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M. De Paz and G. Sonnino*
Dipartimento di Fisica, Universita degli Studi di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
(Received 24 September 1986; revised manuscript received 14 September 1988)

A model of free convection is developed for the case of pure water contained in a cylindric reser-
voir submitted to arbitrary boundary conditions. In the temperature region where water has a den-
sity maximum a quadratic p(T) function is assumed and the asymptotic solution is found as a sam-
ple calculation. Discontinuities in the T'(z,t) behavior observed experimentally are fully explained
in terms of a function that includes the small coefficient of the quadratic term of p(7) in the denomi-
nator with dramatic effects in the vicinity of the density maximum.

I. INTRODUCTION

If we put a sample of pure water in a gravitational field
submitted to varying temperatures through a thermostat
at T,, free convection takes place and a distribution of
temperature varying with space and time is obtained. If
this experiment is carried on in a range of temperatures
including 4°C, where water has a density maximum,
dramatic discontinuities in the T (z,¢) curves are ob-
served."? During the past few years the free-convection
problem in nonsteady conditions in a vertical cylinder
has received considerable attention.

Mouton and De Roeck first studied experimentally the
heating behavior of various liquids and, on the basis of
their measurements, developed a model of convection
which divides the cylinder into two regions, a boundary
layer moving upwards at the wall and a nucleus moving
downward along the axis.?

Their equations, developed for a Boussinesq liquid,
failed to explain the inflection point in the T(¢) curves,
but were an important breakthrough in the problem. In a
previous paper we used their model coupled with more
complete equations applied to a non-Boussinesq fluid, ob-
taining fair agreement between experiment and theory for
water outside the region of maximum density.* Since
then, a paper by Rahm on free convection in alcohol has
appeared in which a quite different point of view is adopt-
ed to interpret the heating of the fluid: the cylinder is
subdivided into three regions, a boundary layer, a ‘“‘buoy-
ancy layer,” and a homogeneous region which s progres-
sively stratified by the incoming buoyancy layer.’

Rahm’s analysis refers explicitly to a Boussinesq fluid
with a linear temperature-dependent density and provides
solutions in qualitative agreement with experiment and
with numerical solutions of the time-dependent Navier-
Stokes equation.®

In order to interpret the convective behavior of water
in the region of maximum density we not only must con-
sider a non-Boussinesq fluid, but also must solve the
proper hydrodynamic equations, taking into account the
lateral interactions between the boundary layer and the
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nucleus through an appropriate velocity field that de-
pends on time and height.

In this paper we present a theory of the nonsteady and
nonlinear convective nucleus that is valid under very gen-
eral boundary conditions when a particular model of con-
vection is assumed and when the fluid may have a density
maximum in the range considered.

II. MODEL OF CONVECTION

The system consists of a cylinder full of water with a
given initial temperature distribution at ¢t =¢,, which can
exchange heat with a thermostat at temperature T,
through its lateral wall, vertical and of high conductance.
In the gravity field, free convection takes place in the
cylinder, and temperature varies as a function of space
and time. Since water has a density maximum at 4°C, we
concentrate on this temperature region and solve the hy-
drodynamic problem by assuming a modified model of
convective motion which has previously been used to fit
successfully convection data in the temperature region
where density is a monothonic function.?”* We intro-
duce the following assumptions.

(a) The volume of water is subdivided into three re-
gions, the boundary layer, the central nucleus, and the
(small) intermediate region which connects smoothly the
previous two regions.

(b) The convective nucleus is perturbed by the motion
of the fluid and is described by the scalar field T =T (z,t)
and the vectorial field

U=(0,0,— V,(z,1)) ,

where the perturbation is expressed by a dependency of
the velocity ¥ upon the level z, measured from the top,
which is small when compared with the time dependency.

(c) The density maximum is fitted by a parabola al-
though, in principle, it is possible to apply a more precise
formula,” with undesired complication.

(d) The solutions must describe not only the density
maximum region but also the region outside, i.e., the
equations must converge to functions where the parabolic
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expression of the density plays a role vanishingly small at
temperatures far from 4°C. This will be done by forcing
the parabolic term of the density equation to become
smaller and smaller where the fluid convection cannot be
modified by the density maximum.

