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Exact solutions of the nonlinear Schrodinger equation if, +A/=a„/+a) P~(t)~ +a2t()~(t ~, for
which initial conditions can be imposed on a cylinder, are presented. A symmetry group of the
equation is used to reduce it to an ordinary differential equation which is then solved with the help
of a singularity analysis. Solutions are obtained in terms of elementary functions, Jacobi elliptic
functions, and Painleve transcendents.

I. INTRODUCTION

for which the initial conditions correspond to a cylindri-
cal geometry. More specifically, we wish to impose Cau-
chy conditions at some time t = to on a cylinder p=po,

q(x, y, , t)~(, ) (, )=f((O,z),

I:.~4(x y z t))'~((i, ), )=(i„,t,„)=f2(t3 z»

x =pcosO, y =psinO .

(1.2)

The NLSE with a quintic-cubic or simply cubic non-
linearity is physically relevant in many fields. It describes
wave propagation in nonlinear and dispersive media. For
instance, Eq. (1.1) may describe the nonlinear dynamics
of superfluid films for which 1b is the condensate wave
function related to the film thickness and to the
superfluid velocity. ' The NLSE (1.1) also figures in the
time-dependent Landau-Ginzburg model of phase transi-
tions; in this case the wave function f is a complex order
parameter. Another phenomenon governed by the
same equation is the propagation of slowly varying elec-
tromagnetic wave envelopes in a plasma. Other applica-
tions concern hydrodynamics and nonlinear optics. A
similar equation in 1+ 1 dimensions, containing some ad-
ditional nonlinear terms, has been derived by multiple-
scale techniques and describes the modulation of water
waves in the neighborhood of the critical value kh = 1.363
(where k is the wave number and h the depth), for which
the periodic wave trains are unstable. ' Furthermore, in
the (1+1)-dimensional case the NLSE (1.1) is particularly
useful in the description of nonlinear wave propagation in
optical fibers. In this application lb is the electric field
amplitude and a& and a2 are related to the nonlinear re-
fraction index. '

The cubic (1+ 1)-dimensional NLSE plays a privileged

The purpose of this paper is to present exact solutions
of the nonlinear Schrodinger equation (NLSE)

q, +~~= .~+ (Ol~{'+,~le~'.

lb=/(x, y, z, t)EC, a, ER, {a(,az I+ {0,OI

role in the theory of nonlinear wave propagation.
Indeed, it belongs to the class of integrable nonlinear evo-
lution equations that can be interpreted as completely in-
tegrable Hamiltonian systems. ' ' Indeed, historically
the equation if, +t)'j =atg~tb~ played a role compara-
ble only to that of the Korteweg —de Vries equation in the
development of soliton theory. ' ' In more than one
space dimension the cubic NLSE is not integrable: no
Lax pair exists, no linear solution techniques are avail-
able.

The quintic NLSE is not integrable even in 1+1 di-
mensions, still less in higher dimensions. Equation (1.1)
with a2&0 in 1+ 1 dimensions has been shown to have
solitary wave solutions, ' but they do not have the stabili-
ty properties that would justify calling them solitons. To
our knowledge no systematic study of the NLSE (1.1) in
more than one space dimension exists in the literature
and the present article aims at filling in this gap.

Our techniques do not depend on the equation under
study being integrable. They consist of a systematic ap-
plication of group theory to reduce Eq. (1.1) to an ordi-
nary differential equation (ODE) which we then solve
analytically whenever possible. The method is called
"symmetry reduction" and is simple, straightforward,
and mathematically rigorous. It goes back to Lie' and is
described in many contemporary books. ' ' It has re-
cently been applied to many different equations, in partic-
ular to the field equations of the classical relativistic P
field theories, ' ' the Kadomtsev-Petviashvili equa-
tion, ' the Davey-Stewartson equations, the three-
wave equations, and other multidimensional equa-
tions.

