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Dynamical interaction of an atomic oscillator with squeezed radiation inside a cavity
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The dynamical interaction of an oscillator with squeezed radiation inside a cavity is considered.
Exact solution of the dynamical equation is presented using the Wigner function for the combined
system of the atomic oscillator and the squeezed radiation. This solution enables us to study (i) re-
laxation of the oscillator for arbitrary bandwidth of the squeezed radiation, and (ii) effects of
squeezed radiation on vacuum-field Rabi splittings. Explicit results for fluctuation spectra and the
oscillator polarizabilities are given. New resonances in the fluctuation spectra appear as the radia-
tion in the cavity becomes more and more squeezed. Strong narrowing of the vacuum-field Rabi
splitting due to squeezed radiation is predicted. Very large enhancement of the oscillator polariza-
bility at Rabi side peaks is also predicted. The modification of the cavity output due to the atomic
oscillator is discussed.

I. INTRODUCTION

The relaxation of a quantum system in contact with a
heat bath is well understood. ' The normal heat baths are
usually such that there are no phase correlations in the
heat bath. The structure of the master equation for the
quantum system is, however, very sensitive to the nature
of such phase correlations. Recently, it has been
pointed out how the interaction with a broadband
squeezed bath can modify in an important way the relax-
ation of a two-level system. The modified relaxation
equation can lead to important effects such as the inhibi-
tion of the decay of one of the components of the dipole
moment, line narrowing in the fluorescence and absorp-
tion spectra produced by the coherently driven atoms,
and generation of the intelligent spin states by a collec-
tive atomic system. Most of these studies are based on
the assumption that the bandwidth of the squeezed bath
is much larger than, say, the relaxation widths T, ' and
T2 '

~ It is obviously important to understand the conse-
quences of relaxing the above assumption. In a recent
paper Parkins and Gardiner have considered various ap-
proximations for treating the relaxation of a two-level
system interacting with a squeezed bath. In the present
work we treat an exactly soluble model so that one can
understand various limiting cases. We discuss the exact
dynamical evolution of an oscillator interacting with a
squeezed bath of arbitrary bandwidth.

Note that in contrast to the existing works we treat the
interaction of the atomic oscillator with squeezed radia-
tion inside a cavity. We are thus able to answer questions
which one studies in the context of cavity electrodynam-
ics. For example, how does the squeezed vacuum affect
the decay of the atom inside the cavity? Our work can
also answer questions such as how the vacuum-field Rabi
splittings' are affected by the presence of the squeezed
radiation.

The organization of this paper is as follows: In Sec. II
we formulate the basic equation using the Wigner func-
tion for the combined system of the atomic oscillator and

squeezed radiation. This equation can be solved exactly
and various steady-state characteristics such as fluctua-
tion spectra and polarizabilities can be calculated. The
numerical results for such quantities are given in Secs. III
and V. In Sec. IV we give the results obtained by using
the adiabatic approximation. In the Appendix we point
out the differences that arise in the oscillator relaxation if
the oscillator interacts with the squeezed radiation out-
side the cavity. In Sec. VI we discuss how the output
properties of the radiation are modified due to the atomic
oscillator in the cavity. The squeezing spectrum is quite
sensitive to the presence of the long-lived atom in the
cavity.

II. BASIC EQUATION
DESCRIBING THE DYNAMICAL INTERACTION

BETWEEN SQUEEZED BATH AND OSCILLATOR

In this section we formulate basic equations describing
the dynamical interaction between the oscillator and the
bath. Let a and a be the annihilation and creation
operators for the oscillator system of interest. Let cu, be
the frequency of the oscillator. The operators for the
squeezed bath are denoted by b and b with cob represent-
ing the central frequency of the bath. The oscillator in-
teracts with the bath through the interaction

HsB=gh'(a b+ab ) . (2.1)

A. Quantum dynamics of squeezed radiation

In order to study the interaction between atomic oscil-
lator and squeezed radiation, we have to know the statist-
ical dynamics of radiation. We thus consider the dynami-
cal model for the squeezed bath. We rely heavily on the
theories ' " that give the quantum statistics of the
squeezed radiation produced by a nonlinear process. The
dynamical models show that the fluctuations in the
squeezed radiation can be characterized by a Fokker-
Planck equation for the Wigner function Nz associated
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with the density matrix of the squeezed radiation, ~=),+, ) „(b)=., +G(b)*(c),
C

