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The total noise of a field state is a measure of the fluctuations of the field amplitude. It is a
minimum for coherent states. As the behavior of a state becomes more nonclassical, its total noise
increases. This is shown first for several specific types of nonclassical states, among them squeezed
and sub-Poissonian states. These results are generalized by using nonclassical distance to measure
how nonclassical a field state is. A lower bound for the total noise is derived that is an increasing
function of nonclassical distance. From it one can conclude that highly nonclassical states have
large amplitude fluctuations.

I. INTRODUCTION

These operators correspond to the real and imaginary
parts of the field amplitude, respectively. The total noise,
which is a measure of the total fluctuations of the ampli-
tude, is

T(p)=(bX, ) +(AXE)

=&a'a) —(a')&a)+ —,
' . (1.2)

As was pointed out by Schumaker the total noise is al-
ways greater than or equal to —,

' and reaches this value
only for coherent states. ' To find the total noise of a mul-
timode state one simply adds the single-mode contribu-
tions.

Total noise is a quantity which can be directly mea-
sured. One method, suggested by the definition, is to
measure (b,X, ) and (bX2) by means of homodyne detec-
tion and to add the results. Another related method is to
sweep the phase of the local oscillator in a homodyne
detector. The resulting number of counts is proportional
to the total noise of the signal. This method is discussed
further in Sec. II.

The concept of the total noise of a quantum state was
introduced by Schumaker in a discussion of pure states
with Gaussian wave functions. ' She found it to be useful
in classifying the states that are produced from the vacu-
um by systems whose Hamiltonians are sums of quadratic
and linear forms in creation and annihilation operators.
Such Hamiltonians describe interactions between modes
of the electromagnetic field that occur in nonlinear op-
tics. Certain of these Hamiltonians leave the total noise
unchanged, while others, in particular those which lead
to squeezing, do not.

The total noise of a quantum state of a single mode,
whose density matrix is p, can be defined in terms of the
operators

X, =(a +a )/2, Xz =i (a"—a) I2 . II. MEASUREMENT OF TOTAL NOISE

Total noise can be determined by performing a phase-
averaged homodyne measurement. That is, one combines
the signal with a strong local oscillator at the detector
and sweeps the phase of the local oscillator. The fluctua-
tions in the number of photocounts are determined by the
total noise of the signal. The discussion of this scheme
given here will parallel the analysis of homodyne detec-
tion done by Mandel.

Suppose that the signal is in a quantum state with den-
sity matrix p. Upon mixing with the local oscillator,
which is in the coherent state ~a ), the field density ma-
trix becomes p =D(a)pD(a) ', where D(a) is the
coherent state displacement operator. If we compute
(b, n )

—( n ) for this field we find

(&n)' —& )= -'(& ' ),—& '),')
+ *(("),—&. ),')
+2~a~ ((a a ) —(a ) (a ) ), (2. 1)

where terms of order o. or lower have been dropped be-

In this paper it will be shown that the total noise of a
state is greater the more nonclassical the state is. It will
first be demonstrated for some specific kinds of nonclassi-
cal states. For example, as the photon statistics of a state
become more sub-Poissonian, its total noise increases.
Similar results hold as a state becomes more squeezed. A
way of making this more systematic is to use the nonclas-
sical distance of a state, 6, to measure how nonclassical it
is. ' As 6 increases so does the total noise. It should be
noted that the converse is not true. A thermal state, for
example, is classical and, therefore, has a nonclassical dis-
tance of zero. On the other hand, its total noise can be
made arbitrarily large by letting its average photon num-
ber increase. The relationship between nonclassical dis-
tance and total noise goes only one way; large nonclassi-
cal distance implies large total noise but not vice versa.
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(2.2)

cause it is assumed that the local oscillator is strong, and
the brackets with the subscript p indicate the average
with respect to the initial signal state. The average of an
operator in the state p is denoted by angular brackets
without a subscript. Setting a= ~a~e' and averaging the
above expression over 0 gives

(1/2~) f dg[(hn) —&n )]=2~a~ [T(p)—
—,'] .

