar problems of a
free dendrite or a viscous finger where we impose the
asymptotic shape and the velocity, and ask for the tip
curvature. So, the directional solidification problem at
fixed wavelength can be thought of as a selection problem
of the same general class as those shown to be analyzable
in terms of a surface tension induced solvability condi-
tion. This shows most clearly, though, that the solvabili-
ty mechanism cannot determine the spatial wavelength of
the pattern. Our results agree completely with those of
Dombre and Hakim, and Ben-Amar and Moussallam in
this regard.

It is worthwhile to expand a bit on this last point.
Thinking of the tip shape selection as an example of the
microscopic solvability mechanism allows us to make
several immediate predictions. First, we expect that at
any finite y, there is not one but a discrete set of possible
tip shapes; one and only one of these shapes is expected
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to be linearly stable with respect to tip deforming pertur-
bations. As y~0, this discrete set converges to one solu-
tion; at y =0 exactly, though, a continuous set is possible.
If we relax the condition that y'(0) =0 as in the solution
search of Sec. IV, we expect that the slope will go to zero
with an essential singularity as a function of y, for all tip
shapes (and positions) that are part of the continuum.
Note that this predicted continuum at fixed wavelength
precisely corresponds to the double continuum of Ben-
Amar and Moussallam.

Why should there be a continuum of possible tip
shapes [and related positions y(0)] at y=0? Let us first
fix y(0) and allow nonzero values of y'(0). A nonzero
value of this slope would mean that there is a cusp in the
interface near y(0). The concentration field near this cusp
would be singular, with the local structure c-r, where
a=a/P for opening angle P=vr y'(0). T—he curvature
term could match this singularity in the equations with a
judicious choice of the interface near this point; this,
however, requires y&0. Thus a purely local analysis al-
lows a cusp in the presence of surface tension and a new
equation must therefore require that the cusp magnitude
vanishes; for zero surface tension, the cusp magnitude
vanishes identically, removing one equation and hence al-
lowing us to arbitrarily fix y(0), at least over some range.

We have been able to verify at least some aspects of
this picture. There are several solutions at v =80 pm/sec;
furthermore the solutions corresponding to secondary
branches have a more complex tip structure than that of
the main branch shown in Fig. 11. This is exactly the
same as what happens for the other known examples of
the solvability mechanism. The solutions move closer as

y is lowered, and seem to asymptotically approach
y(0)= —8.3. This solution appears to be analogous to
X=—,

' for the Saffman-Taylor finger. Finally, the value

of y'(0) at this tip position seems to monotonically go to
zero with a form that is at least qualitatively consistent
with an exponentially singular form. So far, everything
we have done indicates that the solvability analysis is
likely to be valid for this system.

Let us now focus on the A, and e dependence of our re-
sults. The anisotropy again plays no crucial role; this
must change eventually since we known that anisotropy
becomes important as the shape becomes more like a par-
abolic dendrite, but no sign of this has appeared at this
velocity. As A, changes, though, there is still a "bend" (or
fold) at some A, ,„past which no solutions exist. The
dependence of the maximum A, is plotted versus &v in

Fig. 13 for the cases of a=0, 0.1. Notice that the results
are almost exactly straight lines. That is, the band edge
obeys the scaling A, ,„-&v.But if we recall that we
have scaled all our lengths by the diffusion length v /2DL,
we see that the wavelength in physical units will scale as
v

' . This happens to agree with the experimental mea-
surement.

Why might the band edge have something to do with
wavelength selection? ' First, we have already mentioned
that a similar structure has emerged in a recent study of
Taylor-Couette flow. ' As already discussed, this type of
fold is a generic effect in systems with strong coupling be-
tween modes at k and A./2. The occurrence of the fold is

always connected to the appearance of a new structure
"in between" the previous peaks of amplitude, here this
happens via the tip becoming a local minimum, in
Taylor-Couette flow, via the formation of an additional
vortex.