III. MATHEMATICAL TREATMENT OF THE MODEL

The fundamental equations of hydrodynamics applied
to the described model reduce to the following three
equations (see the Appendix): the Fourier equation,

2
ar T _ @T L |. | p |3V
at 23z X oz oz pc | 0z |’
where v* is a viscosity parameter,
ool &
3¢, pc,

and y is the thermal diffusion coefficient, the Navier-
Stokes equation,
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where v is a viscosity parameter,
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and g is the constant of gravity, and the continuity equa-
tion,

¥ apV,) -0
at dz

Equations (1)-(3) may be satisfied by a unique solution
only providing the appropriate boundary conditions.

If we indicate with the symbols p, T, V, respectively,
the variables hydrostatic pressure, temperature, and
speed of the fluid in the nucleus at temperatures outside
the density maximum, and with the symbols p, T, V,, the
same variables in the region of maximum density, we
must find solutions which satisfy the following relation-
ships:

(3)
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where k is the positive temperature coefficient in the den-
sity equation

p(T)=p(T, N 1+B, AT —kAT?), (5

where f3; is the thermal expansion coefficient, function of
k,and AT=|T —T,] is the initial temperature difference,
in modulus.
The hydrodynamic equations for p, p, T, and V are>*
the Fourier equation,
aT AT _ T
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the Navier-Stokes equation,

—=g -1, ™
p 0z
and the continuity equation,
L —yP=o, (8)
and the boundary conditions
T(z,ty))=T,+G(z), 9)
Vitg)=V,, (10)
AT =p(TH1—BT—T,)], (1

where, considering that in the regions where convection
is not modified by the density maximum we can assume
k —0, we write
pB=—1limp, . (12)
k—0
The solutions of Egs. (6)—(8) with the conditions (9)—(11)

are straightforward by the method of characteristic func-
tions:

foxm[G*(yhjv);+6)]l/3 TatTh) .
T(0=T,+ S ayexplinlx(0)+mz/h]} , (14)
a,,=[1/(zh)]fth*(z)exp(*inTrz/h)dz , (15)
Vit)y=x(t)h/m , (16)
plz,t)=[hx(t)/m+g]

><fozpm)[1—/3[T<z,t)—TS]]dz+po : (17)
AT =p(TH{1—B[T(z,t)—T,1} , (18)
where

k*2mRuN YN 523

a—= ’
h(R —8))[G*(h/2)]'/?

G *(z) is the boundary condition for temperature, 4 is the
level of the liquid contained in the cylinder, k* is a pure
constant, and & is the average thickness of the boundary
layer. According to Eq. (4) we write the new boundary
conditions for Egs. (1)=(3):

T(z,ty)=T,+G(z), (19)
€ (2,15)=0, (20)
€(8,0)=U"(1), € (h—8,0)=U?(1), 1)
p(z,t0)=p(TH{ 1+ B [T (z,ty)—T,]
—k[T(z,ty)—T, 1}, (22)

where the function €, (z,¢) is defined by
V(z,t)=V(t)+e€(z1) . (23)

Equation (20) indicates that the nucleus at t =¢, has the
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same velocity V(t,) as before.
Moreover, the condition (4) implies that

l}iinoek(z,t)zo . (24)
By substituting Eq. (23) in Eq. (2) we obtain
_ V(t)—aait"ﬂ V+e, )%E"—=g —%f%—vief
(25)
According to Egs. (7) and (25) we have
ol 3% de de
g —é%g=g —%%g—v az: +—§_(V+E")Cézi ,
(26)
which becomes
Je,, 3%, J€y
5 572 =F(z,t)+(V+ek)¥ , (27)

n=1
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where
Fon=201_ 0@ 1_, (28)
dzp 0zp
and
v+ )aek 9€;,
€k adz << at

because V >>¢,.