(bx2) (6n) )(—')&X& ) (3.5)

We now move to the total noise. From Eqs. (3.4) and
(3.5) we see that

where we have used [X, , n]=ix2 .In a similar fashion
one has that

This can now be expressed in terms of the number of
photocounts by introducing the overall quantum
efficiency of the detector, g. If rn is the random variable
denoting the number of photocounts we have that

&m ) =i)&6') &m(m —1))=i) &6(6 —1)) . (2 3)

Substituting these results into Eq. (2.2) and noting that
& & ) = ~a ~

to highest order in a, yields the result

T(p) —
—,
' =[1/(4m')& m ) )]f dg[(bm )

—&m )] . (2.4)

This expression allows one to find the total noise from the
photocurrent statistics.

III. SPECIFIC EXAMPLES

(~n)'& &6&, (3.1)

where 6'=a a and (b, n ) =
& (n —

& n ) ) ). Such a state is
nonclassical.

In order to relate properties of the number operator to
the total noise we begin with

A nonclassical state is one whose P representation ei-
ther goes negative or contains derivatives of 6 functions.
Such states cannot be modeled as classical stochastic
fields. Here we would like to consider three varieties of
these states: sub-Poissonian, squeezed, and amplitude-
squared squeezed. In each case we will see that as the
nonclassical attribute of the state increases, so does its to-
tal noise. These examples establish the plausibility of the
more general result which will be proved in Sec. IV.

Let us first examine sub-Poissonian states. A state is
sub-Poissonian if

~(—')(&X')+&X, ))—(hn) [(bx, ) +(bx )'] .

(3.6)

If we note that & =X, +X2 —
—,', then this becomes

T = ( b X, ) + ( b X2 ) ~ ( & & ) + —,
'

) / [ 4[ ( b n ) + —,
' ] ] .

(3.7)

From this inequality it is clear that for fixed &
6') as (b, n )

decreases, then T must increase. Therefore, as a state be-
comes more sub-Poissonian (b.n /& & ) decreasing) its to-
tal noise increases.

Let us now move to squeezing. This example is partic-
ularly simple. The uncertainty relation for X] and X2 is

AX, EX2 ~
—,
'

which gives for the total noise

T (~b X, ) + 1/(46X, )

(3.8)

(3.9)

The expression on the right-hand side of the above in-
equality reaches a minimum when hX& = &. This value of
AX, marks the edge of the classical region, i e., if
AX, & —,', then the state is nonclassical. For 0& AX,
as hX, decreases T increases. Therefore, the more
squeezed the state is, the greater is its total noise. Note
that we have considered only squeezing in the X, quadra-
ture component, but squeezing in other components leads
to identical results.

Finally, consider amplitude-squared squeezing. This is
defined in terms of the operators '

~
&(X, —&X, &)(6 —&6 &) &~'

Y& =(a +a )/2, Yz=i (a —a2)/2, (3.10)

&(X, —&X, ) )'&& (6 —&n &)')

&(bx, ) (bn)', (3.2)

which follows from the Schwarz inequality. The expres-
sion on the left-hand side of the above inequality can be
expressed as

=(& [X&,&])+& [X,—&X& ),n —&n ) ] ) )/2, (3.3)

where the curly brackets denote the anticommutator.
Because both X, and & are Hermitian the commutator
term on the right-hand side of Eq. (3.3) is imaginary and
the anticommutator is real. This implies that

(bx, )'(«)'~
~

& (x, —&x, & )(6 —&6 & ) & I'

( b,x, ) ( b. Y, )
' ~

—,
'

& X~ )',
(~x, )'(s Y, )'~ —,'&x, )' .

(3.1 1)

(3.12)

The derivations are similar to that which resulted in Eq.
(3.4). If these inequalities are combined with the equation
& & &+ —,

' =&X, )+&X ), one finds

( —,')(&n )+—,') —[(Ax, ) +(bx2) ](b.Y, )

&
—,'[(b,xi ) +(b,x2) ],

and a state is said to be amplitude-squared squeezed in
the Y, direction if (b, Y, )' « &+ —,

' ). States which are
squeezed in this sense are nonclassical. In order to relate
the total noise to the uncertainties in these observables
the following inequalities are of use:

~
—,
'

~ & [x„n ] &
~

' o
—,
'

& x, & (3.4) or
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T (( & ) + —,
' )/[4(h Y, ) + 1] . (3.13) 10

Here again we see that for fixed (& ) as b, Y, decreases
the total noise must increase. An identical result holds
for any other quadrature component of the square of the
amplitude.

