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Coherent intermittency in the resonant fluorescence of a multilevel atom
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Time correlations in the fluorescence of a multilevel atom are studied in terms of the quantum
statistics which describe the emission of the next photon. The next photon equations are substan-

tially simpler than the a photon equations (or so-called optical Bloch equations) yet they contain
phase information lost in the averaging procedure that yields the a photon equations. Employing
the next photon equations we present a quantum formalism in which the time development of the
wave function of the atom is dramatically modified by the observation of a dark period. This "col-
lapse" of the quantum state due to measurements with a null result (such as the failure to record
events in a photodetector) is the cause of intermittent atomic fluorescence even when the exciting
field is arbitrarily coherent. The next photon and a photon formalisms are contrasted and applied
to photon antibunching. The phenomenon of photon bunching which characterizes sideband corre-
lations is also calculated. Observable effects particular to the coherent intermittency are em-

phasized.

I. INTRODUCTION AND SUMMARY

An atom driven by an external source of radiation will
emit fluorescent photons with frequencies determined by
its energy levels. In this paper we develop the theory of
the correlations in time of these scattered photons. The
correlations are determined by two fundamentally
different types of measurements that can be made on the
illuminated atom. First, one can observe the actual scat-
tered photon. Second, one can make a null measurement;
that is, a "switched-on" photodetector can observe the
absence of scattered photons for some period of time.
The first type of measurement is Markovian and destroys
past history in the atomic wave function, whereas the
second (or null-type) measurement leads to a non-
Markovian change that can preserve phase information.
In a multilevel atom with widely disparate lifetimes the
ability to carry out null measurements leads to the possi-
bility of observing intermittent periods of darkness in the
fluorescence, during which the atomic state wave func-
tion is coherent.

To develop these ideas we consider the arrangement
proposed by Dehrnelt' and shown here in Fig. 1. In this
so-called "V" system ~0) is the atomic ground state and
~1) and ~2) are excited states. The lifetime of level ~1) is
a typical atomic lifetime of about 10 s ( —1/Pi ),
whereas the lifetime of ~2) is very long, and can be on the
order of 1 s ( —I/Pz). In the Dehmelt "shelving" scheme
the presence of the "forbidden" transition ~2)~~0)
would aff'ect the fluorescence from the ~1)~~0) transi-
tion when both transitions are driven at resonance by
external electric fields E, and E2. That is, with E2=0 but
Ei very large photons will be emitted at a rate —,'pt from
the ~1)~~0) transition. If, however, Ez is also turned
on, the atom might at times be "shelved" in ~2) so that
the fluorescence is turned off for a period of time given
approximately by 1/P2. This intermittency and the re-
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FIG. 1. V system or three-level atom where all transitions
take place between the excited states 1), ~2), and the ground
state ~0). The externally imposed fields E, and E, are approxi-
mately tuned to the strong ~0)- 1 ) and "forbidden" (~0)- 2))
transitions. The Rabi flopping frequencies are designated by
Qt o and 02 o. The spontaneous decay rates are /3, and P, .

suiting telegraph [see Fig. 2(a)] in the strong transition
emission of a single atom should be suKciently intense to
be seen with the unaided eye. According to Dehmelt this
scheme should provide a means whereby the single quan-
tum jumps ~0)~~2) can be detected with great certainty,
as the strong emission is effectively an amplifier for the
shelving.

From a strictly quantum-mechanical point of view one
is tempted to wonder whether the picture of the atom
shelved into ~2) is a bit too classical. For coherent il-
lumination, should not the atom in fact be in a superposi-
tion of ~0), ~1), ~2), so that there is at all times a strong
probability for emission from

~
I ) to ~0)? From this

point of view photons from the ~2)-~0) transition could
occasionally appear but intermittency would be absent,
and the emission would be characterized by Fig. 2(b).

We will show that for steady, arbitrarily coherent il-
lumination intermittency is required yet during the dark
periods the atom is indeed in a coherent superposition of
~0 ), ~

1 ), and
~
2 ) . The essential manifestation of this su-

perposition is that, as indicated in Fig. 2(a), a large pro-
portion of the dark periods must end with the emission of
a ~1)~~0) photon as opposed to a ~2) ~~0) photon.
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(bj

where H is Hermitian and, in the rotating-wave approxi-
mation (RWA)

ib t
H =H = —AQ* e10 01 1,0

and

fime (1.5)

FICx. 2. Examples of fluorescence as a function of time for
the V system. Each straight line represents many ( —10 ) scat-
tered photons from the ~1)-~0) transition, whereas each wavy
line represents a single scattered photon from the ~2)-~0) tran-
sition. The unitary interpretation of a null measurement yields
(b) (i.e., no intermittency). The interpretation of a null measure-
ment as collapsing the wave function of atoms plus field into the
state with no outgoing scattered photons yields (a) (i.e., the
quantum telegraph). Note that some dark periods end with the
emission of a ~1)-~0) photon and not a ~2)-~0) photon. This is
an indication of the coherence of the V system dark periods.

A11 other elements of H are zero, and the Rabi flopping
frequency is

0, 0=P, 0E, /2A, (1.6)

where p, 0 are the dipole transition matrix elements be-
tween the ground state and the excited states. For the V
system we have taken p, 2=0.

For this closed three-level system
~ Cp ~

+
~ C, ~

+
~ C2 ~

= 1. Given that the atom was in the ground state
at t =0 the amplitudes to be in

~
1 &, ~2 & at time t are, to

leading order in ~Q2 p~ /~A, p~ (( I,

C, (t)= —,'[exp(i~f1, p t)cos( Az p~t/&2)
Indeed, if I is the percentage of dark periods which ends
with the emission of a strong transition photon, then the
percentage of time pD that the V system fluorescence is
dark is given by (see Sec. VI)

—exp( i fl, p—~t)],

C2(t)= i sin(~02p~tl/2)
v'2 .

(1.7)

r
pD

E=E,cos(cp, —op+c5, ) +tEpcos(cpp cop 5+)t2 (1.2)

The wave function of the atom can therefore be written
as

j=0
(1.3)

Schrodinger's equation for the atom is

in the limit where Ei is so large that the induced transi-
tion rate (or so-called Rabi flopping frequency) ~O, p~ is
greater than P, . For steady coherent illumination the in-
termittency vanishes in the limit where all dark periods
end with a ~2& ~ ~0& emission. Thus the dark period are
not due to the absorption of a photon from the field E2
that is tuned to the forbidden transition. Instead, during
a dark period, the atom is in a time-dependent superposi-
tion that does not radiate. If additional forbidden transi-
tions are available (say, to a level ~3 & ) then the observa-
tion of a dark period can put the atom into a long-term
slowly changing superposition of

~
2 & and

~
3 &. In view of

these possibilities we develop the theory of resonance
fluorescence in a general multilevel atom. Detailed corn-
parisons of this theory with experimental observations
are contained in a separate paper.

To motivate the role of null observations in the
coherent intermittency, consider first the simplified prob-
lem of the unitary development of a three-level system
driven by an electric field of the form

&2,0+ ' [cos(~02 p~t/&2) —exp( 2i ~II, p~t)], —
1,0

(1.8)

where we have taken b, 2
=

~ 0, p~ and b, , =0.
For the closed system (1.4) the atom returns to the

ground state by clocklike induced oscillations determined
by 0, p and Ozp. When an actual atom is in level 1& or
~2& there is also a probability per unit time of spontane-
ously emitting a photon and returning to the ground
state. If the process of driven time development and
emission are separated then the chance of seeing a dark
period is incredibly small. Specifically, if between photon
observations the atom is regarded as developing accord-
ing to (1.4), (1.7) and (1.8) with the expected rate of
strong and forbidden emission given by P|~C&~ and
P2~C2~, then the probability that a dark period longer
than T will commence after the detection of a photon is

W( T) =exp( —P&T/2) .

In this picture the observation of a photon resets the
atom to the ground state so that in (1.7) and (1.8) the
time t is always measured from the previous emission.
The probability of a strong emission between t and t +dt
is then about (p, /2)dt because the probability to be in
~1& quickly builds up to approximately —,'. Even though
there are p& attempts or resets per second the probability
of seeing a dark period begin in the time T is

P& T exp( —
P& T/2),

dc;
iA = g H, C

0
(1.4)

which is still fantastically small for, say, p&T =107. So if
the atom is interpreted as being in a superposition (1.3)
during the radiationless periods between photon observa-
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tions, the fiuorescence would be described by Fig. 2(b).
Including the possibility that the wave function of

atom plus field can be modified through the observation
of no scattered photons yields a probability of darkness
tremendously greater than that given by (1.9). The resul-
tant dark time is determined by (1.1) and the value of I
calculated in Sec. VI as

Al.")(0)= ~' f n I & & f n ),j~ . (1.16)

In Sec. II the Heisenberg equations for AIj" I are
developed and the current J and scattered electric field
E(r, t) are found in terms of A;:

(1.10)
J(t) =—g (cp, —cp )p, A, (t),1

l,J
(1.17)

The prediction that coherent illumination would in
fact lead to a telegraph has apparently been verified by
experiment. ' ' Of course no experiments have used a
field E2 with a bandwidth small compared to p2. So it is
still possible for a strict phenomenologist to question
whether such a futuristic source would eliminate the in-
termittency. As the intermittency is a fundamentally
coherent phenomenon, we claim that an arbitrarily
coherent E field will still yield this effect.