The method consists of several steps. The first is to
determine the symmetry group of the considered equa-
tion. For the NLSE (1.1) this is the extended Csalilei
group for a

&
&0 and a 2&0. If either a

&
or a 2 vanish, the

symmetry group is larger, namely, the Galilei-similitude
group, including dilations. The second step is to classi-
fy the subgroups of the symmetry group into conjugacy
classes. For the Galilei and Galilei-similitude groups this
was done in a separate article. Here we are only in-
terested in very specific subgroups, namely, those that
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have orbits of codimension one, compatible with a cylin-
drical geometry, in the space of independent variables.
The requirement that a solution should be invariant un-
der such a subgroup reduces Eq. (1.1) to an ODE. The
final step is to solve the obtained ODE. This we do by
one of two methods. If the ODE is of the Painleve type
(i.e., its solutions have no moving critical points) we
reduce it to a standard form that can be solved in terms
of elementary functions, elliptic functions, or Painleve
transcendents. If, on the other hand, the ODE itself still
has a symmetry group, its order can be decreased by
making use of that symmetry.

The procedure described above is implemented for the
NLSE in Sec. II. In Secs. III and IV we present and dis-
cuss the exact solutions for the cubic and quintic-cubic
NLSE, respectively. Section V is devoted to conclusions.

extended Galilei group 6 (Ref. 26). If a, =0, or a&=0,
but (a „az )&(0,0), the symmetry group is larger, namely,
it is the Galilei-similitude group 6, containing dilations
as an additional symmetry.

A convenient basis for the Lie algebra g of the extend-
ed Galilei group is given by the translations ( T, P; ], rota-
tions J;, proper Galilei boosts K;, and the total mass
operator M. For Eq. (1.1) the basis is realized as

T=B,+a (u 3„—u, B„), P, =B„

(2.3)

M =u 8„—u, B„, I', =1,2, 3 .

The Lie algebra g of the Galilei-similitude group con-
tains an additional element, realized as

II. SYMMETRY GROUP, ITS SUBGROUPS,
AND SYMMETRY REDUCTION

D=2tB, +xB„+yB +zB,—5(u, B„+u 8„)
+2a t( —u, B„+u i)„),

(2.4}

A. Symmetry group

The symmetry group of local point transformations of
Eq. (1.1) consists of transformations of the form

x'=A (x, g), f'=0 (x, g),
x =(r, t)=( ,x, zx, xt3)=(x,y, z, t),

(2.1)

such that P'(x') is a solution whenever A and II are
defined and g(x ) is a solution (the subscript g denotes the
group parameters). Thus the symmetry group leaves the
equation invariant and transforms solutions amongst
each other.

Point transformations can thus mix the dependent and
independent variables, but by definition the new variables
x' and itt' do not depend on the derivatives of the original
variables, e.g. , on the g or P, . A special case of point
transformations are fiber-preserving point transforrna-
tions, for which (2.1) reduces to

x'=A (x), g'=II (x, Q),

. 2

if a, =O

if a&=0.

(2.5)
P'(r', t')=e exp —,'i[(v, R (x—a))+ ,'v (t —to)+a—

Notice that the mass operator M in this case generates a
constant change of phase of the function P and that time
translations and Galilei boosts involve a change of phase
of P, in addition to their natural action on space time.
For further information on the Galilei group and its ap-
plications, see Ref. 28 —30.

The actual group transformations that leave the NLSE
(1.1) invariant are given in Ref. 26. They turn out to be
fiber preserving and linear in the dependent variable,
namely,

r'=e [Rr a+v—(t —to)],

i.e., the new independent variables depend only on the
old independent ones (this, for instance, excludes hodo-
graph transformations).

In order to determine the symmetry group, we use an
algebraic approach, based on an infinitesimal version of
(2.1). We look for the Lie algebra of the symmetry group,
realized by vector fields of the form

where rl; and P are real functions of x, y, z, t, u i, and uz,
where u, and u2 are the real and imaginary parts of g,
respectively. The functions i); and p~ satisfy a system of
linear partial di6'erential equations, called the "determin-
ing equations, " obtained by requiring that the second
prolongations pr V of V should annihilate Eq. (1.1) on the
solution set of the equation. We have obtained the sym-
metry algebra of equation (1.1) in a computer-assisted
manner using a MACSYMA program.

The symmetry group for a, a2&0 turns out to be the

In (2.5), R is a rotation matrix, a represents space transla-
tions, to a time translation, v Galilei boosts to a frame
moving with constant velocity v, A, a dilation, and o; a
constant change of phase.

The method of symmetry reduction for a partial
di6'erential equation involves the construction of solu-
tions that are invariant under a subgroup of the symme-
try group of the equation. When constructing the sym-
metry group, no mention was made of any boundary con-
ditions. If these are added to the equation, they will
cause a syrnrnetry breaking, i.e., they wi11 reduce the sym-
metry group to some subgroup (in the extreme case to the
identity group, i.e., the symmetry can be completely des-
troyed).

