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Mapping of classical canonical transformations to quantum unitary operators
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Classical linear transformations in coordinate-momentum phase space are mapped to unitary
quantum-mechanical operators in Hilbert space to produce a generalization of squeeze operators.
The classical to quantum transition is manifestly apparent in the derivation. The unitary operators
are evaluated in the coherent-state representation using the "integration within ordered products"
technique in the one- and two-mode cases. Application of these operators results in a new generali-
zation of coherent states.

I. INTRODUCTION

In recent years, considerable interest has been ex-
pressed in squeezed states of the electromagnetic field. '
Applications of squeezed light have been proposed in
low-noise optical communications and high-precision in-
terferometry. Single-mode squeezed states as generaliza-
tions of coherent states have also been discussed from a
group-theoretical viewpoint by a number of authors.

Squeezed states were introduced independently by
Stoler and Lu and have been extensively discussed as
eigenstates of the operator

q'

p

B q q

C D p ~ p

detg =1, (1.2)

D —B

q'=p 'q and p'=pp. In this light, squeezing is seen to
be only a special case of the more general linear transfor-
mation in phase space which can be written q'= Aq +Bp,
p'=Cq +Dp. Alternatively, we express the transforma-
tion in matrix form as

a'=pa +va

where a and a are, respectively, photon annihilation and
creation operators and p and v are arbitrary complex
numbers satisfying

~ p ~

—
] v ~

= 1, by Yuen, who showed
that such states could be produced by a two-photon las-
ing process or by parametric arnplification. Squeezing
has been demonstrated experimentally by several groups.

The current literature deals almost exclusively with the
restricted squeezed state that is an eigenstate of a' with

p =cosh' and v =e ' sinhA, in (1.1) for which the unitary
squeeze operator

exp [ —,
' [/*a —g(a ) ]],

with /=Ac', is well known. The squeeze operator corre-
sponding to (1.1) has not previously been obtained.

In view of the well-known correspondence' between
the unit-mass harmonic oscillator and the modes of the
electromagnetic field we identify the operators
Q =2 '~ (a +a } and P = —2 '~ i (a —a ) with the po-
sition and momentum operators of the harmonic oscilla-
tor (we take Pi= to= 1).

The one-mode squeezing process with 0=0 for the har-
monic oscillator can be explicitly written as a compres-
sion of a phase-space coordinate accompanied by a corre-
sponding dilation of the conjugate momentum, "

with AD —BC = 1 and 3, B, C, and D real.
Since (1.1) could equally be written in terms of

Q '=AQ+BP and P '=CQ+DP, constructing the uni-
tary image of (1.2) that accomplishes this transformation
will also provide us with the squeeze operator to produce
the eigenstates of (1.1).

Several methods have been used to obtain the
quantum-mechanical unitary operators corresponding to
the phase-space scaling of the squeeze operator. '

In this paper we derive, in transparent fashion, the
unitary-operator image of the classical transformation
(1.2). In other words, letting Q, P and Q ', P ' be the posi-
tion and momentum operators we will construct the uni-
tary operator U'"(g) such that

Q '=[U"'(g}]QU"'(g)= AQ+BP,
P '=[U'"(g)] PU"'(g) =CQ+DP .

(1.3)

The method employed will make a clear connection be-
tween the classical transformation and the corresponding
unitary operator in Hilbert space.

To illustrate the approach, we briefly review the devel-
opment of the squeeze operator from the classical scaling
transformation. " To begin, the squeeze operator is writ-
ten in the physically appealing canonical coherent-state
representation

1/2

U(g, )= ' "+" f" f" dqdp 0,P)0 (1.4)
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where where p=e'. Equation (1.7) can be shown' to reduce to
the more customary form

p
— 7 4
:—~p, q) =exp —

—,'(p +q )+ —(q+ip)a ~O)
2

U' "(g)=exp I —,
' ~[a —(a ) ]] .

a = —(Q —iP)v'2

its creation operator. Setting

1—(q +ip),
2

the coherent state can also be written in terms of the
complex arguments z and z *, or simply in terms of z,

)
q z 2—= /z)=e ' "e" /O)
p z* (1.6)

U(g, ) as given by (1.4) may be integrated by means of
the integration within ordered products (IWOP) tech-
nique' ' to obtain the normally ordered form

(a )'
U (g, ) = exp — tanh~

Xexp[( —a a + —,
'

) in(cosh'. )]

(1.5)

is the canonical coherent state, ' jO) is the harmonic
oscillator's ground state, and

We will use similar methods to evaluate the unitary
operator generated by the more general linear transfor-
mation (1.2).