Restating the key issue we note that in the period be-
tween photon detections no energy is scattered by the
driven atom. If such a period of observed null emission is
interpreted as indicating that the system is developing in
a unitary fashion (1.4), then the distribution (1.9) will pre-
vail and there will be no intermittency. Instead, our for-
mulation of orthodox quantum mechanics will interpret
such a null measurement as "collapsing" the wave func-
tion of atom plus field into a state of no scattered pho-
tons.

In order to apply this interpretation of null measure-
ment we introduce the wave function of atom plus scat-
tered field

E(r,t)=, g (~p, —tpj)'
87TEpC

(p,, r)r
r3

XA lJ
C

(1.18)

p(t) =
i,j, I n}, I

n'}
p (.((. (

)& f"'I j~ . (1.19)

In Sec. III we show that there are two key situations in
which the equations of motion for the reduced atomic
density matrix are closed. These two cases are

and

cr(0)= g & fn j ~p(0)~ fn I )
In}

(1.20)

where t ~ r/c. Since all measurements of the photon field
deal with various correlations of E it is evident that the
equations of motion for A,("( permit the determination of
all measurable parameters. Comparison of (1.17) and
(1.14) shows that Hz is a reasonable model Hamiltonian.

The general state of atom plus scattered field is de-
scribed by the general density matrix

H Ho+ Hr

with

(1.12)

where f n I =nk, nk, . . . is the number of scattered pho-
1 2

tons in each of the outgoing states labeled by wave num-
bers k;. Following Kimble and Mandel, and Mollow, '

the model Hamiltonian for an atom coupled to the elec-
tromagnetic field is taken as

op(0)=& foflp(0)Iform &( foI && foII) .

In view of (1.19), and (1.15) and (1.16),

o(t)= g p,, (t)A,,(0),
l, J

op(t)= g p; (t)A; (0),

where

(1.21)

(1.22)

(1.23)

H =—' e + 8 d r+ AcoA;
1

Pp t

(1.13) pij (t) Qpij (n([n)(t)
In}

p;, (t) =p;,pp(t) .

(1.24)

(1.25)

~t= ——g (Pl; —tP )P; [ A (O, t)Aj(t)
l, J

+A,, (t) A+(O, t)] . (1.14)

Here A and A+ are the negative and positive frequen-
cy components of the vector potential A, and

In the first case the atomic density matrix (1.24) is the
sum over all possible numbers of scattered photons and
the resulting equations are the so-called optical Bloch
equations. " For the V system they are derived in Sec. III
jn the RWA as

(1.15)
dp»

plpi l l i pppi l Al pplp (1.26)

where
dP22

p2P22+ l 02, ppp2 l 02,pp2p ~
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d 01 = —(1~1+—,
' p»P01+1&1,o(P11

—Pm)+'&2, ~»

02 (1~2+ 2P2)P02+1+2, 0(P22 Poo)+1+1,0P12

(1.28)

(1.29)

emitted photons the C, 0(t) are probability amplitudes. In
view of (1.11) they are now in fact the amplitudes C;jo)(t)
that at time t the atom will be in level ~i ) and that no
photons will have been emitted between some reference
time and time t. Similar to the closed system described
by (1.4) the equations of motion for the C; 0 are Hamil-
tonian, but in sharp contrast the Hamiltonian for the C, 0
is not Hermitian. Thus the quantity

12 = —(i b, , +i b,2+ ,'P, —+—,'P2)P, 2+iII, QP02
W(t)= g C, o(r)~2 (1.38)

~2, 0P10 ~ (1.30)

Plp1 1 +P2P22+ +1 QP10 +1 OP01+ +2,0P20

l Q2 OP02 ) (1.31)

where

pij pcs ~

Pl 0=Ploexp['(Qli 010+~1)&]

P20 P20e P[l (~2 ~0+ ~2)r]

(1.32)

(1.33)

In the case under consideration p, , (t) is the probability
that the atom is in state ~i ) independent of the state of
the scattered field. In addition to induced transitions
these equations allow for the return of the atom to the
ground state through spontaneous decay, as evidenced by
the terms +P,p» and +P2p22 in (1.31). From the solu-
tion to these equations p,pll(t) and p2P22(t) yield the
probability per second that a

~

1 )~ ~0 ) or
~
2 )~ ~0 ) pho-

ton will be emitted at time t.
In contrast to the a photon equations (1.26)—(1.31) the

equation of motion for p; (t) [the second case, Eq. (1.25)]
yields the probability distribution for the next photon. In
Sec. III we find that the equation of motion for p; fac-
tors, so that

0
Pij

—Ci, oCJ o

is not conserved. Furthermore, it is the probability that
the next photon will be emitted after time t. An intuitive
yet entirely accurate route to the next photon equations
from the a photon equations is provided by dropping the
regeneration term p,p»+p2P22 in (1.31). The resultant
equations so obtained factor directly into (1.34)—(1.36).
The regeneration terms correspond to an increase in the
probability for the atom to be in the ground state as a re-
sult of spontaneous decay. As these terms represent
effects which contribute to the C;I„) for In I&0, they do
not contribute to the dynamics of the darkness ampli-
tudes C, 0.

Another route to the equations for C;0 comes from
reasoning associated with ofF'-equilibrium linear-response
theory. From this approach we note that quantum
theory requires the equations for C;0 be linear first-order
differential equations. Use of the retarded potential re-
quires that the variables C, o form a complete set and that
dW/dt be a negative definite quadratic form. The most
general set of equations consistent with these restrictions
has the form (1.34)—(1.36) when only the leading-order
secularities are retained (the RWA).

From W(t) the probability distribution of next photons
can be directly obtained. The probability that the next
photon is recorded between t and t +dt, provided that
the atom was in ~0) at t =0, is

D (r)dt = (d W/dt)dr—
and = —[(P, iC, 0(t)i +P2iC20(t)i )]dr . (1.39)

dC2
=(ib, 2

—
—,'P2)c2+i 02 oco, (1.34)

dc
=(ib, ,

—
—,'P, )c, +if', oco, (1.35)

dC = l 01 0C1 + l Q2 PC2 (1.36)

where

c; =C; oexp[i (co; + b, , )t] (1.37)

and 60=0. Equations (1.34)—(1.36), for the next photon
amplitudes, were first presented in the pioneering work of
Cohen-Tannoudji and Dalibard. ' The factorization of
the density matrix indicates that for the case of zero

Thus a solution of (1.34)—(1.36) yields the statistics of
the time between photons. These equations are much
simpler than the a photon equations because they have
three eigenvalues rather than eight eigenvalues. Yet
these coherent next photon equations contain informa-
tion lost in the incoherent averaging procedure that
yields the optical Bloch equations.

In Sec. V the next photon and a photon approaches are
compared as regards the long-studied ' problem of
two-level resonance fluorescence. The spectral intensities
were first derived by Kimble and Mandel and Mollow. '

The antibunching takes a simple form when described in
terms of the next photon.

In Sec. VI the dark period statistics of the V system is
calculated in detail. That the time of darkness is a key
statistic has previously been emphasized. '

The solution to (1.34)—(1.36) which begins in the
ground state at t =0 is shown in Sec. VI to be
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—Pl t!4co=cos(IQ, olt)e ' +4
2

+2,0 Ilail pl10 (e i (1.40)

—p) t/4
c, =i sin(IQ, olt)e ' +4

2
&2,0 il, i) Ir —P t/4I, O

(
1 —e '), (1.41)

—
p&t

—p&t/4 ilQ& pitc2=2i (02 o/P, )(e ' —e ' )e (1.42)

where we have taken 6= IQ& ol, and in each independent
exponent we have kept only the leading terms in

IO2 ol//3&. The long-time scale for next photon emission
is determined by

Pl Ii(t +6t) )4' t+6t
TIP

where

(1.48)

2ln, , l'
pt ———,

' p2+ (1.43)

which is a key telegraph inequality.
After the reset of the atom to the ground state the

probability that there will be a dark period longer than t

(where t ))I/P, ) follows from (1.38):

(1.45)

A comparison of this result with the corresponding result
(1.9), which follows from the unitary interpretation of
darkness, indicates that the tnodification of I+) due to
null measurements tremendously enhances the probabili-
ty of periods of darkness. In our picture the measure-
ment of a period of time during which no photons are
recorded changes our information about the system and
thus the wave function. This null measurement increases
the probability of successive periods of darkness. In ad-
dition to the failure of the photodetector to observe
fluorescence events, the collapse of I%') also requires a
measurement determining that the laser is in fact turned
on. The measurement of darkness with the laser off will
obviously not lead to a change of the wave function of the
ground-state atom.