A complete classification of a11 subgroups, of the Lie
groups G and 6, was performed in an earlier article.
Here we are mainly interested in subgroups satisfying the
following conditions.

(1}When their action is projected onto the space of in-
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dependent variables, they have orbits of codimension 1.
Their action on (x, t}/) has orbits of codimension 3. Such
subgroups will provide reductions of Eq. (1.1) to ODE's.

(2) They are compatible with Cauchy conditions im-
posed on a cylinder at a time t = to. Hence a basis for the
corresponding Lie algebra will involve the basis elements

[J3+aM,P, +cMI, a, c ER (2.6a)

or

[J3+aM, Ki+cM I (2.6b)

(and at least one further operator).
It turns out that only three types of subgroups of G

and G satisfy the preceding conditions. Their Lie alge-
bras are represented by

q(r, t) =M(p)e~'P'e "()e

p=(x +y )', (9=arctany/x .

The equation for X(p) can be solved and we obtain

(2.12)

SoX=f,dp+X. ,
pM

So MM — +
M3 2 p

(2.13)

a M = (a() —b)M +a)M +a 2M
p

(2.14)

complex second-order ODE for @(g) that can be rewrit-
ten as a pair of real equations for M(g) and X(g). Run-
ning through this procedure for the algebra (2.7), we find
that (2.11) specializes to

L)' = [J3+aM, T+(b —ao)M P3), a ~0, b CR

L2' = [J3+aM P3,D+bM I, a ~0, b ~0

L = [J3+aM, K„D+bMI, a ~0, b ~0 .

(2.7)

(2.8)

(2.9)

where So and go are real integration constants.
The algebras (2.8) and (2.9) both involve dilations and

can hence only be used when either a, =0, or a 2
=0, in

(1.1). If this is the case, then the algebra L i'" of (2.8) and
of (2.9) lead to the expressions

L4 =[D+bM, T P3,J3+aMI, a ~0, b ~0

with conjugacy considered under G .

(2.10)

For a and b Axed each of the preceding algebras
represents a conjugacy class of Lie algebras with conjuga-
cy considered under G for (2.7) and G for (2.8) and (2.9)
(see Ref. 26). Algebras L and L (i = 1,2,3) are mu-
tually conjugated if and only if ( a, b ) = (a ', b ' ).

Subgroups with orbits of dimension 4 in (x,y, z, t) space
may also be of interest. They will reduce Eq. (1.1) to an
algebraic equation that may or may not have nontrivial
solutions. The only subgroup of this type that is of in-
terest in the present contest is generated by

i~(g) gg2 i [—aot +aO —(b/2)lnt]

p

(2.15)

and

i [ aot +—z /4t +a() (b/2)ln—t]

(2.16)

respectively, with 5 as in (2.4).
The functions M(g) and X(g) satisfy a coupled system

of ODE's which we write as

B. Symmetry reduction
2M 1 . M p

4M/' 8$'
(2.17a)

In order to perform symmetry reduction using some
specific subgroup Go of the symmetry group of an equa-
tion, we must first find the invariants of Go and then
rewrite the equation in terms of them. Let [X; ) be some
basis for the Lie algebra of Go. Invariants are obtained
by solving the equations

Xg( xt u )u )2= 0 i = 1, . . . , 1 .

4g (M Mj' )+4/ M——/MAL'+ ——a~/ M
2

=a&M +a2M
—5 for (2. 14)
1 —5 for (2. 15),

For the groups we are interested in and for Eq. (1.1) we
shall always have three elementary functionally indepen-
dent invariants that can be chosen in the form

1 for a2 =0
for a, =0, (2.17b)

I, —:g(x, t),
I2 —= (Ii=itta '(x, t),
I3 =—@*=/*a* '(x, t) .

These permit us to write the solution of the NLSE as

g(x, t) =tIi(g)a(x, t) =M(g)e' ~'ar( t)x, (2. 1 1)

where M (g) and X(g) are the modulus and phase of tI&(g),
respectively. Substituting (2.11) into (1.1) we obtain a

a&a2=0 .

i(a() —a&t —b )np)(r, t))=Cp e (2.18a)

The system (2.17) can be decoupled and we obtain an ex-
pression for X(g) in terms of M together with a nonlinear
ODE for M(g). This equation is of second order for the
cubic NLS equation and the reduction (2.15). It is of
third order in all other cases.