Bt

B2+ (Do &be) .42 (2.2)

[(~P+iGP*)d&ii ]+ [(aP* —iG *P)@ii ]ap*

B2 B2
+2 (D@Ii)+ (Do@~ )

ap ap* ' ap'

(2.5)

D =jr, Do =0, G =iG(c ) . (2.6)

The Wigner function Nz associated with the density
matrix p~ can be shown to satisfy (2.2) with

Here f3 is the c-number variable associated with the
squeezed oscillator. The parameter ~ essentially deter-
mines the bandwidth of the radiation and is related to the
cavity losses and nonlinear absorption in the medium.
The parameter G gives the magnitude of the parametric
coupling and is proportional to X' ' (X' ') for the down
conversion (nonlinear mixing) process and this depends
on the microscopic dynamics of the nonlinear medium
producing squeezed radiation. The D's give the fluctua-
tion parameters. The fluctuations in b are given by a
Gaussian Wigner function. ' The phase-dependent corre-
lations arise from the nonvanishing of G and Do terms.

As an example of how Eq. (2.2) arises, consider the
model for the down conversion' ' which leads to the
generation of the squeezed fields. This model can be
characterized by an effective Hamiltonian

H=ficobbtb+2hcobc c+ (b c —H. c. )
iAG

+i@'(Ebb e ' —H. c. )

The steady-state values of the fluctuation parameters
(B B ) and (B ) are found from (2.4):

IG&c&I'
2 2

(2.7)

G&c)
2K

2 —1

G&c)
(2.8)

1
AX 1,2 4 G(c)+

(2.9)

Thus. the squeezing depends on the parameter IG/vI.
The squeezing in b,Xz increases as IG/a.

I
increases. The

time correlation function has the form

On absorbing the phase of G(c) in the definition of
(B ), the variances in X& =(B+B )/2 and
X2 =—(B B)—/2i are found to be

+i'(e, c e ' —H. c. )+V', (2.3)
lim (B (t+r)B(t) ) =e '+ 'x +ye
f~oo

2
G(c )B +H. c. ,pe (2.4)

where ( b ), ( c ), and a. are defined by

where T represents terms responsible for the decay of the
modes b and c. Here c is the pump mode and c& and c,
denote the coherent fields driving the modes b and c, re-
spectively. Let yb and y, be the decay rates associated
with the modes b and c. We will assume that y, ))y& so
that the pump mode can be adiabatically eliminated. We
also carry out the linearization around the steady state.
The calculations show that the fluctuations of the b mode
around steady state b=(b)+B are described by the
density-matrix equation

Bpg
x(B Bpti —2B—ptiB +p&B B)

Bt

(2.10)

where the parameters x and y depend on the steady-state
properties (2.7) and (2.8). Thus the spectrum of bath fluc-
tuations consists of a sum of two Lorentzians with widths
(~+IGI).

B. Combined dynamics of oscillator and squeezed radiation

We now turn to Eq. (2.2), which generally describes the
generation of the squeezed radiation in most cir-
cumstances. We next consider the interaction of the os-
cillator system with the squeezed radiation characterized
by (2.2). Let @ be the Wigner function for the density
matrix of the combined system of the oscillator and the
squeezed radiation. For simplicity we will assume that
( b ) =0 so that there is no need to distinguish between
the operators b and B. Using (2.1) and (2.2) it is clear
that N satisfies the differential equation

Be
Bt

B . * * B[(aP+ig "a+ iGP* )N]+ [(~P* ig a* i—G * )PN—] +2 (D 4)+ (Do@ ) + (Do +)B2

ap ap* apap* ap' ' ap*'
B2

+ [(I a+i va+ig p)&1&]+ [(I a* —i va* —ig *f3")0&]+ (I @), v= co, —cob (2.1 1)
Bo Ba* Be Bn

where a is the c-number variable associated with the mode a. The I -dependent terms corresIiond to any other source
of damping for the system oscillator and these correspond to a term —I (a ap —2apa +pa a ) in the density-matrix
equation. We will see that the interaction with the squeezed bath leads to additional damping terms under certain con-
ditions. Equation (2.11) is our fundamental equation which describes the dynamics of the system oscillator interacting
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with squeezed radiation. It automatically takes into account the back reaction of the oscillator on the squeezed radia-
tion. Although for calculation it is convenient to work with the differential equation for the Wigner function, we give
for completeness the corresponding equation for the density matrix,

i—va a+(ga b+g*abt)+ b—+ b,p —I (asap —2apa +pata)

D —— (bbtp 2bt—pb+pbb ) D—+— (b bp 2bp—b +pb b)+Do[b, [b,p]]+Do [b, [b,p]] .