The projection operator which effects the collapse of
the wave function due to null Auorescence is

P= g li, o)(o, il . (1.46)

If no scattered photons are observed for a time t after a
reset to the ground state, the collapsed wave function at
time t is then

(1.47)

where IV(0)) = IO, O) and where TrP has been included
for normalization. If at time t the atom plus field is in a
state I+(t)) and no scattered photons are observed be-
tween t and t +6t, the state of the system at time t +5t is

When the strong transition is saturated IH,
& Ol ~/3i.

For this case the wide separation of time scales, Pi «P, ,

occurs only if

(1.44)

P= [exp(i06t /fi)](I —P), (1.49)

where I is the identity. The operator I —P projects out
the states with nonzero scattered photons. The state of
the system at time t +At that is created by the null mea-
surements described by P still depends upon its state at
the earlier time t. The observation of darkness is thus a
non-Markovian observation.

Comparing (1.42) with (1.41) we see that the critical
collapse time 1; for which the observation of darkness
causes lc~ I

) Ic, I
is given by

T, =(4/P, )ln(P, /2 II2 ol) . (1.50)

Hence when the emission of about 21n(/3, /2IAz o ) pho-
tons is "missed" the atom has a substantial probability to
be in I2). The weak (logarithmic) decoupling of the for-
bidden transition indicated by (1.50) suggests that isolat-
ed systems are difficult to achieve. This eff'ect may pro-
vide a source of low-frequency noise.

During the period of darkness the V system has
nonzero values of c0 and c &, so that the atom is indeed in

a coherent superposition. From (1.39) one calculates that
the probability of a dark period ending with an emission
from 1)~ lo), as opposed to l2) ~ lo), is

(1.51)

Figure 3 shows the probability distribution that after a
reset the next photon will be emitted at time t with fre-
quency co, —co0.

The coherence of the V system intermittency can be
contrasted with the incoherent telegraph generated by
the single laser optical pumping arrangement shown in
Fig. 4. If the lifetime of level I2) in this arrangement is
long compared to the lifetime of level

I
1 ), then the

branching transition 1)~ I2) can lead to a cessation of
the fluorescence in the Il )- 0) transition. In this case,
however, the shelving in level I2) and hence the dark
period is always preceded by the irreversible (incoherent)
emission of a I 1 ) ~ I2) photon. Also these dark periods
always terminate with the emission of a I2) ~ IO) pho-
ton. This arrangement was discussed by Javanainen'
from the point of view of the a photon equations.

Unlike the observation of a dark period the recording
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time, say, t =0)

~t, [n„],V(x, O) &
—= lt &

I [nk] & IV(x, O) &,

where

(2.2)

A+(x, o) = g ake'"'",
k

A (x,o)= g az e
k

V(x, t)=0, (2.3)

~V(x, O) & . (2.4)

so that the Ak are to be interpreted as the number of pho-
t

tons with momentum k, in the states orthogonal to the
coherent EM state

In this representation a, a are the usual lowering and
raising operating with

The state of the atom plus scattered field is described by
the operators

gS'"=m'g ~V(x, O) & . (2.5)

In this way the EM field has been decomposed into a
"quantized" field A (describing the scattered photons)
and a classical coherent field Af (describing the laser) so
that

Thus the complete EM Hilbert space can be written as
the direct product

A„") = lt, [ nt, I & & [ ng j,jl
which obey the equal-time relations

A,{,")Aj",')=S,„AI,") for [ n]=[ n'],
so that

[A(",&It']=&„A(,")—5 A(,") for [nI=[n {

=0 for [n]~[n']

(2.10)

(2. 1 1)

A(x, t)= A (x, t)+ Af(x, t), (2.6) and

where

Af=O. (2.7)

The free-field operator can be separated into its positive
and negative frequency parts [positive frequency means
exp( icot) wi—th co) 0],

Af=Af +Af (2.8)

The connection between V and A is provided by the rela-
tions

Af+(x, t)
~ [nj, ),V(x, o) & =-V(x, t)

~ [nt,. ] V(x, o) &,

(2.9)

& V(x, o), [ni,. ] ~ Af (x, t) =
& V(x, o), [n& ] ~

V*(x, t) .

A =A++A

where

We will interpret the nk as the set of occupation numbers
for the field A . So from here on we drop the tilde su-
perscript from n in (2.2). The commutation relations for
the electromagnetic field can be applied to the Fourier
components of A which in turn is decomposed into pos-
itive and negative frequencies

A;, = g AJ,")=l~ &&jfeI,
I n~ I

where I is the identity operator on & . The interaction
Hamiltonian (1.14) is

Ht = ——g (co; —co )p,j [ A (O, t)A~)")(t)
I nk Ii,j

+AI")(t) A+(O, t)], (2.12)

where A, A+ are the negative and positive frequency
contributions to A where

A=A +A (2.13)

and Hl has been v ritten in time-ordered form.
The time development of any operator (including its

dependence on the coherent state) is determined by the
commutator with H provided that the explicit time
dependence, of H, and the decomposition (2.6) can be
neglected. For fixed laser illumination this is the case,
but if the amplitude or frequency of the laser is varied an
explicit time dependence will appear. When these varia-
tions are slow compared to co, —co the adiabatic approxi-
mation is valid and the commutator of an operator with
II still yields its equation of motion. For short pulses of
duration bt —1/(co; —co ) the separation (2.6) is not val-
id.

The Heisenberg equations for A,J follow from (1.12)
and (2.12):

A jI)(t)=i(cok —co, )AI,t)(t)+ g (co, co) )p; A (—O, t)A,,AI,"t) — g (co; coj )p; Aj"t) A (O,—t)A,

2A g (co; —coj )pJAI t )A;. A+(O, t)+ g (co; co, )p,"A;, A+(—O, t)AI t
) .

l, J l, J

The transverse EM current

J =J —b. 'V(V.J)

(2.14)

(2. 15)
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is the source of the scattered field

A=J (2.16)

Following Ref. 9, the total current is

J=—g (to; —co. )P;.A;
1

l, J

From (2.15)—(2.17) one can obtain A(0, t) in terms of A, . :

(2.17)

A (O, t)= g (to; —to ) P; A; + g (co; —toj)P;j.A;j + Af (O, t), (2.18)

which is valid for t & 0 (M is a parameter related to the Lamb shift). Proper time ordering of the equations of motion
(2.14) is most effectively carried out in terms of the N photon operators

InI

nk=N .
(2.19)

These operators obey the relation

A+A. =A. 'A+(1 —5 ) .
q ij ij q N, O

Substitution of (2.18) and (2.20) into (2.14) yields

(2.20)

Akl(t)=ltOkAkl(t)+ —,'a g (CO;
—ink)P;k(to„tO, ) P„—,.Anl(t)+ —g (tO; Olk)P;k(tOn tO;)P«. „l( )

n~i n~i

g (co, tok)P;—k Af (t)A;l(t) — g (ml —
co&)Plj Af (t)Akj(t)

i '" J

(~l ~j )Plj Pnk(~n &k ) Anj '(t)(1 5NQ)—
j,n ~k

(col —to )pl y, „k(to„—teak )A„'(t)(1—5N o)+H. c.(k~1),
j,n~k

where H.c. denotes the Hermitian conjugate, k~1 indicates the interchange of k and I indices, and

a ' = 12m'@pc

b '=12m'ape AM .

Equation (2.21) can be cast into the form

N l
A kl

=—g (HkjAjNl
—

Ag&Hl& )+(1—
5NO) g LklupAap +H.c.(k~1)

J P, a~ k

(2.21)

(2.22)

where

Hkj =~k5kj —2ifia g (cg, —O—lk)(CO;
COj

) y, ;k
—
Pj, + , bA g (CO;

—t—Ok)(toj )@to;
—
ykj,

—, i (coj —
Cuk )P)—k (V+V )

and

a
kluP (~l ~P)(~a ~k ) I 'IP I ak Tl (~l ~P)(~u ~k )I IP I ak2

Introduction of the slowly varying fields

A;j (t)= Af (t)e ' ', i &j

A, (t) = Af (t)e

ANj(t)=AN(t)e
' "' (2.23)
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(where co; have been ordered so that i (junco, (c0 ) enables one to transform the Heisenberg equations (2.21) into the
form

Akl(r) p y ~k'A kl(r) y bk'A kl(r)+ X (~' ~k )P'k +ki(r)A I'
i &k 2,. &k 2A i&k

g (col —c0;))M), . A;i (t)A k, + ,'5kl—ga,kA';; "(t)(1—5)v0)
i ) I i)k

+ 5kl
—g bk; A', ; ')(t)(1 —

5)v 0)+H. c.(k~1),
i)k

(2.24}

where

upi p l(c0i

b =by p (c0 —co )
(2.25)

Effects due to degeneracy have been neglected. Also
neglected are oscillations at optical frequencies. This is
generally referred to as the rotating-wave approximation.
The procedure which leads to (2.24) is also called the
two-time-scales approximation. Corrections to quantities
calculated in the RWA are of the order

which at t =0 is given by

p(0) =
ij, I n I, I

n'I
~i, I n } )p; („)(„}(0)(t n'I, j (3.1)

Pij g Ptj ( n ) ) n }

InI

(3.2)

A reduced density matrix p,- can be used to describe the
product of atomic state amplitudes subject to some
specified condition for the scattered EM field. There are
two situations in which the equations of motion for p;
are closed:

OI

p2~ 2 y~2g2

(teak; /c0)',

(2.26)

(O)
PIJ PlJOO PlJ (3.3)

where F. is the externally imposed electric field, p a typi-
cal transition matrix element, and co the smallest optical
transition frequency. These terms are the ratio of Rabi
flopping frequency to the optical frequency and the ratio
of inverse lifetime to the optical frequency.