The four-dimensional Lie algebra (2.10) leads to the ex-
pression
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where C is a constant. Substituting into the NLSE (1.1)
we find

erty for certain values of the parameters. More
specifically, the Painleve'test is passed for

4 1 —4a
b =0, IC~ =, 5= —,

' for a2~0, a, =0
a2

(2.18b)

3 a]
a2&0, a =

—,'„, ao —b =
16 a2

(2.21)

2

b =0, iCi'=
a,

6=1 for a2=0, a, ~O .
and for

a2=0, a]&0, a (2.22)

(2.18c)

C. Singularity analysis

y'=F(x, y, y ), (2.19a)

where F is rational iny andy and analytic in x. '
Our procedure is the following.
(1) First submit the equation to the "Painleve test, "

in order to determine whether it satisfies certain neces-
sary conditions for having the Painleve property.
This test is algorithmic and has been implemented as a
MACSYMA program.

(2) If the equation passes this test then we look for a
transformation of the form

y (x) = ",g=g(x)ato (2)+
yto (g)+6 ' (2.19b)

where a, P, y, 5, and g are functions of x that takes the
equation into one of 50 standard forms. ' Of these 50,
44 can be integrated in terms of known transcendents or
at least be reduced to first-order equations. The remain-
ing six define the so-called Painleve transcendents
~I~ . ~~V

We concentrate here on the second-order ODE's ob-
tained by symmetry reduction. The one obtained from
the reductions (2. 15) does not pass the Painleve test for
any values of the parameters involved (except a i =a2 =0,
which is of no interest).

Equation (2.14) itself does not directly have the Pain-
leve property. The test, however, indicates that if we set

Our next task is to solve the ODE's (2.14) and (2.17),
obtained by symmetry reduction. In general this is a for-
midable task, since the equations are nonlinear and com-
plicated. Two systematic approaches are available and
we make use of both of them. One consists of finding the
symmetry group of the obtained ODE, if one exists, and
then using it to decrease the order of the equation. The
second method, which we found to be more fruitful, is to
determine whether the ODE happens to belong to a class
of integrable nonlinear ODE's, namely, the class of
Painleve-type equations. '

An ODE is said to have the Painleve property if none
of its solutions has movable critical points, i.e., singulari-
ties, other than poles, the position of which depends on
the initial conditions. Equations with the Painleve prop-
erty are in general much easier to solve than other ones.
In particular, Painleve and Gambier have classified all
equations of the form

We further note that Eq. (2.13) is invariant under dila-
tions if

So=0, ao=b, aia2=0 .

The symmetry generator has the form

~=pa, —sM aM

and will be used below.

(2.23)

(2.24)

III. SOI.UTIONS OF THE CUBIC
NONLINEAR SCHRODINGER EQUATION

We now consider Eq. (1.1) with p, &0, a& =0, and the
corresponding reduced equation (2.14). We shall obtain
solutions either when (2.14) has the Painleve property,
i.e., a =

—,', or when it has a nontrivial symmetry, i.e.,

So=0, ao=b.
Consider first the case a =

—,
' and put M (p)

= [H (p)]'~ as in (2.20). The function H satisfies

~ ~ H 1 2 2So
H = — H+ H—+2(ao —b)H +2a iH +

2H p 9p2 p H

(3.1)

Since (3.1) passes the Painleve test we transform it to
standard form, following the procedure described, e.g. , by
Ince. ' The result is that we put

H(p)=A(p)W(i)), i)=i)(p)

and choose

2/3 g k 2 —2/38
op ~ 9 op

(3.2)

(3.3)

Equation (3.4) represents four diff'erent cases.
(1) ao=b, So=0. Equation (3.4) then reduces to the

PXVIII equation ' and its first integral is

W'=4m(C+ W2) . (3.5)

(2) ao = b, So&0. We choose

where ko is a real constant, we obtain a "standard" equa-
tion for W(i)), namely,

1 .
~ 2

9(Soai) 1 9W= W~+4W +
6

+ (ao b)gW . —
28' 2'k,' ~ 2k,'

(3.4)

M(p)=[H(p)]'~, H ~0 (2.20) ko =i '(a, So )'—0 (3.6)

then the equation for H(p) may have the Painleve prop- and obtain a special case of PXXXIII. Its first integral is
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W =4W +4CW+1 . (3.7)

9(ao b)—
k 0 4

and obtain the equation PXX

(3.8)

Putting

+4 W2+ 2~ W28' (3.9)

W=u (3.10)

we obtain a special case of one of the six irreducible Pain-
leve equations

u =2u +gu (3.1 1)

that is solved in terms of the second Painleve transcen-
dent u (q) =P„(q).