(2.12)

III. EXACT SOLUTIONS FOR THE DYNAMICAL PROPERTIES OF THE OSCILLATOR

In this section we discuss the exact solution of the basic equation (2.11). Let P be the column matrix formed by the
mean values of a and b,

g =((a ), (b ), (a), (b)),
then it can be shown from (2.11) that g satisfies

(3.1)

(3.2)

where M is the 4 X 4 relaxation matrix defined by
T

iv+r
lg

lg

—iG*

—i v+ I
lg

iG

lg
(3.3)

(a'&

&ba)

(ata )+—,
'

(bta )

The fluctuation matrix V defined by

(a a)+ —,
' (b a)

(a'b ) & b'b )+-,'

&b'a'& (b'b')

(ab &

&b')

(.tb
&

(b'b )+-,'

(3.4)

satisfies

v = —~v —vM'+zn,
where 2) is the diffusion matrix

r 0
0 2D

0 0
0 2D0

0 0
0 2D0 0 2D

The steady-state value of V can obtained from

(3.5)

(3.6} 4, (a, a*)= 1

m.(r' —4~ @~'}

Xexp[ —(r —4~p~ )

X(pa +@*a' +r)a( )], (3.9)

Note that the basic dynamical equation (2.11) has the
form of a linearized Fokker-Planck equation and hence
its solution can be written down by inspection. The
steady-state solution for the Wigner function @,( a, a* )

[ = f d P 4(a,P)] associated with the oscillator system is

Gaussian,

lim V=2 d~e M e
f~oo 0

(3.7) where

These equations yield the mean values and the fluctua-
tions in the mean values. The spectrum of the oscillator
fiuctuations can be obtained from (3.2) and the quantum
regression theorem, i.e., from

lim (a (t +)ar(t)) =(e™)3&(a)+(e ')3z(ba)
f ~ oo

(3.g)

r=(ata &+ —', p= ——'&ata ) . (3.10)

Note that the result for a normal heat bath will be ob-
tained by setting D0=G =0 whence one gets the distribu-
tion (3.9) with p=0. Thus all the dynamical properties of
the oscillator interacting with a squeezed bath of arbi-
trary bandwidth can be obtained from (3.2), (3.5), and the
Gaussian nature of the Wigner function. The number
distribution associated with (3.9) shows interesting oscil-
latory character' for a certain range of the values of p
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'2s=, +=vT 4 (3.1 1)

for various values of the parameter G (which is responsi-
ble for creating the squeezed radiation in the cavity). As
G increases, the mean oscillator excitation increases. In
fact, (a a ) tends to be equal to the mean excitation
(b b ) [Eq. (2.7)] for the bath. The squeezing properties
of the atomic oscillator are also quite interesting. The
maximum squeezing (50%) occurs at the threshold, i.e.,
as

r Gr approaches ~.
We next evaluate the spectrum of fiuctuations S(5)

defined by

g($) = Re J lim (a (t+r)a(t) )e "dr,
O taboo

z ih

and 7.
In Fig. 1 we show the behavior of the mean oscillator

excitation (a a &
=—n, and the squeezing parameter s,

defined by ( ( a ) =0)

(arb.
units) ly

I
y
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I

r

I
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I
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/

/

l(

rl

l
I

r

ll

r

ll

I l

6 —co cob (3.12)

where the time correlation function (a (t+r)a(t)) is
given by (3.8). We calculate the spectrum of fiuctuations
for several values of the parameters ~ and G. Note that
large values of a correspond to the large bandwidth of the
squeezed bath. It turns out that the fluctuation spectrum
changes remarkably by a change of G provided that I is
small. We thus consider two cases: (a) I~ is large ( &&g)
and (b) ~ is of the order of g —l.