In Sec. II, starting from the canonical coherent-state
representation of U"'(g) which provides the connection
to the phase-space transformation, we integrate the ex-
pression by using the IWOP technique to obtain the nor-
mally ordered unitary operator. We thus obtain explicit-
ly the quantum-mechanical unitary image of the classical
phase-space transformation. We will show that for the
particular transformation having A =p ', B =C =0,
D =p we recover (1.4) and (1.7).

In Sec. III, guided by the derivation of the two-mode
squeeze operator, "we generalize the results of Sec. II to
derive the quantum unitary operator U' '(G) for the sym-
plectic transformation G in two-mode phase space.

In Sec. IV we show that the normally ordered form of
U"'(g) can be directly used to construct eigenstates of
(1.1), while the application of U' '(G) to the coherent
state produces a new three-parameter generalization of
two-mode squeezed states of which the customary two-
parameter squeezed states are a special case.

II. DERIVATION OF U'"(g)

a
X exp tanh~

2
(1.7)

In view of (1.4) we begin by postulating the following
canonical coherent-state representation of the required
operator:

(1) 1 —1/2
B q qU"'(g) = s '

~s~ f f dq dp (2.1)

where

s =
—,'[(A +D)+i (B —C)] . (2.2)

The factor s '~
~s~ anticipates the normalization required to make U unitary as will be shown later. As a crucial first

step, without which both the integration of (2.1) and the later generalization for two modes are much more difficult, we

change the arguments p and q of the coherent state to the complex arguments z and z' as in (1.6). Writing

we find

q'+ ip' (q +ip) (q —ip)
2

z'—= — =—'[( A +D)+i (C —B)] — +—'[( A —D)+i (B +C)] =s*z —rz*,
2 v'2

where

r =
—,'[(D —A) i (B+C)]-

and the condition AD BC =1 becomes ~s—
~

—
~r~ =1. The ket in (2.1) may then be rewritten

(2.3)

—r s

z
z* s z p'z (2.4)
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and (2.1) becomes

U"'(g) =s '
lsl d z—ls*z —rz" ) (zl

1 dz—: d Rez d Imz

=s '~
Isl f d z—exp — +(s*z —rz*)a I0)(zl .

1 s*z rz—*l

oo 2
(2.5)

With the help of the operator identity IO) (Ol =:exp( —a a): we perform the Gaussian integration (2.5) by means of the
IWOP technique,

U'"(g)=s '
lsl f d z —:exp —lsl lzl +s'za +z "(a —ra )+ z + —a a

7T 2 2
(2.6)

=s ' exp
r y2 1 y

r'
(a ):exp ——1 (2 a:exp a

2$ s 2$
(2.7)

Expression (2.7) can be further simplified by using the operator identity e ' '=:exp[(e"—1)a a]: to give finally

U"'(g)=s '
lsl f f dp dq

=s ' exp
r 1

(a ) exp a aln
2$ S

r
exp a

2$
(2.8)

It remains to show that U"'(g) is unitary. We let U'''(g) act on coherent state Ia) to obtain

U" '(g) Ia ) =s '"exp
r 1

(a ) exp ata ln
2$ S

r*
exp a Ia)

2$

r'e 2
=s ' exp a — exp

2$ 2
a exp —a IO) .

2$ S
(2.9)

Exploiting the overcompleteness relation fd z(1/m. )lz)(zl =1 for the coherent state Iz) and the identity
Iz) (zl —= :exp( —Izl +za +z*a —a a): we calculate

(al[U'"(g)] U'"(g)la) = exp
1

Isl

r 4~2 r (~4 )2—+
2$

2

X 0exp — a+ a dz —z zexp — a +—a 0
2$ s 7T 2$ s

1 r*a r(a*)
exp + —lal'

2s*

X 0 dz —:exp —z +z a + +z* a+ — — z — z* —a a: 0
7T $* s 2* 2s

1
exp

Isl
+ —lal' Isl exp lal' —'

2s 2s * 2$

r(a*) =1.
2$*

(2.10)