(4) ao&b, So&0. We put

In (3.5) and (3.7), C is an integration constant and de-
pending on its value we get solutions in terms of either
elementary functions or Jacobi elliptic ones. The physi-
cal meaning of C depends on the model under considera-
tion; usually it is related to the energy of the system.

(3) a 0&b, So =0. We choose
-( + Ig )

g(r, t) =M (p)e
1/3

2&2M= k0
3 p

w(q)
a, , ~ ——k0P2/3+&0.

(3.18)

The relation between W and W given by Eq. (3.5) can be
illustrated by the phase diagrams of Figs. 1(a), 1(b), and
1(c) for C=O, C&0, and C)0, respectively. Since M
must be real W'(rI)/a, must be positive (for ko real).
Since W must be positive, we see from Fig. 1 that we
have 0 + W & ao for C=O or C =p )0 and —p ~ W ~ 0
or p ~ W& ~ for C = —p &0. Thus only the case C&0
will provide finite solutions for W.

Solving (3.5), we obtain solutions (3.18) with
1/3

M= 2v'2 1 1 1 a1)0, C=O
V'a, p p +c2

whereas that of (3.17) varies with p and has a branch
point singularity at p=O. The phase of (3.17) depends on

p, O, and t.
Further solutions are obtained from the Painleve-type

ODE's. Consider first Eq. (3.5). It will yield solutions of
the form

9(a o b) — 3Soa,k0=—
2

'
4(ao b) '—a=i@, g=+1

and obtain the equation PXXXIV

(3.12)
2c1 1

3

1/3
1

cn c)p +cp,
2

(3.19)

~ 0 1 1
W +4o.W —qW—

2W 2W
(3.13)

The general solution of (3.13) is expressed in terms of the
second Painleve transcendent. Indeed, put

' 1/3
1 1

Qa, p

a] &0, C &0 (3.20)

2/3
Cfl C1P +C2,' v'2

W= (V+ V + —,'t));

then V satisfie

(3.14)
2&2c, 1 1

+at p

1/3

a& &0, C &0 (3.21)

tn c p +c2,ZZ3
' v'2

V=2V +gV —2a —
—,
' (3.15)

b —a 0 b —ao &0.e e
'&0 —iverg(r, t)= (3.16)

a,

Equation (3.4) also allows constant solutions for ao=b.
Returning to the wave function P we obtain

1/3

g(r, t) =5'~
P

which is solved by V =Pn(g). Let us now turn to expli-
cit solutions of the cubic NLSE.

We first notice that Eq. (2.14) with a2=0 allows con-
stant solutions. Substituted into (2.12) these provide the
solutions P( r, t ) =0 and

1/2

Xdn c,p . +Cz, —,a, )0, C&01
' v'2 (3.22)

(b) (c)

respectively, where c, and c2 are real constants.
The only nonperiodic solution is (3.19) [when the curve

on Fig. 1(a) has an inflection point at W=O]; it is singular
for p=O and p = —c (which is a physical point if c&0).
Solution (3.20) is periodic and finite everywhere, except
for p=O. The periodic solutions (3.21) and (3.22) both
have poles for

r=c&p ~ +c2=(2n +1)K, n Ez (3.23)

Xexpi[ —,'So ( —a )' p
II-P

I
I

I

I P

+ —,'9—aot +go], a, &0 . (3.17)

Notice that the norm of solution (3.16) is constant
FIG. 1. Phase diagram for Eq. (3.5). (a) C= 0, W = W= 0 is

an inAection point. (b) C = —p &0. (c) C =p &0.
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where 4K is the period of the Jacobi elliptic functions.
Further solutions are obtained from Eq. (3.7). The

solution of the cubic NLSE will be

I ( )
i(0/3 —

aors)P(r, t) =M(p)e'~'~'e

g(p)= 1 1 5 tanr/2+ 1—r+ —arctan — +go,6

4

M =&2S'"0 —a1 P

1/3

[w(~)]'",

with W(r)) satisfying (3.7) and y(p) given by (2.12).
Since g is pure imaginary, we shall put

(3.24)
r=3&3/2(a S )' p '+c2 .