For large ~ and small values of G the fluctuation spec-
trum (Fig. 2) consists of a resonant structure at the ori-
gin. The adiabatic approximation is expected to be good.
As G increases, the adiabatic approximation breaks down
as the bath spectrum now consists of a narrow resonance
in addition to a broad resonance [Eq. (2.10)]. In such a
case the spectrum (Fig. 2) develops new resonances (side
peaks) which become more and more prominent as G in-
creases. The emergence of the new resonances can be un-
derstood on the basis of the eigenvalues of the relaxation
matrix M [Eq. (3.3)]. For I"=v=0, the M matrix has ei-
gen values

1.0

0.5

0.0

FIG. 1. Mean excitation n, and the squeezing parameter s

[Eq. (3.11)]for the oscillator as a function of
r Gr /a. for I =v=O.

Each curve is normalized to its maximum value.

FIG. 2. Fluctuation spectrum S(6) as a function of 6 for
a =10, g =1, 1 =v=0 and for

r Gr =0, 9, and 9.9 (top to bot-
tom). For clarity different curves are displaced. Each curve is
normalized to its maximum value. The starting point on the y
axis for each curve is marked.

r +-'[(~+rGr)' —4r r']'"
2

(3.13)

Thus complex eigenvalues will result if

2rgl & (~+ IGI ) . (3.14)

Thus as
r Gr increases the resonances can appear at

+[rgr —
—,'(a —rGr) ]' with a width (a.—rGr)/2. This

also explains why the side peaks become narrower as
r Gr

becomes close to ~.
We next consider the case when ~ is comparable to g.

This really corresponds to a case when the adiabatic ap-
proximation is not possible even if G =0. The fluctuation
spectrum is shown in Fig. 3. For G =0 the fluctuation
spectrum leads to the usual vacuum-field Rabi splittings
which are broadened as a&0. This figure exhibits the
effect of squeezed radiation on the vacuum-field Rabi
splittings. As G increases there is considerable narrowing
of the vacuum-field Rabi peaks or, in other words, the
Rabi peaks due to the squeezed vacuum can be extremely
narrow and large when G is large, i.e., when the vacuum
is strongly squeezed. For example, the ratio of the peak
heights for G =0.97 and 0.5 is about 230. This behavior
again can be understood on the basis of the eigenvalues
(3.13). It should be noted that we have assumed that the
atoms spend enough time in the cavity so that steady
state is reached. If the steady state is not reached, then
transient characteristics, for example, change in the ener-

gy of the atomic oscillator as a function of time and can
be calculated.

IV. SOLUTIONS FOR LARGE BANDWIDTH
OF SQUEEZED RADIATION

In this section we discuss the limiting case of a
squeezed bath with large bandwidth and we compare our
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FICs. 3. Same as in Fig. 2 but now v=1 and different curves
from top to bottom are of

~ G~ =0, 0.5, 0.8, 0.93, and 0.97.

My+ F (t—), (4 1)

where y is a column matrix with components a, p, a',
and p* and where F(t) is the 5 correlation Gaussian ran-
dom force with

(F, (t)F,"(t') ) =ZS,,5(t t'), — (4.2)

results with the known results. For large bandwidth
squeezed bath the dynamics (2.11) can be simplified by
adiabatically eliminating the degrees of freedom associat-
ed with the bath. In order to keep the analysis simple we
do adiabatic elimination for the special case v=t =0.
The general case can also be treated by standard
methods. We start with the Langevin equations associat-
ed with (2.11). These can be written as

&2 G~2 2 PP &2 ~G~2 2 P P

2ig G
2 /G/2 2 PP*

d . = (—~' l—GI') 'lgl'[happ. (1+IGI') i—G2)p p.

(4.6)

+i G *X)pp] . (4.7)

Igl'
+IGI

(4.8)

Thus the resonant interaction between the atomic oscilla-
tor and the squeezed bath leads to two modes of decay
with increased and decreased decay constants relative to
that for a normal cavity in which case the decay constant
is ~g~ /I~. Note that the dipole near a phase conjugate
mirror has a similar behavior. ' The result (4.8) is similar
to the result of Gardiner on the inhibition of the decay
of the one component of the atomic dipole moment.
However, there are differences which we discuss in the
Appendix. It should be borne in mind that the maximum
value of ~G~ in our model is a and that for ~G~/a~1, the
adiabatic approximation breaks down.