Surveying these results we see that in each case it was
possible to find a lower bound for the total noise which
depended on the behavior of some observable of the sys-
tem. As this behavior became more nonclassical the
lower bound for the total noise increased. We now want
to generalize this result beyond the specific examples
which have been presented in this section.

8-

6-

4-

IV. NONCLASSICAL DISTANCE
AND TOTAL NOISE

2-

We shall accomplish this generalization by making use
of the concept of nonclassical distance. For a given
single-mode density matrix, its nonclassical distance is
defined to be

5= inf lip
—p.

illa'

1 cl

(4.1)

where the infenum is taken over all classical density ma-
trixes and ll. ll i denotes the trace norm. The distance 5 is
a measure of the extent to which the probability distribu-
tion for any observable in the state p can deviate from the
set of probability distributions for that observable in clas-
sical states. It is, therefore, an observable-independent
measure of how nonclassical a state is. By its definition 5
is between 0 and 2, and a 6 of order 1 means that a state
is highly nonclassical. In Ref. 3 a number of bounds on 6
were computed. One which will be of use here is the fol-
lowing: if p is a pure state then

5~2(1—sup (alpla) )' (4.2)

where la) is a coherent state. The goal is to find a lower
bound for T which is an increasing function of 5. We
shaH first find such a bound for the case in which p is a
pure state. It will then be shown that the pure state re-
sult also holds if p is a mixed state.

Before proceeding let us state the result. Define
x (5) ~ 0 as the solution to the equation

[1—(5/2) )x =1—e

A lower bound for the total noise is then given by

T(p) ~ h (5)=(5/2) x —( —,')[1—(5/2) ]x + —,
'

(4.3)

(4.4)

The function h (5) is equal to —,
' at 5=0 and goes to

infinity as 5 approaches 2. It is plotted in Fig. 1. Some of
its other properties are discussed in Sec. V.

FIG. 1. The function h (5) which is a lower bound for the to-
tal noise.

Tr(a "ap)=(1/~) f d a(alpla)lal —1 . (4.6)

Finding y would seem to come down to minimizing
d a a p e a subject to the constraint a p u

There are, in fact, two more constraints. The first comes
from the normalization condition Tr(p) = 1 or

(1/~) f d a(alpla) =1. (4.7)

The second constraint is more complicated. As shown in
Appendix A for any R )0 we have that

This relation tells us that if 5 grows, then
s=sup (alpla) must become smaller. This suggests
that we look for a relation between s and the total noise.

This task is made easier if we note that both s and the
total noise are invariant under displacement. That is, if
D(a) =exp(aa —a*a ), then p and p'=D(a)pD(a)
have the same value of s and the same total noise. Now
choose a so that Tr(ap') =0, which implies that T(p')
=Tr(a "ap')+ —,'. Suppose we can prove that for any den-

sity matrix po which satisfies sup (alpola) ~i) that
Tr(a apo) ~ y. Here y is a constant which will depend on

Because p' satisfies this condition we have that
Tr(a ap') ~ y which implies that T(p) ~ y+ —,'.

We now want to find y. To do so we first express
Tr(a ap) in terms of (alpla ),

A. Pure state

Assume that p is a pure state. We can then express Eq.
(4.2) as

—Rd a(a p a) ~me

In order to summarize the problem let us define

g(r)=(1/vr) f dOr(re' lplre' ),

(4.8)

(4.9)

sup (alpla) ~ 1 —(5/2) =il . (4.5)
where the coherent state amplitude a has been written as
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a = re' .Note that g ( r) ~ 0. Our task is to minimize
B (g) = f "

dr g (r)r subject to the constraints
0

g(r) ~2rg,
drg r =1,
erg r &e

R

(4.10)

(4. 1 1)

(4.12)

The essential idea behind the solution of this problem
is that g (r) is to be chosen as large as possible, in a way
consistent with the constraints, for small values of r.
This will make B(g) as small as possible because r is a
monotonically increasing function. By using this idea as
a guide it is possible to give a heuristic argument which
leads to the solution of the problem. This will be done
here, and the proof that the result is, in fact, correct is
left to Appendix B.