Corrections to (2.16) which are proportional to tjJ/Bt
and are therefore non-Markovian should appear in a
more complete evaluation of this model system (2.12). '

In the two-timing approximation used here these correc-
tions are again down by the factor (2.26) and they are
therefore neglected.

The A, describe every observable for an atom interact-
ing with the EM field. In particular, (2.18) yields an ex-
pression for the EM field scattered in a direction different
from the laser:

g P;,P,-k &f (r)p;k
J

(3.4)

applies for all choices of the function f (r) In case (3..3)
the atomic quantum dynamics is restricted by the condi-
tion that there are no outgoing (scattered) photons
(N=0), other than the coherent laser state. For this
quantum radiationless situation there does exist a func-
tion f such that

In case (3.2) p," includes a sum over all possible numbers
of scattered photons. The equations of motion for p;
given by (3.2) are the so-called optical Bloch equations.
As all EM states are mixed together these equations are
incoherent. A property of this incoherence is that the in-
equality

E( r, t ) = g ( co; —co, )
(p,, r)r

r

(0) (0) f (r) (0)

J

(3.5)

r
XA t ——

IJ
where t ~ —. (2.27)

C

III. CLOSED EQUATIONS
FOR THE REDUCED ATOMIC DENSITY MATRIX:

THE INCOHERENT OPTICAL BLOCH EQUATIONS
VERSUS THE COHERENT NEXT PHOTON DYNAMICS

The atom plus scattered field [in an imposed coherent
state V(x, p)] is described by the general density matrix

From various moments of E one can form the intensity
(photon number) as we11 as a11 quantities measured by a
photodetector. The various frequency components of E
correspond to the various photons emitted by the mul-
tilevel atom.

( r )
—iHt lfi

( p )
iHt le

A[n}(r) iHtlFiA(n}(P)~ —iHtlfi
lJ lJ

(3.6)

The relationship of A,- to p follows from the statistical
average:

(Aj l(t) ) =Trp(0}AI" }(r)

=Trp( t)AJ" } (0)

=(In },j~p(r)~i, In } ) . (3.7)

so that coherence is maintained.
The time development of the reduced density matrices

can be found in terms of the total density matrix or the
operators AI") which obey
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p; (t)= g (A;")(t)) (p)

= (A /(t) ) (o)

= g ( jn ],iIP(t)Ij, (n j ),
(n)

(3.8)

whereas the reduced density matrix described by (3.3) is

p';,"(t)=(o ilp(t)IJ 0) =(A" (t)) (o) (3.9)

Thus (A,j"}(t))z(o) is the matrix element of the density
matrix p(t) [evolving from an initial condition p(0)] be-
tween the states ( ( n ],jI and Ii, ( n J ). The equations of
motion for p; therefore follow from (2.14). The trace in
(3.7} is over ( nk ) for the fixed coherent state.

The reduced density matrix corresponding to (3.2) can
be written as

to obtain the closed equation

1

X (
/j Pkj HkjPj/ }

dt

+ X (~k/. /3P/3. +L/'k gp. /3) .
P, a) k

(3.18)

Since all photon occupations are mixed (3.18) does not al-
low the decomposition (3.13) and the pk/ determined by
(3.18) obey the inequality (3.4). In fact, for an n-level sys-
tem (3.18} yields n —1 independent linear equations,
whereas (3.12) involves only n such equations. When
N =0 the function f (t) in (3.5) is found to be
f =g. IC (t)I . This expression depends on the initial
condition.

The optical Bloch equations provide for the conserva-
tion of probability of the atomic levels or

The radiationless reduced density matrix (3.9) is related
to the incoherent matrix (3.8) by a projection g p;;(t)=0 .d

dt
(3.19)

P:+ Ii, o) (o—,i I,

so thai

(3.10) Proof of (3.19) follows from the identity

~ aajk zPkj
a~j

(3.20)

p';. '(t) =TrPA), (0)p(t) . (3.1 1)

The closed equations which describe the dynamics of null
emission follow from (3.9) and (2.22) with N =0:

For the % =0 equations the probability of the atom
remaining radiationless in an excited state goes to zero as
t ~ ~. This fact is described by the inequality

(0) y (H e (0) ~ p(0)) (3.12) g p', ,"(t)= g C,'(t)
I

= —
—,
' g (Pk +P*k )Ck (t)C (t) (0 . (3.21)

Pk) —Ck C(*, (3.13)

where now

dCk
iA = QHk/ Cj . .

dt
(3.14}

The form of (3.12) immediately implies the factorization
property mentioned in Sec. I (from here on we drop the
subscript 0 from C, o}:

k,j
For the Bloch equations the probability p,-, that the atom
is in the ith level (independent of the state of the EM
field) eventually settles down to a steady-state value for
steady illumination.

For the null emission dynamics (3.12), C;(t) is the am-
plitude, where the atom will be in state i at time t and
where no photons will have been emitted between the ini-
tial time (say, t =0) and t. For the initial state we take

y Ic,'(o)I = 1 . (3.22)
In terms of the Rabi Bopping frequencies and spontane-
ous decay coefficients,

4

Qk (t}= (~k coj )yak. (V—+ V* ),kg 2g k g J

p/ J 0 y (CO/ COa)(Coj ~a) yak

/(vaja

a(j

(3.15)

(3.16)

the Hamiltonian matrix elements are

Mk =fugk5kj — fiPk —AQkj(t), —1
(3.17)

where the Lamb shift has been absorbed into &uk. The
terms in Pkj for k&j are Onsager cross terms arising
from spontaneous decay. They become especially impor-
tant in the case of degeneracy. The optical Bloch equa-
tions for the time development of p," given by (3.2) are
obtained by summing the expectation of (2.22) over all N

= —
—,
' g (Pk +P*k)Ck(t)C (t)dt,

k,j
(3.23)

where C, (t) is determined via the effective (but non-
Hermitian) Hamiltonian equation (3.14).

For a three-level system with p&2=0 the imposition of
the RWA and neglect of degeneracy yields (1.34)—(1.36)
and (1.26)—(1.31) from (3.14) and (3.18), respectively. In
this regard one sets pkk =pk and

Qko( t):AkoexP[ —i ( ~k —co„+b.k )t]

The key experimental observable is the scattered light.

The probability that the next photon is emitted between t
and t+dt is then

D(t)dt= — g IC,'(t)Idtd
dt
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The next photon equations yield, according to (3.23), the
probability of periods of darkness. The Bloch equations
yield the expected rate of photon emission which is pro-
portional to the expected intensity of Auorescence. When
degeneracy is neglected the average rate of photon emis-
sion by a given transition k ~j is

to the n-point Green's function

(E;, (t, ) E; J (t„)) (()) . (4.1)

According to (2.27) the E, ar.e proportional to the A, .
Thus we can set

(3.24) E= gE (4.2)

which is the probability that the atom is in the kth level
times the probability per second of spontaneous decay for
the transition in question [Pz ' is the contribution to Pkk
in (3.16) from the term a=j]. By mixing together all
photon occupation numbers the optical Bloch equations
(3.18) yield the probability of observing a photon,
whereas the null emission dynamics (3.14) yield the quan-
tum amplitudes for the next photon.

IV. MULTIPLE PHOTON MEASUREMENTS

A measurement which depends upon the state of the
scattered EM field at a succession of time is proportional

For i (j the frequency is positive. The contribution to
E+ therefore takes the form

E =gE~. (4.3)

The correlation function to observe a photon from the
j~i transition within dt& about t, as well as a photon
from the l ~k transition within dt2 about t2 is propor-
tional to the product of intensities from these transitions,
or

I~(k(t), tp )dtidt2 = ( AJ, (ti )A(k(t2 )Ak((t2 )A(J(t( ) )p(o)dt) dt2

=Tr[AJ(0)p(ti )Aj (0)A(k(tz ti)Ak((t2 tl )]dt, dt2

= «,)(t, ) &p(, )(ilA(((t, —t, ) li &«,«, . (4 4)

As before the trace is calculated for fixed coherent state V(x, O). In writing (4.4) it has been assumed that t2 & t, , j & i,
and 1 & k. The factorization apparent in (4.4) describes the atomic reset that accompanies the photon observation pro-
cess. ' According to (4.4) the probability of observing aj ~i photon (at t, ) and a 1 ~k photon (at t2) emitted from
the same atom is the product of (a) the probability of being in state j at time t, , and (b) the probability of being in state 1

at time t2 given that it was in state i at time t, . The transition of the atom from j~i at time t, resets the atom to state
i at this time. For a two-level system this means that the atom is in the ground state after the emission of a photon and
the past history is destroyed at least as regards the model system considered here.