In addition, experimentally it has been observed® that
the velocity perturbation is much larger in time than in
space, when compared together. Thus

e, 3%,
a v 372 (29)

which is to be solved with the boundary conditions (20)
and (21)
The solution of Eq. (29) is®

e(z,t)=f01f8h -° [2/(h —8)]3 exp{[—mn/(h —8)*Iv(t —7)}sin[wnz /(h —8)]sin[mny /(h —8)1f (y,7) |dy dT,

where

fn==0"- 2@ -u. (31)
From Egs. (16) and (23), combined with (30), we deter-
mine V,(z,t). As a consequence, through ¥V,, we can

z

deduce the expression for p(z,t) by solving Eq. (3) with

the initial condition (22). This task is noticeably
simplified because the term d(€,p)/dz is negligible com-
pared to the other terms. With this assumption Eq. (3)
becomes

%y =g (32)
ot oz

The solution is

+
plz,t)=p(T)+ ¥  a,explinmz/hlexp[ —inx (1)],

(33)
where (hx)/m=V (t) and
an=1/(2h>ffhp(z,to)exp<—imrz/h dz (34)

=p, for0=z<d

. =plz,ty)—p(T,) for 8<z=h —§

P2 t0) |\ =y for h—8<z<h (35)
=0 for —h=z <0,

where p, and p, are the small density perturbations in the
boundary layer region.

(30)

In what follows we choose p,=p,=0. Once p(z,?) is
known, through Egs. (33)-(35) we are able to calculate
the function 7'(z,¢) by means of the state equation (5), ob-
taining
Byt {Bi —4k[p(z,t)—p(T,)]1/p(T,)}'?

T(z,)=T,+
(z0=T, 2k

(36)

We show that Eq. (4) is satisfied by Eq. (36) as requested,
by calculating lim, _ 47 (z,¢t) and verifying that it is coin-
cident with T.

We split Eq. (34) into two terms using Eqgs. (25) and
(22):

Q, =Qay +an2 ’
with

amz[l/(zh)]ffhﬁkp( T)AT(z,ty)exp( —inwz /h)dz

(37
a,,z[l/(2h)]f_hhkp(T:)[AT(z,to)]zexp(—inrrz/h)dz .
(38)
Through Eq. (33), we write
plz,)=p;(z,t)+py(z,1) , (39)
where
+ o
Pz, t)=p(T)+ 3 a,explinmz/h)exp[ —inx(t)]

and
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+
Pulz,t)= 3 apexplinmz/hlexp[ —inx (1)] .

n=-—ow

From Eq. (12) and observing that AT (z,t,)=AT(z,t,),
we have

’}Tup(z,t)=p(z,t) .
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As a consequence, by using Eq. (11), we obtain

Az —p(T,) _
lll_)mo o(T,) =—BAT . (40)

We are now able to calculate lim; 7. By substituting
Eq. (39) in Eq. (36) we have

By (B2 —ak {[py(z,0)—p(T,)]/p(T,)} —4kplz,t) /p(T,))"?

T(z,t)=T,+ Y
which, through Eq. (40), gives
Eirn()T(z,z)=Ts+AT:T. (42)

The only unknown quantities are now Ui" and U\?,
which can be determined through an additional flow
equation at the interface between the nucleus and the
boundary layer:

—aB . =
31 +V-(pu)=0,

J puds=— fU%’%du .

We calculate Eq. (43) by considering the volume v as il-
lustrated in Fig. 1, formed by the upper (or lower) cylin-
drical part of the boundary layer. This choice is manda-
tory to obtain information from the continuity equation
other than that from already known equations. We write

(43)

boundaryﬁyﬂwﬂ\/

N
nucleus N
intermediate \ \
reglon : \V\_ F— = — =Y axis
L
s
l d
Z axis
FIG. 1. Model of free convection in a vertical cylinder

(T, <T).

) (41)

—

where the surfaces of integration S, and Sy are chosen as
described in Fig. 1 and uy and uy are the velocity vectors
at Sy and Sp, respectively; v is the volume of the upper
or lower cylindrical part of the boundary layer. Since the
density p in v is almost equal to p( T ), we have
dp(Ty) 3p
a =2 fu ot dv=0.