First combine Eqs. (4.11) and (4.12) to give

f drg(r)~1 —e (4.13)
0

We next need to see whether this constraint or Eq. (4.10)
is more restrictive for small values of r If g(. r) satisfies
Eq. (4.10), then

f drg(r)~gR (4.14)
0

For g ( 1 and sufficiently small R we have that
—Ri)R ( 1 —e . Therefore, Eq. (4.10) is the more restric-

tive bound for small r. This suggests that the g (r) which
minimizes B (g) can be constructed in the following
fashion. Choose go(r) =2gr until Eq. (4.13) is satisfied as
an equality. This means that for 0 ~ r ~ r0 we have

This implies that if p satisfies sup& alpla & g, then

Tr(a ap) ~B (go) —1=(1—g)rz~ —gr4&/2, (4.21)

where Eq. (4.16) has been used to simplify the expression
for B (go ). Finally, the arguments in the paragraph
preceding Eq. (4.6) and the above inequality give us

T(p) +f (g) =(1 q)r—o —r)ro /2+ —,
' (4.22)

where, it should be noted, r0 is implicitly determined as a
function of i) by Eq. (4.16). In terms of the nonclassical
distance of the pure state density matrix we have

T(p)) f(1 (5/2) )=h(5) (4.23)

Before discussing this result let us also show that it holds
when p is a mixed state.

B. Mixed state

(4.24)

where 0 is a number between 0 and 1. We want to see
how the total noise of p is related to that of p] and pp.
Computing T(p) we find

In order to demonstrate that our bound is in fact a gen-
eral one it is necessary to discuss two properties, one of
total noise and the other of nonclassical distance. These,
and the fact that h(5) is a convex function, will allow us
to prove our result.

Consider first the total noise. Let p& and pz be density
matrixes and from them form the density matrix

go(r) =2r)r,

where

(4.15)
7 (p) = &7 (p& )+(1 —&)7"(p&)

+e(1—9)(&a'&, —&at&, )

7'o2

gr0 =1—e (4.16)

For r ) ro we choose go(r) so that Eq. (4.13) is satisfied as
an equality. This will make go(r) as large as possible for
the smaller values of r. That is, for R ) r0 we want

X(&a &,
—&a &,), (4.25)

7 (p) ~ &7 (p~)+(I —6))7 (p&) . (4.26)

where the angular brackets with subscript m indicate ex-
pectation values with respect to p for m =1,2. The last
term in Eq. (4.25) is greater than or equal to zero so that

—r2f dr go(r)=1 —e "'+f dr go(r)=1 —e
0

Dift'erentiating both sides with respect to R gives

(4.17) Finally this result can be generalized to the case in which
p= g„&O„p„where p„ is a density matrix and the
numbers O„satisfy 0 ~ 6„~ 1 and g„ i 8„=1. We then
have

go(R ) =2Re

Summarizing we have

2gr, O~r ~~0
go(r) =

2re ", r) r0.

(4.18)

(4.19)

Note that this function satisfies Eq. (4.11).
We can now find a lower bound for B(g). For any

function satisfying Eqs. (4.10)—(4.12) it must be the case
that

N

7 (p)~ g &„7 (p„) .
n =1

(4.27)

~ ~llpi P lilli+(I —~)llp2 P l2lli . (4.2g)

Now we turn to nonclassical distance. Again consider
a density matrix of the form given in Eq. (4.24). If p„»
and p, ~z are two classical density matrixes we can use the
triangle inequality for norms to show

B(g) B~(g )=of dr 2r)r + f dr 2r e
0 ro

—r2
=i)ro/2+(1+ ro )e (4.20)