The solution is clearly periodic and singular for
~=m. /2+ 2n vr, as well as for p =0.

For C & —
—,', we obtain a finite solution for 0 satisfy-

ing W2 0 W, . It is given by
. 1/6 1/3

~o
M =&2

W(r))=Q(g), rj=ij
where 0 satisfies the equation

II = —(411 +4CA+ I) .

(3.25)

(3.26)

W, =W= —' W= —1 C= ——' (3.27a)

Figure 2(b) corresponds to three different real roots,

W3 (0 & W2 &
&

& W1

[w'+(w'+ w )'"]l
23 2W 1 1 1

1

4$', +1—oo &C=-
4W1

( 3
4 (3.27b)

Figure 2(c) corresponds to one real and two complex
roots, i.e.,

W, = —2r, W2 3=r+is, 0(r & —,
'

C = 4r +, s =[(—1 —Sr )/Sr]'1

Sr'

(3.27c)

In Fig. 2 we plot Q as a function of Q.
Figure 2(a) corresponds to the case when the polynomi-

al on the right-hand side of (3.26) has a double root, i.e.,

X [ W, —( W, —W2)sn (r, k)]', a, (0
y= —

—,'(2W + W )
'~ J +y

W, —( W, —W2)sn (r, k)

(3.29)
r=(2W + W )' —'(a, S )' p +cz,

1/2
W] —W2

2W1+ W2

The integral in the expression for y in (3.29) is a standard
elliptic integral.

The other solution for C & —
—,
' is singular and corre-

sponds to —~ & 0 & W3 & 0. In this case, we have
1/3

a1 p

[W, + W2+ W2sn (r, k)]'
cn (r, k)

(2W + W )
—[/2 I cn (r&k)dr

W& + W2+ W2sn (r, k)
From Fig. 2, we see that the solutions will always be
periodic and that a nonsingular solution will exist in the
case C ( —

—,
' only.

Solving Eq. (3.7) in the three different cases and in case
of C & —

—,
' for two diferent regions, we obtain the follow-

ing results:

r=(2W]+ W ) —(a/So) +c
' 1/2

W1 —W2

2W1+ W2

(3.30)

M(p) =S,'" 1 1

a1 p

5+sins
1 —sin~

1/2

a, &0 (3 2S)

The amplitude M in (3.30) has poles at r=(2n + I)lt,
where 4X is the real period.

For C & —3/4, we get a further singular solution,
1/6 1/3

M (p) =&2So
a, p

02 (a) (b) 0' (c) A +2r —(A —2r)cn(r, k)
1+en (r, k)

1/2

a1) 0

—I'i r
2 W) - 'W2W -

I -2 I' 1 1+en (r, k)gp = — dr4v' A 3 +2r —( A —2r)cn (r, k)

FIG. 2. Phase diagram for Eq. (3.26). (a) C = ——'. (b)

C & ——.(c) C & ——;for ——(C ~0 the curve will have one

more critical point at 0 = —C/3 (not shown).
A —3r

2A
1

A =8r'+, 0&r & —,
' .8r'

(3.31)
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The singularities of M(p } are at

p =0, ~=2A +4nK . (3.32)

terms of the Painleve transcendent P», we have not ana-
lyzed their reality properties. Finally, (2. 18a) and (2.18c)
provides a solution for a, & 0, a & 1 or a, )0, a

P(r, t) =
3+a,

1/3
9(ao —b)

4p

~ P ( )
'9/3 —bt 'rO

1/3
9(ao b)—

p"3
(3.33)

For a„—b&0, we obtain solutions in terms of the Pain-
leve transcendent P». In the case of Eq. (3.9), they will

take the form IV. SOLUTIONS OF THE QUINTIC
NONLINEAR SCHRODINGER EQUATION

We now have a2&0 in the NLSE (1.1) and in all re-
duced equations. Let us first look at the reduction (2.12)
and the ODE (2. 14). The results of the Painleve test of
Sec. II indicate that we should perform the transforma-
tion (2.20), i.e., M(p)=[H(p)]'/ . We obtain the equa-
tion

For a, )0, the parameters in P, t(g) must be so chosen
that P» is real; for a, & 0, on the contrary, P&, must be
chosen to be pure imaginary.