As the coherent states are overcomplete and nonorthogonal we conclude that

[ U(1)(g)]tU(1)(g) —
1

A similar procedure would show that UU = 1 proving U unitary.
The squeeze operator (1.4) or (1.7) is now easily obtained. For

2 =p ', B=C=O, D=p, s= p p
2

—1",=tanh~.
$ p+p

Substituting these in (2.8) recovers (1.4) and (1.7).
The canonical coherent-state representation of [U' "(g)] is obtained by taking the Hermitian conjugate of (2.1), i.e.,
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[U'"(g) l'= (s") ' 'Isl f f dpdq )(

'"-i*if f dpd. , „',' )(,'
s

q
)
—)/2

l

d2 1

[U(1)(g1)]

r=(s*) ' exp a exp a a ln
2$*

exp
2$*

(2.1 1)

Finally, transforming the annihilation and creation operators under U"' with the aid of (2.8) and (2.11) we obtain an
operator of form (1.1),

a'—:[U'"(g)] aU'"(g)=s*a —ra

a st —[ U(1)(g) ]ta t U(1)(g )
—sa t (2.12)

which satisfy the commutation relation [a', a' ]= l. Equation (2.12) may also be written as Q '= AQ+BP and
P '=CQ+DP.

III. GENERALIZATION TO THE TWO-MODE CASE

As we seek to generalize transformations such as the scaling transformation invoked by squeezing, we consider for
guidance the two-mode squeeze operator U' '(G, )." In the canonical coherent-state representation

U"'(G, )= "' f" dp) f" dp2 f" dqi f" dq2lp)q'), .p2q2&&p)q);p2q2l,
( 2~) —co —oo —oo —co

where

(3.1)

lp iqi p2q2 ~ =

q&

P2

cosh', sinhA,

sinhi, cosh',
0 0
0 0

0 0 q&

—sinhk cosh', P2

0 0 q2

cosh' —sinhA, P]

'q&

P2

(3.2)

As in Sec. II, we express the two-mode coherent state in terms of z, = (q, +ip, ) /&2 and z2 =(q2+ip2 )/&2, so that

'q&
'

Z ]

q2

)
Z ]

Z] pZ2 ~

Pl Z2

5'2 2

In the spirit of (2.4) we generalize (3.1) and consider the following operator:

Z ]

Z

U' '(G)=s f f d s, d ss, IV )(

Z ]

Z*
1

Z2
(3.3)

2 2

with

s 0 0 r

0 s r* 0
0 r s 0

Q Q

where s and r are defined by (2.2) and (2.4) and lsl —lrl =1 as before. The corresponding matrix G operating in two-
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mode phase space will be given in (3.12) and includes the two-mode squeeze operator as will be shown. With this choice
for Wwe recast (3.3) as

U' '(G)=s f f d z, d z ~sz, +rz';rz,*+sz )(z, ;z ~
.

1
1 2 2 1 (3.4)

Using the identity ~00)(00~ =:e ' ':,where b (b) is the creation (annihilation) operator for mode 2, and the
IWOP technique, we integrate (3.4) to obtain

U' '(G)=s f f d z&d z2 ex.p[ —
~s~ (~z& ~

+ ~z2~ )
—r*sz&z2 —rs*z&z2 +(sz&+rzz )a

1

+(rz*, +sz2)b +z*, a+z2b —a a b—b]:

1
:exp

s
(ra b r*ab)+-

s
—1 (a a+b b)

1=exp a b exp (a ta + b "b + 1) In
s

exp — ab
s

(3.5)

The annihilation operators a" and b" transform under U' ' to give

a"=U' 'a(U' ') =s*a —rb, b"=U' 'b(U' ') =s*b ra— (3.6)

and satisfy the commutation relations

[a",a" ]=1, [b",b" ]=1 .