Note that if p,» and p, ~z are classical density matrixes,
then Op, »+(1—0)p, ~~, where 0~ 0~ 1, is also a classical
density matrix. This means that
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5=i«lip —p.

illa'

— i« lip
—

Hpai
—&1 —0)p.

ulled

—05i+ &I —0)5
f c11'f c12

(4.29)

where 6 is the nonclassical distance of p and 6, and 62 are
the nonclassical distances of p, and p2, respectively. This
can also be generalized so that if p= g„,H„p„, where

p„are density matrixes and the numbers O„satisfy
0 ~ 0„~ 1 and g„&0„=1, then

T(p~) —h(5~) .

Letting N go to infinity on both sides gives

T(p) ~ h(6),
which is the desired result.

(4.38)

(4.39)

N
5~ g 0„5„.

n =1
(4.30)

V. HIGHLY NONCLASSICAL STATES
In order to make use of these results we need to show

that h(5) is a convex function, i.e., that for 5& and 52
greater than or equal to zero and for 0 ~ 0 ~ 1, then

h(05, +(1—0)5 ) ~ Hh(5, )+(1—0)h(5 ) . (4.31)

This follows from the fact that d h /d6 ~ 0 and is proved
in Appendix C. There it is also shown that if 0~0, ~ 1

and g„&0„=1, then

N N

h g 0„5„~g H„h{5„).
n =1 n =1

(4.32)

This, in fact, follows from Eq. (4.31). The final fact
which we need, that h(5) is monotonically increasing, is
proved in Appendix C as well.

We can now put all of this together. Let p be any den-
sity matrix for which Tr(a ap) ( co. This density matrix
can be diagonalized and expressed in the form

The definition of h{5) is somewhat complicated but a
few features of it can be derived relatively easily. The
function achieves its minimum value at 5 =0 and is
monotonically increasing. If 6 is near 2, then q is near
zero. An examination of Eq. (4.16) shows that this im-

—.2

plies that ro is large. Therefore, in this regime the e ' in
Eq. (4.16) can be neglected, and ro -=1/g. If this is sub-
stituted into the equation for f(g) and g is set equal to
1 —(5/2), we find

h (5)—= (5'/8) /[1 —(5/2)'],
which is valid for 5 near 2. As 5 approaches 2 h(5) and,
therefore, the total noise goes to infinity. Highly nonclas-
sical states have very large amplitude fluctuations.

This raises the question of whether there are any states
whose nonclassical distance is near 2. First note that for
a density matrix p the nonclassical distance satisfies

(4.33) 5=i«IIP P Ills —inf(lip li+llp. illa')=2 (5.2)
f c1 f c1

where A,„~O is the nth eigenvalue of p and g„",A,„=l.
Define a sequence of density matrixes pN by

p =(1/A ) g X. lg. )&g„l,
n =1

(4.34)

T(p )~(I/A ) & ~„T(Iq„)(q„l),
n =1

(4.35)

with Az = g„&X„. Also let 5z be the nonclassical dis-
tance of pN and 6 the nonclassical distance of p. As
shown in Appendix D T(p~) converges to T(p) and 5z
converges to 5. From Eq. (4.27) we have that

so that 2 is the largest nonclassical distance possible. Eq.
(5.1) implies that any state with 5=2 has an infinite total
noise and, therefore, an infinite photon number. Such
states are of little physical interest. On the other hand,
states whose distance is near 2 will have a large but finite
number of photons and are physically reasonable.

In order to show that there are states with nonclassical
distance near 2 it is first necessary to develop a new
bound for the nonclassical distance of a state. Consider a
pure state p=

I P) ( Pl =P& for which p is identical to the
projection onto the state 1f, P& Ifp, ~

is a classic. al density
matrix, then

which in conjunction with Eqs. (4.23) and (4.29) implies
that

IIIP p. ill i
= IIIP~(p p

—I)Pq+Pz(p p, ~)Py

+Pp(p p I)Ps+Ps(p p i) iPlli (&.3)
N

T(p~)~h (I/A~) g X„5~"'
n =1

(4.36) where P~ =I—P&. Now define the operators 2 and D to
be

where 5&"' is the nonclassical distance of I@„)(f„I. Now
making use of the property of nonclassical distance ex-
pressed in Eq. (4.30) we find