V. EXACT SOLUTIONS FOR THE LINEAR
RESPONSE —ABSORPTION AND MIXING

PRODUCED BY THE OSCILLATOR

In this section we treat the effect of an external driving
field on the oscillator system interacting with a squeezed
bath. Let col be the frequency of the external field driving
the oscillator. The response equations are given now [cf.
Eq. (3.2)],

Note that d &0 even if 2)pp=0. This is because of the
nonvanishing squeezing parameter G. Note that one of
the conditions for the validity of the adiabatic approxi-
mation is that the eigenvalues of the relaxation matrix for
P variables, a+~G~, must be large. The decay modes A. +
associated with (4.4) are given by

with 2) given by (3.6). We next solve equations for p and
p" by setting p=p*=0 and substitute the resulting solu-
tion in the equations for a and a*. This procedure leads
to

—i6t
gext

0
.
g

e i6t 5 co( cob (5.1)

/3

—iG*
lG lg a+ Fp

iga*+F& (4.3) Here g„, is the coupling of the oscillator with the exter-
nal field. Clearly the steady-state response is given by

and

a= —Ig'l~ ig'G
(~' —/G/') (~' —/G/')

(4.4)
i/ =( i5+M), '( —ig,„,)e-

+(i5+M) 3'(ig,'„, )e' '. (5.2)

—ig gG
a- —/G/

P a-2 —/G/2)
(4.5)

The random force f is related to the old random force
via

The first term gives the response at the applied frequency.
The second term gives the response at (2cob —m&). This
latter response is produced because of the interaction of
the oscillator with the squeezed bath. Thus the absorp-
tion spectra are determined by

The diffusion coefficient for the random force f denoted
by d, etc., can be obtained in terms of the 2)'s by using
(4.5),

S,(5)= —Re( i 5+M ),—, '

and the four-wave-mixing response is determined by

(5.3)
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gpijvM(6) i (i 5+M)i3 (&.4)

We present the numerical results for the effects of the
squeezed vacuum on the absorption by an atomic oscilla-
tor in Figs. 4—6. The effects are more dramatic if the os-
cillator by itself has no relaxation width, i.e., it only has a
width due to its interaction with the squeezed bath. If rc

is large (Fig. 4) then there is no noticeable change in the
absorption until G becomes of the same order as K, i.e.,
until the radiation in the cavity is strongly squeezed, then
the oscillator polarizability exhibits new resonances, i.e.,
side peaks which become more and more prominent as G
becomes close to x. This is a new feature which can only
be predicted on the basis of a nonadiabatic theory, i.e., it
would be missed if one had used the adiabatic approxima-
tion of Sec. IV. For K=1, G =0, the absorption spectra
(Fig. 5) exhibit the usual vacuum-field Rabi splittings
with a width which is determined by ~. As the vacuum
becomes squeezed, the Rabi peaks (Fig. 5) become nar-
rower. For even larger values of G the absorption spectra
exhibit a broad structure at the origin. The sidebands are
extremely narrow here. Thus the polarizability of the os-
cillator at the sideband frequencies is enhanced over that
in a normal cavity. For example, the ratio of the peak
heights for G =0.99 and 0 is about 38. Finally Fig. 6
shows the effects of the squeezed bath on the oscillator
polarizability if the atomic oscillator has a width I which
is comparable to ~. Even here the squeezed radiation has
a noticeable effect as is evident from Fig. 6. It may be
added that the results for many atomic oscillators can be
obtained from those for a single oscillator by using the re-
placement g ~g&N.
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VI. EFFECT OF THE ATOMIC OSCILLATOR
ON THE PROPERTIES OF THE OUTPUT RADIATION

FIG. 5. Same as in Fig. 4 but now ~= 1 and curves 1 —4 are
for the values of ~G equal to (a) 0 and 0.8 (b) 0.93 and 0.99.
For ~G~ =0.93 and 0.99 only one component of the doublet is
shown.
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Finally in this section we investigate how the absorp-
tion by the atomic oscillator in the cavity changes the
properties of the output radiation. In order to keep the
analysis simple we discuss the special case of the oscilla-
tor on resonance with the cavity mode and with I =0.
We also set in Eq. (2.12) D =a./2 and Do =O. The quan-
tum Langevin equation corresponding to (2.12) can be
written as

s,(5)
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FIG. 4. Absorption spectrum S,(6) as a function of 6 for
i'd= 10, g =1, I =v=0 and for ~G~ =0, 9.7, and 9.9 (top to bot-
tom). Each curve is normalized to its maximum value. The ac-
tual scale on the x axis for 6 =0 is one-fourth of that shown.

