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Shear-rate dependence of the viscosity for dilute gases
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The non-Newtonian viscosity of a dilute gas of hard spheres under uniform shear flow is obtained
by means of a Boltzmann —Monte Carlo simulation method. The influence of initial conditions is
analyzed. The results are compared with exact solutions of the Boltzrnann and the Bhatnagar-
Gross-%rook equations. The agreement is shown to be fairly good over a wide range of shear rates.

l. INTRODUCTION

Nonlinear transport beyond the scope of Navier-Stokes
equations is a very interesting problem from both a
theoretical and ari experimental point of view, particular-
ly when dealirig with molecular or rheological fluids. ' On
the other hand, for simple atomic fluids, nonlinear effects
have been observed in computer simulations for the case
of uniform shear flow. The corresponding macroscopic
state has a constar&t lirrear-velocity profile v ith spatially
uniform temperature and density, while the temperature
monotonically increases in tin~e due to viscous heating.
This state is generated at the n~icroscopic level by impos-
ing Lees-Edwards boundary coriditions, that are, in fact,
equivalent to periodic boundary conditions ir& the local
Lagrangian frame. Furthermore, the dynamics of the
particles is governed by classical-mechanics equations. '
Since the shear rate can take arbitrarily large values in
this state, deviations froni Newton's viscosity law can be
observed.

The shear-rate dependence of the shear viscosity in the
above state has been derived by Ikenberry and Truesdell
for a system of Maxwell molecules described by the
Boltzmann equation. For more general interaction po-
terrtials, Zv anzig has obtained a closed differential equa-
tion for the shear viscosity by using the Bhatnagar-
Gross-Krook (BGK) model kinetic equation. These are
the only exact kinetic theory calculations for uniform
shear flow of which we are aware. On the other hand,
this state has been extensively studied by means of
molecular-dynamics methods. ' Most of these simula-
tiorrs deal with dense fluids, although some efforts have
been carried out receritly for dilute gases.

In this paper v e report the results for the shear viscosi-
ty generated by a Boltzniann —Monte Carlo simulation
method' for a systen& of hard spheres. This method is
especially devised to mimic the Boltzmann equation. A
clear description can be found in Ref. 10. To the best of
our knowledge, this method has not been applied up to
now to the uniform-shear-flow state. It must be noticed
that, in contrast to niost of previous works, we do not
introduce any kind of artificial thermostat to prevent
viscous heating. The price to be paid is that the system
does not reach a stationary state.

Two main points are considered in this study. First,
we will address the question of the existence of the non-

Nev tonian shear viscosity function, independent of the
initial conditions and characterized only by the intera-
tomic force law. Since the uniform shear flo is a time-
dependent state, it is not clear a priori whether the
influence of the initial conditior&s is restricted to a
"short" initial layer ( t ( th ), after which the system
reaches a hydrodynamic stage. This point has not been
explicitly considered in previous simulations; usually the
system is just aged for a more or less arbitrarily large
enough period of time. We will see that it is possible to
identify a hydrodynamic shear viscosity over a rather
v ide range of values of a reduced shear rate. This viscos-
ity function can be expected to be the one corresponding
to the so-called "normal" solution of the Boltzrnann
equation for hard spheres. The usual way of constructing
the normal solution, by means of the Chapman-Enskog
expansion, is only useful for small shear rates. " Then,
our second point is to compare the simulation data with
the known exact solutions merrtioned above: the
Boltzmann solution for Maxwell molecules (BM solu-
tion ) and the solutiori of the BGK model kinetic equa-
tion for a system of hard spheres (BGK-HS solution). "'''
The results show that both models lead in fact to quite a
good agreement with the simulation data.

II. UNIFORM SHEAR FLOW

The conservatior~ laws for a dilute gas under uniform
shear flow lead to an increase of temperature given by

dT(t) 2 aP„(t),
dt 3nk~

g(&) =- P„,(r)/a— (2)

However, at sufficiently large times g(t) is expected to de-
pend on time just through T(t): rl(t)=rl(a, T(t)). This

where T is the temperature, n is the density, k~ is
Boltzmann's constant, a is the shear rate and P is the xy
component of the pressure tensor. A coordinate system
with the x axis along the direction of the flow has been
chosen. The heating equation (l) shows that the state of
the gas under uniform shear flow depends on time due to
viscosity. We can define a generalized shear viscosity
coefficient q for all times by
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characterizes the time domain where g(t), as defined by
Eq. (2), becomes a hydrodynamic shear viscosity. Then,
dimensional analysis for hard spheres leads to the form

&', t
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*(o*), o '( &(&) ) =
res( &(&) ) v( T(&) )

(3)

where q* is a dimensionless function of the reduced shear
rate a*. In Eq. (3), gNs(T)= —,', (mk&T/a)'/ /o. is the
Navier-Stokes shear viscosity from the Boltzmann equa-
tion for hard spheres of mass rn and diameter o, and
v(t)=nk&T/rINs(T) is an effective collision frequency.
Notice that both reduced variables, g* and a*, change
with time. In particular, Eqs. (1) and (3) show that a"
monotonically decreases in time.

In principle, if one uses the values of P (t) and T(t) to
compute g as a function of a", one will have a different
function for each trajectory of the system, i.e., for each
initial condition. However, if the system reaches a hy-
drodynamic regime, all the particular functions g*(a*)
must tend to coincide for values of a* suSciently smaller
than the initial ao =a*(T(0)). As stated in Sec. I, the
check of this expectation is one of the main goals of this
paper.