2 =P~(p —p„)P~+P~(p —p, , )P~,

PJ(p p I)Pq+Pq(p .p.l)Pl . (5.4)
N

5~ ~(1/A~) g A.„5~"' .
n =1

(4.37) From the basic properties of norms it follows that

Because h(5) is a monotonically increasing function we
can conclude from Eqs. (4.36) and (4.37) that

IIp
—

s .ill ~
~

II & fl i+ IID II 1
.

In Ref. 2 it was found that

(5.5)
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5 ~ 2 inf [(1—( pip, ~l g) )

(5.6)

Incorporating Eqs. (5.6) into Eq. (5.5) and taking the infe-
num over all classical density matrixes gives

(5.7)

where 5 is the nonclassical distance ofp= l g) ( Pl.
Let us now apply this to the photon number state.

From Ref. 3 we know that

(n lp, &ln ) ~n "e "In!—:y„, (5.g)

& ~ »nf [( I —
& pip. )ly& )

l ci

+( & pip,', lg) —(@Ip„lg)')' '],
and that lim„y„=O. In order to find a bound for
(n lp, ~ln ), we use the fact that p, ~

has a P representation
which behaves like a probability distribution to write

(n lp, &ln ) = f d af d /3(n la & (alP) (Pln )P(a)P(P)

=( I/n! )fd 2a f d2Pe & lal + I&I a*0&anPenP(a)P(P)

sup (]/n!)l al "lf3l "e ' + ~ &e' ~ ~y
Ial, IPI

(5.9)

Substituting these result into the second of Eqs. (5.7) and
making use of Eq. (5.2) gives

2(1 —y„)—2+@„~5~2. (5.10)

VI. CONCLUSION

Total noise is a measure of the size of the amplitude
fluctuations of a state of the field. It is a minimum for
coherent states. Coherent states are classical. Nonclassi-
cal states differ significantly from coherent states in their
behavior and the more nonclassical they are the greater
the difference. This suggests that the more nonclassical a
state is the greater its total noise will be.

This was examined for several examples and found to
I

From this inequality we can see that as n increases the
nonclassical distance becomes closer to 2. Therefore,
photon number states with large photon numbers have
nonclassical distances close to 2.

We can conclude the following. The nonclassical dis-
tance of a state lies between zero and two, and there are
states with distances throughout this entire range. The
inequality given in Eq. (4.39) provides a useful lower
bound for the total noise of a state given its nonclassical
distance. It implies that the total noise of a highly non-
classical state is large.

be true. The actual results took the form of lower bounds
on the total noise which are increasing functions of the
nonclassical behavior (squeezing, for example). It was
then possible to generalize these results by using nonclas-
sical distance, 5, to measure how nonclassical a state is.
A lower bound for the total noise was found which is an
increasing function of nonclassical distance. The bound
goes to infinity as 6 approaches its maximum value of 2.
This implies that states which are highly nonclassical
have very large amplitude fluctuations.
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APPENDIX A

In this appendix we want to show that for any density
matrix p

f d a(alpla) ~ere (A 1)

We begin by expanding p in terms of number states so
that

f d a&alpla&= g g f d a&aln &p„(mla)
Ial n =pm =p lal —R

oo oo
2 — 2f d ae ! ! (a*"a /v'n!m!)p

n =pm =p Ial —R

=2m g p„„f™dre"r " 'jn!,
p R

(A2)
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where r = lal. Equation (A2) and the relation g™
=p,„=1 allows us to derive the lower bound

f d'a(a pl+&

+&2~inf dr e " r "+'/n!
n . R

(A3)

The integrals on the right-hand side of Fq. (A3) can be
evaluated and give

It then follows that

f drr f, (r)+ f drr f2(r) .