Finally, Eq. (3.13) also provides solutions in terms of
P&&(g). They are more diflicult to analyze and we shall
not go into them here.

The case when Eq. (2.14) does not have the Painleve
property, but does have a symmetry group is So =0,
ao=b, and a ~—„'. It provides us with implicit solutions,
i.e. , replaces a differential equation by a functional one.

Indeed, putting

y =pM, u)(y}=lnM, z = ——,
we obtain a Riccati equation for z which we transform
into a Bessel equation. Returning to M, we obtain the
functional equation

H 1 . 2a 2S(H+ —
~

H+
2 +2(ao —b:}H+2a,H'

2H p p2 p

+2a2H3 . (4.1)

This equation, as indicated above, passes the Painleve test
if a and b satisfy (2.21}. Moreover, for S„=a=0 (4.1) has
constant solutions. They provide solutions of the quintic
NLSE of the form

g(r, t) =Moe 'e (4.2)

with yo and b constants. The norm Mo in (4.2) satisfies
Mo=0 or

—a, +e[a, —4a2(ao —b)]'
2a2

@=+1 . (4.3)

Since we have M ~0, the constants in (4.3) must satisfy
one of the following relations:

M =e "[c&J,-(Q —2a, pM)

+c, Y,:—,(Q —2a, pM)]' ', (3.34)
a2)0, a, )0, b ao, @=+1;
a2&0, ai 0, b ao, t

= —1;

b
lt/(r, t) =

2a
1

where u)o, c, , and c2 are constants and J and Y are two
independent solutions of the Bessel equation.

As stated above, Eqs. (2.17) corresponding to the solu-
tion (2.15) and (2.16) do not have the Painleve property,
nor any nontrivial symmetry group. We can, however,
look for solutions with a constant value of M. For a2=0,
s=1, we find that M=O implies p=O, a =0, and g=0.
In this case, we obtain the solution

' 1/2
i [ —aot +-z /4t —(6/2)lnf +go]

a2 &0, a, «0, ao &b, a=+1;
a

1a2&0, a, &0, ao b ao-
4a2

' g=+1

a2 0 ai )0 b ao e= 1

a
1a2) 0, a, &0, ao — & ao, a=+1;

4a2
(4.4)

b )0.
ai

(3.35)

We sum up this section by noticing that for a
1

&0 we
have obtained solutions (3.17), (3.20), and (3.29). All of
these are finite, except for a p

' '-type point singularity
at p =0. For a, & 0, we have solutions (3.19), (3.21),
(3.22), (3.28), (3.30), and (3.31). They all have p

' '-type
singularities at p=O. Solution (3.19} is otherwise regular
for p&0 if we take c)0. All the other solutions are
periodic and have either one or two singularities per
period. Solutions (3.16) and (3.35) exist for both signs of
a, . As for the implicit solution (3.34) and the solutions in

X =
—,
' ennea,

3

2

(4.5)

We see that, in two cases, we have the possibility of two
signs: @=+1. Physically, this will correspond to a de-
generate ground state of the system (in addition to the
fact that the zero solution Mo=0 also exists and that the
phase yo is arbitrary). We now proceed to transform (4. 1)
to its standard form, which turns out to be diAerent for
a1=0 and a 1&0.

As in the case of the cubic NLSE, we perform the
transformation (3.2). For a, &0, we choose

3/4 1/4
1 3rt=+ea, V'p,

V'p '
4a2
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and find that W(q) satisfies the equation PXXXI, i.e.,
one of the six irreducible Painleve-type equations,

+ 3 W3+ 4~ W2+ 2~2 W2'

i ( 0/4 —ao t + ro)

1 3M=—
2 a2P

1/4
1

1/2

@=+1
Ev p+cO

(4.12)

2
Soa2+

9 a1 W
(4.6)

We thus obtain a solution of the NLSE in the form (2.12)
with

M(p)=A, ' (p)[P, (rl))' (4.7)

where A, and r) are given in (4.5) and P,v(ri) is the fourth
Painleve transcendent. ' The phase g(p) is then given by
the integral(2. 13).