In scalar form and recalling that u, =V, we obtain

fSN —puydS + fSEpquS =0, »

—Vp(81)(R —8)*w+p(T,) [ updS=0,
B

The integral in Eq. (43) may be calculated taking from
the literature® the value of u as

Up = uO)\.O 5
where A, is a function of y /8 and
uy=K,w 'WNY2(14+0.49N3/*)"1/2 |
where K| is a proportionality constant,
w=h—z,
Ng, is the Grashof number,
NG, =BG*(h/2)gh*/%?,
and Np, is the Prandtl number,
¥
X
This formulation of uy is deduced for a laminar flow and
by approximating the problem to a plane surface at con-
stant 7,. However, experiments indicate that the correct

combination of Ng, and Np, in free turbulent convection
is NY2Np.2? (Ref. 3), i.e.,

NPrz

76,01, |'”

G*(h/2)

[ updS=27RK*uNEN 32"
B

The velocity Vis given by

2RK *up(T,)NY3N 523

V()= T(8,1)—T,1'"*,
(R —8)2p(8,t)[G*(h/2)]”3[ )

(45)
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where R is the radius of the cylinder.

We observe that in Eq. (45) the ratio p(T;)/p(5,1)=1
to a very good approximation and, recalling that
V =xh /m, we have

x=a[T(8,t)—T,1'*, (46)
where
ZRK* TTNI/3N_2/3
a= PTG X pe x(15)=0. 47)

C R(R —8P[G*(h/D]*
Recalling the definition of U{" and U{* [Egs. (21) and
(23)], we have

U,((”=—h—a(,)[T(B,t)—TS]l“V(t) ,
m

5 (48)
U,§2’=;T—a(2,[T(h —-8,0)—T,1'"*—V(1),

where
27RK*uN 3N 23
h(R —8 )Y [G*(h /)]

ag,y)=

(2)

Since lim,_ UL =lim, _ ,U;?’=0, we have as a conse-

J

0 for —h<z<28/3

3T,

25 (z—26/3) for 26/3<z <26
G*(z)={T, for 26<z<h —28

3T,

48
0 for h —28/3<z=<h,
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quence that lim, _, 46, =0 and lim,_,,V,(z,)=V(z). It is
also obvious that all the conditions (4) are verified.

The entire set of equations is now solved and can be
applied to various practical and theoretical situations by
changing the boundary conditions and by varying the
choice of G* and p* at will.

A feature of Eq. (36) is that the small coefficient k is at
the denominator so that, in the region of temperatures in-
cluding the density maximum, sensible deviations from
smoothness are expected. Outside of this region k be-
comes smaller and smaller but, as we have previously
shown, T'(z,t) tends to T as k goes to O [Eq. (40)].

IV. SAMPLE CALCULATION:
ASYMPTOTIC SOLUTION IN A FLUID
WITH A DENSITY MAXIMUM

The ideal asymptotic solution of a convective non-
steady system ought to be found by introducing a bound-
ary function with infinite temperature derivative, i.e., a
square temperature step. However, to give significance to
the density maximum of the liquid, we are compelled to
introduce a step function with a large but finite slope as
follows:

(49)

[—z+(h —28/3)] for h —28<z<h—28/3

where T, is the initial temperature, and the conditions defining the density maximum of the fluid are

p(0) for —h <z <286/3
p(O)[ 148, f1(2)—kf3(z)] for 26/3<2z<28

p*(2)=1p(0)(1+B,Ty—kT}) for 26<z=<h —28
PO 1+B, f,(z)—kf3(z)] for h —28<z<h—28/3
p(0) for h —26/3<z=h ,
where
(=229, _25,3)
fiz)= % (z /3),
3T,

f2(2)=-4_»5—[_z +(h —26/3)],

and B, and k are fixed parameters.
From Eq. (13), we have
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{[a(t—14)/A]+6*7}32—0 for ty<t<t,
Ty a(t—t)+6/3 fort, <t<t,

x ()= 70 2/313/2 56

L1+ |2m 1——] ] —Trll——
A T T
7—560 fort>t;,

where

_ 27RK*uNY>Np2"?
h(R =871}
—7
=
A P 2/3
t1=t0+; ? ng,
_ T— 1260
tz—tl+ aT(I)/3 ’
so 12 10 17
t3°—12+—(2'n")2/3l 11 - [1—-—] } ,
T m

3/2

_ 3146 _16'3—1

}\.—-2— ‘7‘;0— RV =0.7307 .

As a consequence, the solutions for p(z,¢) and T (z,?) are

+
plz,t)=p(0)+ ¥ a,explinmz/h)explinx(1)],

n=-—o

By x[B} —4k[p(z,1)—p(0)]/p(0)]'/
= 2k b

where the coefficients are the results of straightforward
calculations, using Eq. (34).