In order to prove this first define the functions

F (R)= f dr f (r),
for j= 1,2. Equation (82) implies that

(83)

(84)

n

dr e
—r r2n+1/n!=(L)e —R g R2IIIt

2R I =-0

from which we can conclude

inf dr e " r "+'In!=(—,')e
n R

(A4)

(A5)

(85)

(86)

f dr Fi(r)d(r )Idr ~ f dr F2(r)d(r )Idr,
0 0

which upon integration by parts becomes

R F, (R)—f dr r f, (r) ~R F2(R) —f dr r f2(r) .
0 0

Substitution of this result into Eq. (A3) yields Eq. (Al).

APPENDIX B

We now want to prove that the function which rnini-
mizes B (g) subject to the constraints given in Eqs.
(4. 10)—(4.12) is, in fact, go(r) as given in Eq. (4.19). In or-
der to do this it is useful to first prove the following lem-
ma.

Lemma: Let f, (r) and fz(r) be two piecewise continu-
ous functions which satisfy f i(r) ~0, f2(r) ~0, and

If it can be shown that limz „R [F,(R ) F2 ( R —
) ]=0,

then the lemma will be proved.
That this limit vanishes can be demonstrated by first

noting that

lim R [1 F2(R)]—+ lim R [Fi(R)—F&(R)]+0 .
R ~ oo R ~ oo

(87)

We can then use the fact that f dr r fz(r) ( ~ to con-
0

elude

dr ]r= dr 2r=l. (Bl) lim f dr r d [F2(r)—1]ldr =0 .
R- cc R

(8&)

Furthermore, suppose that for all R & 0

f dr f, (r) ~ f dr f2(r) .
0 0

(82)

This integral provides a bound for the quantity on the
left-hand side of Eq. (87) for if one keeps in mind that
d [F2(r) —1]/dr ~0, one finds

f dr r d [Fz(r) —1]/dr ~R f dr d [F2(r) —1]ldr =R [1 F2(R)] . — (89)

If the R ~~ limit of both sides is taken and note is tak-
en of Eq. (88) and the fact that R [1 F2(R)] ~0, t—hen
we see that

lim R [1—F2(R)]=0 .
R —~ oc

(810)

drg0 r drg r
0 0

(811)

Equation (87) now allows us to conclude that
limR R [Fi(R) F2(R)]=0. F—inally, taking the
R ~ oo limit in Eq. (86) yields Eq. (83) and proves the
lemma.

The application of the lemma to the problem at hand is
direct. Suppose that g(r) is a function satisfying Eqs.
(4.10)—(4.12). For 0~ r ~ ro we clearly have that
go(r) ~ g (r) which gives us that for 0~ R & ro

The functions f (il) and h(5) are defined by Eqs. (4.22)
and (4.23), respectively. Several properties of these func-
tions were used to demonstrate that the total noise of a
state increases with its nonclassical distance. In particu-
lar the fact that h(5) is a monotonically increasing, con-
vex function was essential. We now show that this is
indeed the case.

Let us first summarize the definitions of f (rI ) and h (5),

f(il)=(1 —il)x —rIx /2+ —,',
h (5)=f( g(5) ) =f(1—(5/2)'),

(C 1)

(C2)

I

B(g) ~B(go). This means that function go(r) gives the
minimum value of B (g) subject to the stated conditions.

APPENDIX C

If R ) r0, then by its definition

f dr go(r)=1 —e ~ f dr g(r) .
0 0

(812) gx =1—e (C3)

where we have set x = r0 and x is determined as a func-
tion of g by the condition

Therefore, go(r) and g(r) correspond to f, (r) and f2(r),
respectively, in the lemma, and we have that

From these equations we want to find dh /d 6 and
d2$ /d$~
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To begin we differentiate both sides of Eq. (C3) with
respect to g to give

is greater than or equal to zero. This, in turn, means that
H1 H2 or

dx/di)=x/(e "—i))=x /[e "(x+1)—1] . h(05, +(1—0)52) ~0h(5, )+(I—0)h(52) . (C12)

From this equation and the derivative of Eq. (C 1) one has
that

df/di}= —x l2 .

Application of the chain rule gives

dh/d6=6x /4 .

(C&)

(C6)

The right-hand side is clearly positive which implies that
h (5) is an increasing function of 5.