2

III. THE SIMULATION

In our simulation we have considered a system con-
taining 2000 particles between two plates separated by a
distance of 10k., where k=(&2vrno. )

' is the mean free
path for hard spheres. In the Boltzmann —Monte Carlo
simulation method, ' it is necessary to split the system
into cells and also to use a time step. Because of the sym-
metry of the problem, the cells can be taken as layers
parallel to the plates. In most of the simulations we have
taken a layer width of —,'X. On the other hand, the fact
that the collision frequency increases in time suggests the
use of a nonconstant time step. It is then convenient to
introduce a new time scale defined by

s= dt'v T t' (4)

Thus s(t) represents the average number of collisions per
particle between 0 and t. In this variable, we have con-
sidered a constant step b,s ( b,s =0.016/&m in most of
the simulations). That means that the corresponding real
time interval b, t behaves as [ T(t)] ' . Finally, the
Lees-Edwards boundary conditions have been employed
to produce uniform shear Bow. To improve the statistics,
a number of different trajectories have been generated for
each initial state. The reported results are typically aver-
aged over 70 trajectories. In all cases, the macroscopic
hydrodynamic profiles defining the uniform shear Aow
were obtained within typical deviations of the order of
1% in each layer.

The shear viscosity is computed from P using Eq. (2).
Two different methods have been considered to evaluateP: first, directly from its definition as the momentum
Aux; second, from the rate of change of the temperature
by means of Eq. (1). The agreement between both
methods has been employed as a test of the accuracy of
the simulation. Figure 1 shows the results obtained for
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FIG. 1. Time evolution of the temperature T and the pres-
sure tensor element P ~ evaluated directly as the momentum
Aux (dots) and from the heating equation {broken line). The ini-
tial condition is of local equilibrium with ao =5&~/8. In the
graph, To, Po =nk& To, and vo stand for the initial values of the
temperature, the pressure, and the collision frequency, respec-
tively.

an initial velocity distribution of local equilibrium with
a„* =5&~/8. We find good agreement between the two
methods; their relative discrepancy is always less than
5%. %'e have studied the inhuence on the result of the
values chosen for the width of the layer and the time step,
finding that the method based on Eq. (1) is less sensitive
to these values. Therefore, in the following, only results
based on Eq. (1) will be reported.

IV. RESULTS AND DISCUSSION

From T(t) and P (t) one can compute a* and g* at
any time and then plot q* versus a *. Figure 2 compares
the results for initial distributions of local equilibrium
with a o

=5&~/8, 5&2~/8, and 5+sr/4 Of course, .
each curve starts at a*=ao and cannot be extrapolated
to larger values of a *. As said before, we want to identify
the hydrodynamic region, i.e., the part of the curves in
Fig. 2 that does not depend on the particular initial con-
dition. We see that the three curves overlap for a* ~0.5,
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FIG. 2. Simulation data of the reduced shear viscosity versus
the square of the reduced shear rate for initial conditions of lo-
cal equilibrium with a 0

=5&~/8 ( 6 ), 5 &2~/8 ( ), and
5&~/4 (o ).

FIG. 3. Same as Fig. 2. The theoretical curves correspond-
ing to the Boltzmann equation for Maxwell molecules (broken
line) and to the BGK equation for hard spheres (solid line) are
also plotted.

and therefore, the values of q* in that region can be con-
sidered as hydrodynamic. Of course, one expects that the
hydrodynamic part of a particular curve can be enlarged
if one starts from a larger initial value ao. Therefore, the
representative part of the curve corresponding to
ao =5&~/4 is expected to extend somewhat to values of
a* larger than 0.5. In any case, it seems clear that the
system needs a certain period of time to reach the hydro-
dynamic regime. We have estimated from our data that
this time is of the order of four average collision times
(s =4). For longer times, the non-Newtonian shear
viscosity is then expected to correspond to the normal
solution of the Boltzmann equation. Also, Fig. 2 shows
that q* tends to 1 as a ' goes to zero, in agreement with
theory. Notice that the limit a*~0 is not accessible in
the simulation since it corresponds to s ~ ~.

The region a*( I is amplified in Fig. 3. Also, the
BGK-HS solution" and the BM solution are plotted. In
both cases, a '" and rl* are still defined by Eq. (3) but using
the corresponding expression for tlNs(T). For a* (0.5,
both models fairly reproduce the simulation data, the fit
being slightly better for the BGK hard-sphere model.
The agreement extends u~ to a *= 1 if the simulation cor-
responding to a 0

= 5&~/4 is considered. Both exact
solutions exhibit the behavior g -a* for asymptoti-

cally large a . ' " Whether this also holds in the
Boltzmann equation for hard spheres cannot be easily in-
ferred from the simulation method since it would require
one to start from an extremely large initial value ao in or-
der to be still in the region of large a* after an aging
period of s =4. Several conclusions follow from the
above results. The comparison with the BM solution
shows that the shear viscosity obtained from the
Boltzmann equation seems to be rather insensitive to the
interaction potential over a wide range of shear rates
when appropriate reduced units are used. Moreover, the
BGK equation is a fairly good approximation of the
Boltzmann equation for this problem. These conclusions
are reinforced by the fact that, for Maxwell molecules,
the shear viscosity obtained from the Boltzmann equation
is the same as the one obtained from the BGK model.
Work is now in progress to study whether this agreement
also holds when the complete description, given by the
velocity distribution function, is considered.
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