Equation (4.4) is a special case of the more general Markovian factorization property of the multiple time scales
correlations. Consider again the general multiple time scale correlation [proportional to (4.1)]

(A, , (t, ) A, , (t„)),„,=Tr[A, , (t„t,)p(t, )—A, , (0)A, , (t, —t, ) . A, , (t„,—t, )]

=Tr[p(t„t, , t, )]Tr[p(t„t,—, t, )A, , (t, t, )
—A, ,—(t„, t, )], —

where

P(t„t, , t, ) =A, , (t„t,)—p(t, )A—, , (0)

(4.5)

(4.6)

and

p= p/Trp (4.7)

is the normalized "initial condition" from which (Ez . E„ i ) develops.
Correlations such as (4.5) describe multiphoton observations in the presence of a filter. Let F(co) characterize the rel-

ative extent to which the filter passes photons of frequency co. The filtered spectral intensity is

(EF(cu)), =(E (co, t))F(cu)= f (E (t)E+(t+r))e' 'drF(co) . (4.8)

The total rate at which filtered energy is radiated at time t is then given by

eoc f f (E~(co)),dcok ds=eoc f f (E (t, x)E+(t+r, x))F(r)drk. ds, (4.9)

where

F(t)= fF(co)e' 'den (4.10)
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and ds is an element of surface through which the radiation is fiowing in the outward direction k. So, in the presence of
filters the probability of seeing a photon from the j~i transition within dt, of t

&
and a photon from the l ~k transition

within dt2 of tz is proportional to

Ij(tk(t), tg)= f f (A j(t) )A(k(t2)Akt(tg)Ai~(t) ))p(P)F)(t) —t) )F2(t2 —t2)dt')dt2 (4. 1 1)

where I'],I'2 are the filtering functions applied to the separate transitions. The initial state from which the l ~k transi-
tion develops is determined from (4.6) and (4.7) as

pF (t) )=pF (t) )/TrpF (t) ), (4.12)

where

pF (t, )=f A,, (t' —t, )p(t, )A, (0)F, (t', t, )d—t', (4.13)

so that

Ij)k(t), t2)=TrpF (t) )Tr fp~ (t) )A)k(tq —t) )A k()t 2
—t) )Fq(tq —t2)dt2

T

= QTr f A, (t, )A,, (t', )p(0)F, (t', t, }d—t', f (ilA«(t, t, )A„,(t,'—t ))la—)F,(t,' t, )d—t,' .
a

(4.14)

(4.15)

In the presence of broadband detection F;(r)=5(r) and
Eq. (4.4) is recovered. Furthermore,

&ilA(, (t, —t, )li &

is zero for t2=t, and i&l Thu. s the rate of emission of
the second photon is suppressed for short times (anti-
bunching) unless the lower level of the first emission i
coincides with the upper level I of the second emission (a
cascade). Whereas broadband detection resets the atom
to the lower level, measurements which discriminate the
frequency yield reset atomic density matrices where a&i.
Thus the reset atom has a nonzero probability to be in an
excited level.

The expected rate of outAow of energy from the j~i
transition is

where

p(0) =p/Trp,

p=p( ~ )A,;(0),
p(~ )= g p; ( ~ )A,,(0),

(4.21)

(4.22)

=p;, ( ~ )pj;(r), (4.23)

where p;J(0() )=(Aj;( ~ )) are the steady-state solutions
to the optical Bloch equations (3.18). In the steady state
the two-time correlation of the electric field is therefore
proportional to

lim Ij,.(t, t+r)=Tr gp j(~)A;(0)Aj(r)t~ oo a

Qj;(t):—f e ocE{,;( xt) E;, ( xt)) (())k ds .

In view of (2.27) and (3.16), (4.16) becomes

Q" =p")ri(co —co;) rT[ A(t) ;A(t1) (p)0]

=P fi(co& co; )(A&—&(t) )z(0") .

(4.16)

(4.17) gp =1. (4.24}

where p, (r) is the solution of (3.18) subject to the initial
conditions p;;(0) = 1, p; (0)=p~" ( ~ ) /pj( ~ ), and p t)(0)
=0 for all other components. The matrix elements are
subject to the usual normalization

1,, (t, t+r) =Tr[p(0)A, , (t)A,, (t +r)] . (4.19)

The steady-state value of this correlation is obtained by
taking the t~ ~ state as the initial condition for p. In
this case (4.19) becomes

lim I, (t, t +r) =Trp Trp(0)Aj(r),
f~oo

(4.20)

Thus pj (t) which solves the optical Bloch equations
(3.18) determines the average rate of emission of photons
[viz. , (3.24)].

The unfiltered spectral intensity, which is the energy
per second radiated between co and co+dao for the j~i
transition, is

q,;(co)=roc f k dsf (E,;(x, t.) ,E( jtx+)r) (0)e' 'dr,
(4.18)

which is determined by the correlation

So, the spectral intensity of the j~i transition is propor-
tional to the Fourier transform of the solution, p;(r), of
the optical Bloch equations evolving from the initial con-
ditions (4.21) and (4.22). For r) 0 the p;(r) in (4.23) may
be calculated from the optical Bloch equations as written
in (3.18). However, for r (0 the p;(r) must be calculated
from the advanced optical Bloch equations where each
~kj is changed to —/3kj.

The physical density matrix p," [given by (3.2)] and the
intensities IJ)k(t„tz) must have the property of positivi-
ty. For example, p;. =p'; and p, -u, v*)0 for all vectors
v, . This positivity requirement, however, does not apply
to initial conditions such as (4.13) that determine the de-
velopment of conditional correlations such as (4.14).
Nevertheless, these correlations obey the Bloch equations
in each variable t; [with the external field in the coherent
state V(x, t)].
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i(co, +6, Itc;=C e ' ', i&0
l Ct)ptco=co

to yield
(4.25)F(t)=y coscozte

dc) =(i 6 —
—,'P)c, +i Qco,

dtso that

To evaluate the filtered intensities requires F(t) for the
given filter. A typical filter will pass light that is within a
bandwidth y of some frequency coF. In the time repre-
sentation this filter has an F(t) given by

(5.9)

(5.10}

(5.1 1)

F(co)=f F(t)e' 'dt

2 2

+
y +(co+coi;) y +(co—co~)

A broadband filter has F(t)=5(t), so that F(co) =1 every-
where. The narrow-band filter (4.25) has F(co)=1 only
for the range of values leo

—co+ l
« y.

V. CORRELATIONS IN PHOTON EMISSION
FROM A TWO-LEVEL ATOM

For a two-level system driven by an external field,
(3.14)—(3.17) yield the equation of motion for the ampli-
tude, C, (t), where the atom is in state i and where also no
photons have been emitted between some initial state and
time t:

dcp

dt
=i A'c (5.12)

(5.13)

The solution for the probability amplitudes which starts
out from co(0)= 1 is

co=[1/(i(.~
—

A, )](k+e —
A, e + ), (5.14)

c, =[in/(A+. —k ).](e + —e ) . (5.15)

The subscript 1 has now been dropped from p, 6, n, and
Q, == n; 0= n;0(0).

The general solution to these equations is determined
by the eigenvalues

x = —
—,'(-,'p —t a)+-,'(-,'p' —~' —4lnl' —ip~)'"

dCi
iR

dt

dCo
ifi =ftcooCO —fin*, o(t)C, .

dt

A'co, — fiP, C, —A'n—io(t)C0,
l

(5.1)

(5.2)
pic '(t) ldt, (5.16)

According to (4.4) the observation of a scattered photon
resets the atom to the ground state. Denote the reset
time by t =0. After this reset the probability that the
next photon is emitted between t and t +dt is

The rate at which the probability to be in the upper level
decays is p, , which is therefore the same as the Einstein
3 coefficient. Substantial oscillations in lC, l

occur only
when the external field is tuned su%ciently close to the
atomic transition frequency, co&

—coo. Thus we transform
(5.1) and (5.2) to the slow variables

so that the average time between photons is

f pic, (t)'lt dt =(tf ), (5.17)

which is proportional to the inverse of the intensity of
fluorescence. By direct integration

C, (t)=C, (t)e (5.3) (t )= p +slnl +45.
4plnl'

(5.18)

dt
= —

—,'p, c, +in, (t)co,

dCo =in,*(t)c, .

n, (t) = Qi+(t }e

and obtain in the RWA

(5.4)

(5.5)

(5.6)

I(&)
I(0)

p'+s nl'
p'+slnl'+«' (5.19)

This equation describes the variation in fluorescent inten-
sity as a function of A and A. For example, the ratio of
intensity at a detuning 6 to that at resonant excitation
(b.=0) is

COL
—

CO; COo+ +;
t

(5.7)

In this case equations with time-independent coefficients
can be obtained by setting

These equations describe situations where the rate of
change in intensity of the external field is slow compared
to co&

—coo. A case of particular interest occurs when the
laser frequency cuL is sinusoidally detuned from a given

I

transition(s) by an amount b.. . or I(n, } ln, l' (p'+sin„l') 6=0 .I(n„) ln»l' (p'+sin, l')
(5.20)

For ln, l
and ln„l much less than p the scattered intensi-

ties are in the ratio of the exciting intensities.
For resonant excitation

The intensity of external illumination is proportional to
lnl~. From (5.18) the ratio of fluorescent intensities at
two different values (n, , nii) of n, is, for resonant excita-
tion,

—i ice, —ceo+ 6, Ii„(t =, ,e (5.8)
c, (t)= —e ~'~ sin(lnlxt), (5.21)
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where in the underdamped case dPoi

dt
(ih+ —',p)po, +in (p~~ poo) (5.29)

x = 1— 1.
16lnl'

(5.22)
P 10 :(ih 2p)p, o in(p, l poo) (5.30)

The time which the atom takes to build up a significant
probability ( —1) to be in the excited state is —1/xlnl.
The probability of the next photon being emitted between
t and t +dt is, for short t,

In general, poo+p» =—p is a constant of the motion; so as
regards the physical density matrix it is therefore possible
to impose

plnl'r'dr . (5.23) Poo+P» =1 .