Continuing, differentiate both sides of Eq. (C6) with
respect to 5

d h /d 5 =
—,
' [x +25x ( dx /d 5 ) ]

n =1 n =1

I h g (0 /I )5 +0~+ih(5~+i)
n=1

Finally, let us demonstrate the result stated in Eq.
(4.32). This can be proved by induction. Equation (C12)
shows that it is true for the case N =2. Suppose now that
it is true for N. We want to show it is true for N+ 1. Let
I0„in=1,2, . . . , N+I] be a set of numbers each of
which is between 0 and 1, and which satisfy gf +,'0„=1.
We then have, setting I = +„,0„,

N+1 N

h g 0 5 =h I g (0 /I )5 +0~+i5~+i

=(x /4) I 1 —5 x /[e '(x + 1)—1]I . (C7) (C13)

Noting that x ~ 0 implies that e (x + 1) ~ 1, we see that
d~h/d62~0

It remains to show that these properties of the deriva-
tives of h imply that it is convex. In order to do so as-
sume that 6, 52 and let 0 be a number between 0 and 1.
Consider the quantities

The above inequality follows by application of Eq. (C12)
upon setting 0=I, and identifying 5i in Eq. (C12) with

, (0„/I )5„. Because we have assumed that Eq.
(4.32) holds for N, it follows from Eq. (C13) that

N+ 1

h g 0 5 I g (0 /I )h(5 )+0~+ih(5~+i)
H, =0h(5i)+(1 —0)h(52)

6~
=h(5, )+(1—0)f d5(dh/d5),

I

H2 = h (05, + (1—0)52)
(1 —6))(62 —51)+6)

=h(5, )+f d5(dh /d5) .
1

(C8)

(C9)

n=1 n =1

N+1

g 0„h(5„),
n=—1

APPENDIX D

which is the desired result.

(C14)

Define the function v(5)=(dh/d5)ls +s. Now subtract-
1

ing Eq. (C9) from Eq. (C8) we find

62 —51 (1 —0)(52 —6[)
Hi Hz=(1 —0)f— d5 v(5) —f d5 v(5) .

(C 10)

Changing the variable of integration in the first integral
to (1 —0)5 gives

( 1 &)(52 &
I )

H, H2 = f — d5[u(5/(1 —0))—u(5)] . (Cl 1)

The density matrixes p~ were defined by Eq. (4.34).
We want to show that T(pz)~T(p) and 5~~5 as N
goes to infinity.

Let us first examine the total noise. By assumption
Tr(pR')( ~ which implies that lTr(pa)l ( ao. We also
have that limN AN=1. This means that for any e we
can find an M such that

The fact that d h /d6 ~ 0 implies that du/d5 ~0.
Therefore, because 5/(1 —0)) 5, the integral in Eq. (Cl 1)

Looking first at the expectation values of the number
operator we have that

lTr(pMR) Tr(pR')I ~— & ['(1/AM) —1](&„IRIS'(',&~, g &1t, IRIS' &X„~e[Tr(pR)+1] . (D2)
n=1 n =M+1

For the expectation values of the annihilation operator

n =1 n =M+1 n =1
ITr(pMa) Tr(pa)l ~ & [(I/AM) i]&it. lalg. &~. g (g, lal@„)~. ~e g l(@„lal@,)l~, +1
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The right-hand sides of Eqs. (D2) and (D3) can be made
arbitrarily small so that T(p~, )~T(p) as N ~ ~.

Now we consider the nonclassical distances. By argu-
ments similar to those above one can show that

II p —P.ill i —
II p

—P~ II i+ IIpe —P, ill i

—
II px —P.ill i+ &

I px —P, illa' —lip+ PI
—i+ lip

—P.illa'

(D5)

»m Ilpy Pili=0
cV —~ oo

(D4)
—lip

—P.illa'+& .

Taking the infenum of both sides of these inequalities
over all classical density matrixes gives

so that we can find an M such that if N ~ M, then

~~pz
—

p~~& (e. It then follows that for N~M and p, t
a

classical density matrix that so that lim„~ „6~-=6.
(D6)
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