The next point to note is that there is some indication
that the Eckhaus stability boundary lies close to the fold.
This was seen explicitly in Taylor-Couette flow, ' and let
us assume that the same happens here. Then, slowly in-
creasing v will temporarily leave the system with too
large a wavelength when p crosses p,„.The system will
then tip split and thereby create new cells until it
manages to get to the other side of the fold. This
scenario assumes that (a) tip splitting is dynamically pos-
sible and (b) there is no tendency to drift once the stable
state is reached. The former argument seems valid in ma-
terials like succinonitrile and carbon tetrabromide, ' but
is defintely not true for strongly anisotropic crystals such
as pivalic acid. ' The second point is harder to verify
without a complete dynamical theory. There have been
some suggestions that there will still be tendency to
drift towards a final wavelength under the effects of noise,
and this certainly bears further investigation. Note that
if anything like the above idea is correct, there might be a
measurable hysterisis in wavelength versus velocity.

We do not yet understand why our numerical calcula-
tions gave rise to the behavior A, -&v. It is worth noting
though, that this is equivalent to stating that the impor-
tant control parameters for the wavelength problem are

to

band fold
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FIG. 13. Bend location vs velocity at two diferent anisotro-
pies.

These rescaled dimensionless variables are exactly what
one would recover if one took the "Saffman-Taylor" limit
(p~0) of the problem at hand. This is the reason Kar-
ma found A.- v

' in his study of the channel problem
with unit undercooling. Why the scaling associated with
this limit should be relevant near Peclet numbers of order
1 is not clear, although the correct parameter may be
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p/~. This is consistent though with the aforementioned
comments regarding anisotropy and the fact that the
shapes are closer to neighboring fingers than to neighbor-
ing parabolic dendrites.

VI. OUTLOOK

We have presented a straightforward but extremely
powerful scheme for solving the steady-state problem in
directional solidification. We have reproduced the pic-
ture of Langer and Turski, and Ungar and Brown, for
states close to the onset of the Mullins-Sekerka instabili-
ty. Also, we have shown how the A, ~A, /2 bifurcation
may be important for wavelength selection. It is still too
early to be sure, but we feel that the boundary integral
approach will prove to be the method of choice for the
problem of steady-state cellular solidification. Of course,
it may still be necessary to use the finite-element ap-
proach for the study of time-dependent processes.

Thege are several tasks that need to be undertaken.
First, we would like to focus on the particular experimen-
tal setup of de Cheveigne and study a fully realistic mod-
el. Next, we must augment the steady-state calculations
with linear stability analyses, including the possibility of
Bloch-like modes on the underlying periodic system.
This should lead to the usual Eckhaus boundary near
threshold which then could be extended to higher v. As
discussed previously, it is important to know if the stabil-
ity edge is close to the band fold, as has been seen in
Taylor-Couette studies.

An important part of our results concerns the sugges-
tion that microscopic solvability works so as to determine
tip shape and position, for fixed wavelength. A very in-
teresting question arises as to whether anything similar
could be seen in other pattern-forming systems that form
periodic patterns, specifically, we can ask whether there
is any singular behavior in, say, Taylor-Couette patterns,
if we fix the wavelength and take the viscosity to zero.
We are currently investigating this issue.

A final issue yet to be addressed is the transition to
dendritic growth. We expect that this transition is noise
driven, ' requiring a finite amplitude excitation to

move the system away from the linearly stable cell shape.
For a fixed amount of noise, sidebranching will set in at
differing velocities, depending on parameters such as the
crystalline anisotropy. Given the steady-state solutions
found here, it should be possible to investigate this issue
by numerical computations.

There have been many ideas put forth regarding wave-
length selection in systems with an allowed band of
steady-state patterns. It turns out that there is no unique
answer to this problem; different experimental protocols
can and do lead to different wavelengths. The methods
given here plus the extensions just mentioned should al-
low us to decide if a particular dynamical selection mech-
anism is operating in a particular experiment. This can
be done by making quantitative predictions for experi-
mentally observable shapes. Coupled with similar pro-
gress toward analyzing steady-state eutectic growth,
this study should eventually lead to the development of a
systematic procedure for computing solidification micro-
structure in the cellular regime.

Note added. After completion of this manuscript, we
were made aware of a recent work by Ramprasad, Ben-
nett, and Brown, using the finite-element method for deep
finite cells. This work also studies the issue of wave-
length bands for deep cells and comes to exactly the same
conclusions as those contained herein. This paper does
not deal with the relationship between deep cells and the
infinite cells in the one-sided limit as studied by Karma,
Dombre, and Hakim and by Ben-Amar and Moussallam,
nor does it deal with the relevance of the solvability
mechanism (as discovered for free dendritic growth) for
the tip shape of the cellular structure.
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