The fact that successive emissions from an atom are re-
pelled is referred to as antibunching. Observation of the
dependence of this phenomenon on the third power of t is
beyond current experimental capabilities.

For strong detuning b, &)p, lnl the eigenvalues are ap-
proximated by

= ——'P 1— +i A 1++= 2 Q2 Q2
(5.25)

Integrating (5.23) from 0 up till time t yields the number
of next photons to be emitted between 0 and t,

(5.24)

The slow-time scale has been introduced via

pri pii

I (Cgl
—COO+A)t

P io

Pekoe

—i (cu) —coo+ h)t
Poi =Po&e

In the steady state these equations yield

p„( ~ )=p lnl /(b, + —,'p +2lnl ),
—in*( —,'p —i b )

Poi(~)= ~'+-'p'+2lnl'

(5.31)

(5.32)

(5.33)

= —
—,'p

Q2

lnl'
Q2

P10( ) P01(

Comparing (5.32) with (5.18) yields

In this case there are two well-separated time scales
which determine the relaxation of the atom. The proba-
bility of being in the excited state t seconds after the
emission of the previous photon is to leading order

lc(t)l —= (e ~'+e ~ ' ' —2e ~' cosset) .
Q2

(5.27)
For very short times (b.t «1) the probability rate of the
next photon emission again follows (5.23). But for times
such that At —1, the probability for the case of strong de-
tuning only builds up to the small value lnl /b, . There
are two time scales that determine the emission of next
photons for strong detuning. These are a fast-time scale
of order 1/p and a long-time scale of order b, /plnl .
The ratio of next photons coming out after a long time to
next photons coming out on the fast-time scale is
b, /lnl ))1. So, if no emission is observed for a time
»1/p but «b, /lnl p it can be concluded that the
next photon will be of the slow variety. During the time
between photons the probability that the atom is in the
ground state is 1 —lnl /b, , which is very close to unity.
In view of the inefficiency of photodetection the observa-
tion of the null time between photons for a two-level
atom is impractical. However, competing transitions
make such observations possible in a three- or higher-
level atom.

The optical Bloch equations for a two-level atom fol-
low from (3.18). In the case of sinusoidal detuning (5.'7)

they become

pp))(~)=(rf ) (5.34)

op,, (r) =p,,(t) p,, ( ~ ) p,', e-"' -.

Substituting (5.35) into (5.28)—(5.30) yields

(5.35)

(~+p)pI i =' npo& 'n pro

(A, + ,'p+i b, )po, =—2in*p'„,

(A, + —,'P i b )p,o= 2i np„

(5.36)

(5.37)

(5.38)

The consistency condition for these equations is

(x+p)(x+-,'p+ia)(x+-,'p —is)+4lnl'(x+-, 'p) =0 .

(5.39)

For resonant tuning, b, =0, the roots of (5.39) are

A, , = —
—,'p,

+—'(16lnl' —-'p')'"
4 23

4

where if b, » ln l, p the roots are

(5.40)

Equation (5.34) relates a quantity determined by the opti-
cal Bloch equations to the first moment of the distribu-
tion function for next photons.

Equations (5.28)—(5.30) determine three eigenvalues
that characterize the approach to the steady state. In or-
der to evaluate these eigenvalues (X&, A2, A3) introduce the
deviation from the steady state:

dpi'
pp»+'npo& 'n prodt

(5.28)
2lnl'

A. = —P 1—
1 Q2

(5.41)
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2lnl''P— i—6 1+2 2 Q2

2lnl'
g4

(5.42)

20
X, =- —

—,'P+ a 1+

pno(0) =1

P11(0)=o=po1(o) .

(5.44)

g4

In this limit the eigenvalues for the optical Bloch equa-
tions are qualitatively difT'erent from the eigenvalues for
the next photon equation (5.25) and (5.26). In particular,
(5.41)—(5.43) do not have a long-time scale where
Re( —

A, ) «P.
The steady-state spectral intensity of the Auorescent

emission from the two-level atom is obtained by taking
the Fourier transform of p, o(r) subject to the initial con-
ditions [viz. , (4.23)]

p ln(0 ) =p 1 1 ( ~ ) /pn1 ( ~ )

That is, one must solve the Bloch equations (5.28)—(5.30)
for the p, o(r) that evolves from the initial state (5.44).
The steady-state "~" values are given by (5.32) and
(5.33) with p = 1; in particular,

P»(~)
po1( oo )

(5.45)

The solution to (5.28)—(5.30) for pio(r) takes the form

3

p, o(r) =p, o( ~ )e + g d e
cr= 1

(5.46)

where the d are determined by the initial conditions
(r=0) given by (5.44). Use of (5.46) in (4.18) and (4.19)
yields a steady-state spectral intensity qj, (co) that is pro-
portional to

(A21o(to) ):f Ty'[p(0)A1o(t)Ao1(t +r)]e dr

=p„,( )fp, (-)e""d r

d.Pn1(=P,o( ~ )po, ( ~ )2~6(ro toL )
——g +c.c.

, i (co —oi~)+A,
(5.47)

For the case of complete saturation (0 ))P, b, ), (5.47) becomes

1 @2+Q2 p/4
( A, n(to ) )=,— 2rr5(to —coL )+ +

4 @l-' (eo —
coL )'+g /4

3P/16 3P/16
(to —coi —2lfll)2+ —,', P (co —coL+2lIIl) + —,', P

(5.48)

+ P(III I/~)'
(co —cot —b. ) +f3 /4

p( lnl /s)'
( to —

coL + 15, ) +p /4
(5.49)

For the case of strong detuning in a strong field
b )& l0 l &)P, (5.47) become

set itself into a state described by a density matrix of an
incoherent state. Succeeding photons will evolve from
this state, and correlations in the time ordering of the fre-
quencies of successive photons appear. In particular, it is
more probable to observe a higher-frequency photon
(coL +b, ) followed by a lower-frequency photon (toL —b, )

than the reverse (for b, )0). Therefore a measurement of
the frequency autocorrelation of scattered photons pro-
vides an arrow to time. As the widths of the sideband
peaks is P the filters used for these measurements will
have widths 6co such that

For a two-level system with a characteristic frequency
co&

—~0, the external drive leads to the appearance of
sidebands described in various limits by (5.48) and (5.49).
At this leading order of the perturbation expansion there
are three peaks in the spectrum. For large detuning 6
these peaks can be well separated and the measurement
of a photon as well as an associated peak or frequency is
possible. In this case the observation of a photon is not
accompanied by a reset of the atom to its ground state.
Rather, the imposition of the filter causes the system to

I

P«5co«h .

The time between photons t2 —t i must satisfy

t, t, » I/5~o—

(5.50)

(5.51)

so as not to conAict with the frequency resolution of the
filter.

The joint rate for recording photons at t
&

and t2, in the
presence of filters, is given by (4.15). For the two-level
system it yields

I1o1o(t1,t2) —y f I„(r)F,(r)f (olA, o(t2 —t1)Ao1(t2 —t, )lt )F2(t2 —t2)dtqdr, (5.52)
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where, following (4.19),
I

I„(r)=Tr[p(0)A„(0)Ap, (r)] =I„(r)e
and we will have in mind that p(0) is the steady-state density matrix so that

A lt 4 A2t 4 13tI,p(t)=z +4z e ' +z e '+z e '

(5.53)

(5.54)

I&&(t)=—(1 —2z )z [—1+2z +2z e ' +(1—3z )e ' —z e ' ], (5.55)

where z—:
~
0

~
/b, && 1 and these results apply for t )0. For t &0 the corresponding equations are obtained by chang-

ing P to —P in (5.41)—(5.43). In (5.54) and (5.55) A, „A,2, A, 3 correspond to the sidebands at cor, mL+b, , ~z —b„respec-
tively. The terms which are independent of time correspond to elastic scattering at col .

When a broadband filter is used [F,(r) =5(r)] the frequency is not measured, so that a subsequent photon is emitted
from an atom starting off in the ground state [I» (0)=0]. In this case

I~p~p(t~, tz)=2nz f &OIA&p(tp t]) Ap&( rp r])lo&F, (tz —r, )dt, .