0

FIG. 6. Same as in Fig. 4 but now ~=1, I =1. Different
curves from top to bottom are for ~G~ =0, 0.8, 0.99.
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a = —igb,
b = —ig'a —iGb ~—b+Fb(t),

where the operator force Fb(t) has the properties

(Fb(t) ) =0,
(Fb(t)Fb(t')) =0,
(F,(t)Fb(t') ) =2~5(t t') —.

(6.1)

(6.2)

2out
0.0

-0.08

y&+y2Fb(t)=«)'ib. s+&)'2b. L»
2

(6.3a)

where the "in" field obeys the free-field commutation re-
lations

In order to obtain the properties of the output field we
have to relate the output field to the input field. This can
be done following the work of Collet and Gardiner. '

They identify the random force Fb(t) with the vacuum
fields b;„I and b;„„entering the cavity from two sides.
They thus set

-0.12

FICx. 7. Squeezing spectrum S2,„,(5) of the output as a func-
tion of 5 for no atom in the cavity (g =0, curve 1) and for an
atom in the cavity (g = 1, curve 2). The parameters are
I'= =0, =1, 1GI=0.9.

[b;„(~),b;„(~')]=&(~a—~a') . (6.3b)

Here y] and y2 represent the losses from two sides of the
cavity. The output field is related to the cavity field b and
the input field via

Thus the properties of the output mode can be studied
using the solution of (6.1) and Eqs. (6.2) —(6.4). We quote
the final results for the output field,

( b,„,~ (co)b,„,~ (co') ) =5(co—co')S,„,(co), (6.5)

b,„,~(ro) =Qy, b(to) b;„~(co) —. (6.4) where S,„,(co) is the spectrum of the output fluctuations,

$2

where Vl is the term with IGI ~—IGI. The normally ordered spectra S, ,„,(co) and S2,„,(ta) of the output quadrature
phase x, =(b +b )l2, x2 =(b b)/2i, ca—n be computed similarly. We assume that the phase of G has been absorbed
in the definition of the b's and thus x's are defined in terms of new b's. Calculations show that

IGIS'
2S,.„,(~)=

&'+&'[(~—IGI)' —Igl']+ Igl'
' (6.7)

S2,„,(co)= 2
&'+ &'[(~+

I GI )' —Igl']+ Igl'
(6.8)

The nature of the various spectral profiles thus depends on the roots (3.13). The nature of the fluctuation spectrum (6.6)
is similar to that discussed in Sec. III. The squeezing spectrum has some interesting features. It is clear from (6.8) that
due to the absorption by the atomic oscillator the maximum squeezing does not occur at 6=0. In Fig. 7 we show the
effect of coupling the cavity radiation with the oscillator on the squeezing spectra.
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APPENDIX: MASTER EQUATION FOR THE ATOMIC OSCILLATOR INTERACTING
WITH BROADBAND SQUEEZED RADIATION INSIDE THE CAVITY

In this appendix we derive the master equation corresponding to the Langevin equation (4.4). This is easily converted
into the equation for the Wigner function 4, (a, a ) for the atomic oscillator,

a
Ba (A1)
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Using the correspondence rules between the operators and c numbers, Eq. (A 1) can be transformed to the equation for
the density matrix p, for the atomic oscillator,

=d, , [a, [a,p, ]]+d [a,[a,p, ]]—(a ap —2apa +pa a) d + +—

—(aa p
—2a pa+paa ) d ~

Igl'»
2 (» —

~G~ )

a +H. c. ,p,2(» —G )
(A2)

The master equation (A2) resembles the master equation obtained by Gardiner and others ' for an oscillator interact-
ing with a broadband squeezed radiation outside the cavity. In this case the parametric term [the coherent interaction
term in (A2)], however, is missing. This term aff'ects the decay modes of the oscillator. In the absence of such a term
(A2) implies that

(A3)

Thus it is clear that the dynamics of the atomic oscillator depends on whether one considers its interaction inside or
outside the cavity producing squeezed radiation. This is because the spectral properties of the squeezed radiation inside
and outside the cavity are diA'erent. '
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