To prove U' ' unitary we write its inverse as

[U' '(G)] '=exp ab exp —(a a +b b +1) ln exp — a b

=exp —(a a +b b +1) ln
1 rexp(r*s*ab) exp — a b

s
(3.7)

and then employ the overcompleteness relation of the two-mode coherent state

1J' f d z&d zz z ~z&, zz ) (z&, zz ~

=1 (3.g)

to write

( U~2~) —
& =eIa ~+b I +&~&n~ e~ ~ ~b r r d2zd2z ~z z ) (z z

~
exp

" atb t (3.9)

We integrate (3.9) with the IWOP technique to obtain

[U' '(G)] '=s* d z&d z2 ..exp —
~z& ~

—
~z2~ +z&a s*+z2b*s*+z& a +z2b +r* zs&z 2

1

z2 —a a —b b
s

=exp ——a b exp (a a +b b +1) ln
s S

r*
exp ab =[U' '(G)]

s
(3.10)
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which completes the proof that U' ' is unitary. We can find the transformation G in phase space giving rise to U' I(G)
by writing

U' '(G)=s f f d z, d z~ ~sz, +rz2;rz,'+sz~)(z, ;z2~
1

'q,

, f dp, f dp, f d"q, f dqG , )( (3.1 1)

and reversing the procedure leading to (2.4) to obtain

1G=—
2 B —C —B —C 3+D

3 —D
3 —D
3+D

3+D D —3 C —B —B —C
2+D —B —C C —B

(3.12)

It is easily verified that detG = 1 and that G is a symplectic matrix, implying that the transformation is canonical. '

In particular, when A =e, B =C =0, D =e", then s =cosh', =s*, r =si nhk=r*, and (3.11) reduces to (3.1). We
have thus shown that symplectic transformations of form (3.12) in two-mode phase space have a unitary-operator image
in Hilbert space that generalizes the two-mode squeeze operator.

IV. GENERALIZED COHERENT STATES GENERATED BY U' ''(g) AND U' '( 6)

The normally ordered unitary operator U" (g) and U' '(G) provide us with a convenient way to generate a generali-
zation (still within the framework of two-photon squeezing) of squeezed coherent states. Let us first consider the
single-mode result.

Under the transformation U (g) of (2.11), the vacuum state ~0) becomes

[U"'(g)] ~0) =(s*) ' exp (a ') ~0) .
2$*

(4. 1)

We now obtain a generalized coherent state by displacing the transformed vacuum state with the operator
D (a) =exp(aa —a*a),

~a)s D(a)[U'"(g——)] ~0) =(s') ' exp
2

+ a — a a
2 s*

I

(4.2)

The states so generated are overcomplete as can be easily seen by using the IWOP technique,
q

f d a—~a) (a~ =
~s~

' f d a —:exp —
~a~ +a a — a +a* a —" a + [(a*) +(a ) ]

7T s s 2$*

I'+ (a+a )
—a a:=l.

2$
(4.3)

To show explicitly that ~a ) is an eigenstate of the operator

[ U(1)(g)]i/Ut 1)(g)

we apply a to la ), giving

(4.4)

a~a) = a — a*+—-a ~a)
s

(4.5)

It follows that

(s*a —ra )~a) =a'~a) =(as*—ra*)~a)s . (4.6)

For the two-mode case we can generalize in a similar fashion. We produce ~00)G by letting U' '(G) act on ~00),
yielding
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U' '(G)~00) =(s*) 'exp a b ~00) .
s

(4.7)

The corresponding generalized coherent state is produced by displacing each mode, i.e.,

~a, P) G =D(a)D(P)~00)G =(s*) ' exp(aa —a a) exp(Pb —P*b) exp a b ~00)
S

=(s*) ' exp (a —a )(b —P*)— +aa +13b ~00) .la I'+ IPI'
(4.8)

We are currently investigating the detailed nature of
these states and speculate that the mixing of the phase-
space coordinates engendered by the squeeze transforma-
tion, so clearly apparent in the classical image, will be
rejected in the coordinate and momentum representation
of these states. The generalized coherent states generated
by canonical transformations in phase space may have
applications in nonlinear optics. When g or G are time
dependent (but still have unit determinant) the states gen-
erated should have application in dynamic systems. %'e
will investigate potential applications of these states in
the future.

two-mode coherent-state representation. The method of
derivation is direct, showing clearly the connection be-
tween the classical transformation and the corresponding
quantum-mechanical unitary operator. The concise eval-
uation of the operators in coherent-state representation
was greatly facilitated by the IWOP technique. The eval-
uation of the general linear transformation operators has
provided a way to generalize the customary two-
parameter squeezed state to a more general three-
parameter squeezed state. The formalism employed
displays clearly the mixing and rescaling of phase-space
coordinates inherent in squeezing.
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