For a filter F, satisfying (5.50) the two-time intensity correlation for observing the first photon near coL +b, is

IIoIo(t&, tz) =2' f &OIA»(r, —t, )A»(r, —r, )IO&F,(r, —r, )dr,

+2m(A/b, )z f &O~A)o(t2 —t) )Ao)(t2 —t()~1&F2(t2 —tq)dt2

When the first photon is observed in sideband 3 (near ml —6) the two-point correlation is

I IoIo(t„t z) =2~z f &OlA&o(t2 r])Ap&(rp r])lo&F, (r, —t, )dr,

m2(0/L)z f & ~0 A& (ot, t) )Ao, (t',—t, )~1&F,—(t,' —rp)dt's

(5.56)

(5.57)

(5.58)

Comparison of (5.57) and (5.58) shows that the probability for the second photon being emitted from the 1~0 transi-
tion is diminished by a factor of z if the first photon was observed near cuL

—A.
The complete calculation of (5.56)—(5.58) requires an evaluation of the amplitudes

&OIA„(r, —r, )A„(r~ —r))l~&—=f exp[ —~'~~(rp r2)]

where

&OIAio(r2
&

)Aoi(rz 1)l~&=f

These amplitudes can be expressed in the form

Tr[p(0)A, o(t2 t, )Apl(tz —t, )]=Tr[p(tz —t, )A—|p(0)Ap&(rp)]

=po&(t& —
t& )&OIAol(r2)IO&+p&&(tz —

t~ ) &OI Apl(rz)l 1 &

(5.59)

(5.60)

where r2 —=t2 t2 and—for a=O in (5.59), p(0)=Aoo(0), whereas for a= 1 in (5.59), p(0)=A, o(0). The Bloch equations
yield p; (tz t, ). —

When a=O, p; (0)=5;p5.p and

2 2 1 2 l 2 2 2 l 2 3 2po&(t2
—t )= [—1+2z +2z e ' ' '+(1—3z )e ' ' ' —z e ' ' '],

p (r —t )=z +z e —z e —z e
A. (t —t ) A. (t —t ) A. (t~ —t )

For the case where a is equal to unity p, (0)=5, &5 p and the time development of the density matrix yields

(5.61)

(5.62)

(5.63)

(5.64)

When ~2 is greater than zero one similarly finds

&O~Ao, (rz)~0& =—[ —1+2z +2z e ' ' —z e ' '+(1—3z )e ' '], (5.65)

&O~A (rp|)~12& =(2z —8z )e ' '+z e '+(1 —2z +7z )e (5.66)
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I', ()',(i'(t, , ti}=4ir [z exp[ P(ti ——t, }]+z I . (5.67)

For times comparable to 1/P the term involving z dom-
inates but for very long times there of course remains a
steady-state contribution. In deriving (5.67) the averag-
ing over the 6 ' time scale was effected by retaining the
contribution involving exp[A, &(t2

—ti )]. Similarly the
rate of low-frequency photons followed by high-
frequency photons is

The finite separation 6 between filters of the first and
second photons leads to the appearance of terms in I&pip

that involve cos[b, (ti —t, )] and its harmonics. These
terms appear in p, (t2 —t, ) through the contributions
proportional to exp[f2(tz —t, )] and exp[X3(ti —

t& )].
Mathematically, these oscillatory terms also appear as a
result of the requirement that the integrations over t ', , t2
can no longer run from —~ to + ~. As measurements
are meaningful only on time scales large compared to
1/b. [see (5.50) and (5.50)] we avoid these algebraic
difficulties (arising from the incomplete convolutions con-
tributing to I,~i,o) by averaging over times (t2 —t, ) long
compared to 1/b, but short compared to 1/P. Then, as
regards the rate of high-frequency photons followed by
low-frequency photons one finds from (5.57), (5.60), and
(5.64),

i% = irico2 — Pip—i C2 —iriQi~( t )CD ——irip~, C, ,

(6.1)

i' = Aro, — fig—, C, —fiA, o(t)Co ——A'PiiCi,

dC()i' =%co()CD fifli()( t )Ci A'Qi(i( t )C2
dt

(6.2)

(6.3)

Except for the Onsager-type cross terms these equations
are identical to those presented by Cohen-Tannoudji and
Dalibard. ' The decay coefficients P, and Pz are short-
hand for P» and Pi2, and p, i=0.

If the slowly varying envelope functions are intro-
ducecl,

(6.4)

and the electric field is assumed to have components ap-
proximately tuned to the 0~1 as well as 0~2 transitions
then (6.1)—(6.3) become (in the RWA)

I i()', () =4' Iz +z exp[ P(t2 ti )]I (5.68)

it fails to exhibit the clear photon bunching characteristic
of the filtered measurement described by (5.67).

Not only is (5.68) substantially smaller than (5.67) but for
time scales t2 —t, , satisfying

dC2 = —
—,'PiCi+iQ~(t)C(i,

dt

dC, = —
—,'P, C, + iA, (t)C(i,

dt

dC()
+iQ;(t)C, +iQ i(t)C i.

(6.5)

(6.6)

(6.7)

VI. INTERMITTENCY IN FLUORESCENCE
IN A MULTILEVEL ATOM;

WAVE-FUNCTION COLI.APSE
DUE TO MEASUREMENTS WITH A NULL RESULT

For a two-level atom the periods between photons are
difficult to observe in a sensible fashion because of the in-
herent experimental inefficiency of the photodetectors.
However, in the V arrangement (Fig. 1) proposed by
Dehmelt the fluorescence from the strong transition can
be used as a meter for determining the period between
photons when the long-time scale of the forbidden transi-
tion dominates the motion. Since the strong transition
0~1 can spew out over 10 photons/sec a turnoff of this
signal can be a very sensitive (even classical) amplifier for
dark periods longer than about 10/P&.

Use of the strong fluorescence as a meter for determin-
ing when the system is in a state of null emission makes
the C, (t) directly observable. For the case of a three-level
atom Eqs. (3.14) and (3.17) again yield the time develop-
ment of the probability amplitude C, (t) that the atom
wi11 be in state i and that no photons wi11 have been emit-
ted between some reference time and t. For the V system
in the presence of the external field E(t) one is led to
equations of motion:

Equations (6.5)—(6.7) describe the response for quite
general imposed external fields. The Q, (t) should be
thought of as the envelope which modulates the resonant
component of E(t) for the i~O transition. If the laser
fields illuminating the two transitions are sinusoidally de-
tuned so that (5.7) and (5.8) apply then the equations for
c, (t), defined by (5.9), are given by (1.34)—(1.36). We note
that the quantum Onsager cross terms involving P2& and

Pi& drop out in the RWA when degeneracy is absent.
The time development of the c, is determined by three

eigenvalues A. such that c; is proportional to terms in

exp' tor
2

c '= g c, expAt. .

j=0
(6.8)

Consider first the case XI=0 which has a11 the requisite
features of the telegraph, and which leads to the roots

A~= ——'Iii+i~Ai ()~x+e(),

A, ,
= —

—,'P, —i~A, o~x+e, ,

(6.10)

(6.1 1)

The c, are determined by initial conditions and the X

are determined by the cubic equation

(A, —id'+ —,'pi)[A, +(—,'pi —ib, , )A, + ~0, D~ ]

(6.9)



39 COHERENT INTERMITTENCY IN THE RESONANT. . . 3027

A 2
— —,P—2+t b 2+ e2, (6.12) 10 11 (6.26)

where

x = [1—(p', /16I Q, ,l')]'" (6.13)

is the saturation parameter. There are three cases: (i)
underdamped resonance pl /16

I Q, o I
« 1, (ii) critical

resonance Ixl « 1, and (iii) overdamped response
p, /16IQ, ol ))1. The existence of the telegraph (or in-
termittent Iluorescence) requires a wide separation of
time scales or

c 11
Q1 0

2IQI, olx
'

,'—p,—+ilQ,,lx

2iIQI olx

—,'P, +ilQ, ,lx

2ll QI olx

(6.27)

(6.28)

(6.29}

And the short-time contribution to the forbidden level is

p, «p, ,

I Q2, ol « I Ql, ol

IRe~2I «p&,
Ilme2I « IQ, ol .