It is also possible to calculate the functions V,(z,¢) and
p(z,¢) using Egs. (30) and (1).

For brevity, without reporting numerical calculations,
we notice that Eq. (50), when applied to water in a tem-
J

T(z,t)

2
dT aU, au,
—_—=V. — . -+

Pe; VAkVT)=pV-U+p 2 ax >

au, a9y,
+
a9z ay

where V- is the divergence operator, V is the gradient
operator, c¢ is the constant volume heat capacity, « is the
thermal conductivity, p is the hydrostatic pressure, U is
the velocity in the nucleus, u is the coefficient of viscosi-
ty, £ is the second viscosity, and p is the density of the
liquid.
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for t, <t <t,

perature range including 4°C, gives rise to a time-
dependent behavior of T with a functional form very
different from the initial condition (49), formed by linear
steps. The perturbed temperature distribution introduces
in the T(h /2,t) curve an inflection point due exclusively
to the density maximum, as observed experimentally.'-?

V. CONCLUSIONS AND PERSPECTIVES

This work has several potential applications since it
gives a solution to the problem of free convection in pure
water in the nonlinear region and in nonsteady conditions
in temperature ranges including the density maximum.
To reach this goal within the limits of our model of con-
vection, we rejected the simplifying hypothesis of a Bous-
sinesq fluid to obtain equations including the small tem-
perature coefficients of density. As a consequence, the
equations obtained with our model of convection can be
compared with Rahm’s theory® only outside the density
maximum region, but this comparison shall be carried
out in a planned future paper along with a thorough dis-
cussion of the differences and similarities of the two mod-
els. This treatment may now be applied to the case of
mixtures of water and heavy water subjected to convec-
tion under corresponding experimental conditions, in or-
der to test the hypothesis of ideal mixing. Moreover, we
expect from our approach a theoretical explanation of
observed structural asymmetries observed in quasisteady
water layers subjected to slow heating and cooling cycles
in the vicinity of 4°C.°

APPENDIX

The fundamental equations of hydrodynamics are as
follows. The Fourier equation is

]

au, ?

dz

au, au,
+
dy ox

oU, n aU,
oz dx

—(v-Uy }+§(V-U)2 ,

The Navier-Stokes equation is

%ZG—(I/p)Vp +VAU+(£/p+7/3)VV-U,
where G is the external force per unit mass and v is a ki-
nematic viscosity, v=u/p.
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The continuity equation is

. % _
v-(pU)+L =0

By choosing the z axis downwards and putting 7' ="T'(z,t)
and U=(0,0, —V,), these equations become Egs. (1)-(3).
The Navier-Stokes equation gives, for the components x
and y,

op 9
~_ :O’ =O ’
ox ay
ie.,p=plz1).
ACKNOWLEDGMENTS

This work has been partly supported by the Ministero
della Pubblica Istruzione and has been developed within
the Gruppo Nazionale Didattica della Fisica del Consi-
glio Nazionale delle Ricerche, Unita di Genova.

*Person to whom correspondence should be addressed. Present
address: Université Libre de Bruxelles, Service de Chimie
Physique II, Campus Plaine C.P. 231, 1050 Bruxelles, Bel-
gium.

Ic. Codegone, Accad. Sci. Torino Atti. 75, 167 (1939).

2G. Sonnino, thesis, University of Genoa, 1985.

3H. Mouton and H. De Roeck, Int. J. Heat Mass Transfer 20,
627 (1977).

4M. De Paz, M. Pilo, and G. Sonnino, Int. J. Heat Mass

Transfer 30, 289 (1987).

L. Rahm, Math. Model. 6, 19 (1985).

6J. M. Hyun, Int. J. Heat Mass Transfer 29, 499 (1986).

M. De Paz, M. Pilo, and G. Puppo, Am. J. Phys. 52, 168
(1984).

8A. N. Thiconov and A. A. Samarskij, Equazioni della Fisica
Matematica (Mir, Moscow, 1981).

9M. A. Azouni, Geophys. Astrophys. Fluid Dyn. 24, 137 (1983).