(6.14)

(6.15}

(6.16)

(6.17)

&2O —,'p, +ilQ, olx

2IQ, olx [—
—,'p, +i (IQ, olx —b2)]

(-,'p, —ilQ, olx)

2IQ, olx ( —,'p, +ilQ( olx+b2)

(6.30)

(6.31)

The slow decay constant p& of Sec. I is in this notation
given by —Rel, 2. For the underdamped case (i) the ei-
genvalues can be expanded in powers of the small param-
eter IQ2ol so that II (t) =( lco2I'+ lc I21'+ lc221')exp(4+ ~2 )t . (6.32)

The probability that after a reset there wil1 be a dark
period of length greater than t, when t ))1/p, , is

Q2 o ( —Pi+& I Q' o

(2ilQ, olx)( —,'p, +i 52 i
I Q, o—lx)

—
I Q2 ol ( —,'p, —il Q, olx)

E1=
(2il Q, olx)( —,'P]+ ib 2+ il Q] olx )

(6.18)

(6.19)
I Q2, ol /pl « 1 (6.33)

And the probability that a dark period of some length
will occur is W(t =0). This function is peaked at
b.2=IQ, ol (with a width p, ). For such tuning the in-
equality (6.16) requires

E2=
IQ2, ol (ih2+ —'pl)

I Q ),o I b 2+ —'& b 2pl
(6.20) and in this case

~2= —2IQ2, ol'/pl+ilQ2, ol'/IQI, o .
In view of (6.20), which applies for all x, the inequalities
(6.16) and (6.17) imply that

«1,
I2 g2)2+ 1 g2y2

I Q2, o
I'~21 I

Q ),o I' —&2,——,
' p', I

( IQ I2 g2)2+ y gyy2
Qg ol

(6.21)

(6.22)

In view of the Markovian nature of the photon emission
(which applies in the RWA) the atom is reset to the
ground state after each photon is Auoresced. Thus the
solution to (1.34)—(1.36), subject to the initial condition
co=1, c, =c2=0, describes the probability of dark
periods between photons. For this case the long-time
probability to be in the forbidden level is determined by

(iP, —2b, 2)
C22= ~&2,0' "IQ, ,I' —x'+-' ps

E2
(6.23)

iQ2 0

There is also a long-time probability amplitude to be in
the strong or ground states given by

eO2 1,0 1 6.24
IQ2ol2 (ip, —2b, 2)

c02 's2/I Q2, ol (6.25}

The short-time probabilities to be in the strongly excited
state and ground state are to lowest order in

I Q2 ol

For resonantly tuned coupling to level 2 so that 62=0,
the long-time (dark) probability to be in the strong level is
down from that to be in the forbidden level by the factor

4I Q2, o I

C22 1

(6.34}

Regardless of the length of the dark period there is still a
finite probability that the atom is shelved in the strong
level I 1) as opposed to forbidden level I2). In fact, the
probability that a dark period will end with the emission
of a strong transition photon (1~0) compared to ending
with a 2~0 photon is

pllcg2l' 4IQ2, ol'

p2lc22I pA
(6.35)

This quantity is not necessarily small. When this quanti-
ty is large the overwhelming probability is that a dark
period ends with the emission of a 1~0 photon. This
effect can be understood in terms of the currents (2.17)
which How in the "atom" during the radiationless, dark
period between photons.

The evaluation of the atomic currents at some time t
requires the wave function of the atom during a dark
period. The C, (t) are the amplitude for the atom to be in
state i with no photons scattered between 0 and t, but if
the system is actually observed to be dark between 0 and t
then the wave function at time t is
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Ie) = . , „,y c, (t)li, o) .
g C,'(t)

(6.36)

C, (t) y I( 2(t)l I/2

The factor [g IC (t)l]' normalizes I%') in view of the
wave-function collapse brought about by the null mea-
surement: that is the observation of a period of darkness.
The observation of no scattered photons for a time t since
the last reset (t =0) changes IV) as follows:

If there actually is no fluorescence then the amplitude to
be in state i is

The observation of darkness for all times since the last
reset leaves the atom in a fully determined state. In gen-
eral, the observation of darkness in the interval of time
between t' and t (where t' & t) is a non-Markovian mea-
surement. Although such a measurement changes the
state (or density matrix) of the system it still leaves the
system in a final state that is determined by its past histo-
ry (i.e., its state at time t '). This non-Markovian
response should be contrasted with the process of photon
observation which always involves a Markovian reset.

From (2.17) the expected value of the current t seconds
into a dark period is given by

'PI +(t) )

where P is the projection given by (3.10).

(6.37)
(6.38)

For the three-level system under consideration we find

1 —i (~„—i~, )/t
—t t too —

tv~
—62)t

Jo(t) = 1 g lc (t)l —
(co& too)p—&oe

" ' co(t)c
&
(t)+ —(co2 —

coo)pekoe
' ' co(t)c 2 (t)+c.c. . (6.39)

21 21

The quantum radiationless current has contributions
from the 0~1 as well as 0~2 transitions. At long times
lc2I )) lc, I

(if darkness is verified) but the ratio of the
squares of the respective contributions to Jo is given by
(6.35) when 62=f1&. The fact that the long-time current
for the strong transition can equal that due to the forbid-
den transition accounts for the possibility that dark
periods can end with a 1~0 emission.

After a reset, the ratio of the probabilities of initiating
a dark period, for the cases b,2=0 and b,2= IQ, ol, is
given by the small quantity

2(1—x)eo= —
—,
'

I &2,ol' 1

—,'p, (1+x )+i b 2

(6.46)

,, = ~ I/, , I~
"+"

x —,'P, (1—x )+i b, ~

x =[1—(16IQ
I //3 )] ~

(6.47)

(6.48)

62=0 . (6.49)

For this overdamped case the maximum probability of a
dark period is determined by

W(t =0, 62=0) pi
W(t =O, a, =In, ol) 4fn

(6.40) In this case we determine

The critical time T, during which darkness must be ob-
served so as to collapse the wave function into the forbid-
den level I2 ) is determined by

C2p I
2

l&z, ol'
e2= pi——

(6.50)

(6.51)

or

Ic',(T, )I = Ic ', (T, )l+ Ic o(T, )l (6.41)
The tuning width in A2 for this maximum is rather sharp;
it is given by

I c„I'= exp( —
—,
' p, T, ) . (6.42)

For b,
&
=0, b,2= IQ& ol, the critical time is found to be

b~=P, &8
—I~~i, ol'

1

«p) (6.52)

2 p 4
T, = — in

I cpp I' = »(p) &I &2,01) (6.43)
The existence of a solution to (6.9) with well-separated
time scales requires

ko = —
—,'Pi( 1+x ) +eo,

k, = —
—,'P, (1—x)+e, ,

where

(6.44)

(6.45)

In the overdamped case e2, c22 still obey (6.20) and
(6.23) but the strong transition eigenvalue A,

&
is greatly

decreased:

2III i, ol'
Tc ln (6.54)

(6.53)

In the overdamped case this requirement can be realized
by comparing e& to /3, (1 —x ) in the limit X~ l. For the
overdamped case the collapse time is stretched out to
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When the strong transition is driven off resonance so
that

Ic„l'«&/«f&
1+ Ic» '& tD & /& tf &

(6.61)

6) » IA) ol »p), (6.55)

(6.56)

and in this case

then A,o and A. , are given to lowest order in IQz ol by
(5.25) and (5.26), and ez, c2 are determined by (6.23). The
maximal contribution to cz2 occurs for

The average span of a dark period can be found by set-
ting the atom in I2& at t =0; this yields &tD &

=1/2IReA2I. At saturation (6.61) then becomes (1.1)
supplemented by (1.10).

In parallel with the sideband correlations in two-level
resonance (Sec. V) the two-time correlations for the emis-
sion of ll&-I0& and I2&-IO& photons also depends upon
the order in which they are recorded. From (4.4) we have
in the steady state

(6.57)
io2o(ti rz) —pii(~ )&0IA22(t2 —ti)lo&

12o&o{t&,t2) —
p2&( ~ )&olA»(t, —t, )lo& .

(6.62)

(6.63)
As before, (6.53) must apply. The collapse time is then
given by

If p;J(t2 t, ) is—the solution to the optical Bloch equa-
tions then

III),ol'P,
'

T, = ln
III, ol' pg a', ln, ol

(6.58) (6.64)

During bright periods the rate of fluorescence from the
strong transition is p&lc&(t)l evaluated for t ((T,. In
the overdamped case and in the strong detuning case
(6.55) the 1~0 intensity is down by a large factor which
is proportional to the stretching out of the collapse time
T, . That is, the intensity of strong fluorescence is down
by the factors IQ, ol /p, and IQ, ol /b, , in the cases cor-
responding to (6.54) and (6.58), respectively. In fact, the
number of strong transition events which must be missed
in order to collapse the atome into I2& is in all cases
given by

Imposition of the initial condition p;z(0) =5;o5jo leads to

&OIA, , (r, —t, )I0&=p,, (r, r, ) . — (6.65)

An estimate of the solution (6.64) indicates that (6.62)
and (6.63) are quite diFerent; the ratio is about IQz ol /pf
for short time. Thus the two-time correlations indicate
an underlying irreversibility.

Note added. Since the submission of this paper there
have appeared a number of contributions that have a
direct bearing on the issues discussed in this paper.

nD = —21oglc22I . (6.59) ACKNOWLEDGMENTS

pD —(1 pD)lc22I «D &/& f &, (6.60)

where & tD & is the average span of a single dark period.
Equation (6.60) can be understood by noting that
(1—

pD ) /& tf & is the average number of resets per second,
and le&2 I

is the probability that a given reset leads to a
dark period of length & tD &. Solving (6.60) for pD yields

The percentage of time that the system is dark pz can be
estimated using the average time between resets, & tf &, of
the fast (strong) emissions. In particular,
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