For a, =0 (and a2&0), the situation is somewhat
simpler, in that we obtain an equation for elliptic func-
tions. Indeed, putting

M (p) =A, '
p

' W(ri)'
1/2

q =
—,'(3r +3s +2rs)', r +0+s, r (s

C = ,'(r+—s—)(r +s ),
a2A, O

4

S = — rs(r +s +rs) &0 .0

(4.13)

ev p+co )0, a2 )0, a, =0 .

The norm M is singular at p=0 and also for +p= E'cp,

which is in the physical region of p if we have ecp &0.
The corresponding phase diagram ( W, W) is given in
Fig. 3(a).

The polynomial P(W) may have two real roots and
two complex ones. They satisfy

r+s
$V1 I $Y2 S W3 4

9-Eq

a2g=4e
3

@=+1,
a = —'

a0=b,
A,06 lR,

A, p' +q

(4.8)

The corresponding phase diagram is in Fig. 3(b), where,
in particular, we may have O=r &s or r &s=0. The
solution of the NLSE, in this case„ is

1/4

[g W(g)]1/2 ir(j) ' 0 ~o

p

(4.14)

with

W 3S
+-, W'+

2a2~,'W
(4.9)

y(g) =

where A,0 and go are constants, we obtain the equation
PXXX —rA +sB +(rA +sB)cn (g, k)

( A +B)cn (g, k) —A +B
' 1/2—rs(r +s +rs)

AB

(4.15a)

Equation (4.9) can be integrated once to yield

S2
W = W' +4CW —3 4 =P(W),

a 2k,0
(4.10)

L

1 (A +B)cn (g, k) —A +B
2e —rA +sB +(r A +sB)cn (g, k)

(A +B) (s —r)—
438

(4.15b)

where C is an integration constant.
First of all, Eq. (4.9) allows constant solutions which

provide the following solution of the quintic NLSE
a2g=& AB 4e
3

X~'/2+(, .

A =(r2+2rs +3s )
/ B =(3r +2rs +s2)

1/2

f(r, t) =
1/8

0
expi 2( —a2Sop )' +—a2p

The integral in the expression for y(g) in (4.15) is a stan-
dard one, reducible to elliptic integrals (see formula

a1=0, a2&0.

—aot +y0
(4.1 1)

Further solutions are obtained by solving Eq. (4.10). The
solutions are very different for a 2 & 0, or a 2 & 0, and we
treat the two cases separately.

Consider first the case a2 &0. The quartic polynomial
P( W) on the right-hand side of (4.10) has four real roots
only if C=O and S0 =0. In this case, we obtain

FIG. 3. Phase diagram for Eq. (4.10). (a) C =S =0. (b)

( C, So )&(0,0); the curve also has a critical point at
8 = —'( r +s)( r +s ) (not shown).



304 L. GAGNON AND P. %'INTERNITZ 39

361.62 in Ref. 35). Since A.a in (4.14) is a real constant,
solution (4.14) actually represents two diff'erent solutions,
each of them defined in certain complementary bands in

p space. Indeed, expression (4.15a) is singular and
changes sign at the singularities

R2
(a)

R2

3 —8
g, =g, +4nK, cn(g„k)=, a =1,2, (4.16)

W(i))=R (g), q=ig

where R (j) satisfies

R2= — R4+4CR— 3SO
a2(0 .

Q2X

(4.17)

(4.18)

The polynomial P (R) on the right-hand side of (4.18) can
have four real roots only for C =So =0. This provides no
real solutions [see Fig. 4(a)]. Four complex roots cannot
occur, so the only remaining case is that of two real and
two complex conjugate roots. We denote the roots

Ri=r,

i.e., twice within each period. In the bands where we
have 8') 0, we choose ko) 0 and vice versa. A simple
analysis shows the P ( W) cannot have four complex roots.
Turning to the case when we have a 2 (0, we see that for
A,o E E expression (4.8) yields r) pure imaginary.

We put

FIG. 4. Phase diagram for Eq. (4.18). (a) C =S =0. (b)
( C,So )&(0,0); the curve also has a critical point at
8 = —'(r +s)(r +s ).

The only singularity of this solution is at p=0. The case
r (s ~0 requires A.o(0 and gives the same solution for
M.

Equation (2.14) for a2&0, a, =0, ao=b, and So=0 is
invariant under dilations. We use this to obtain an impli-
cit solution. Indeed, putting

y =pM, w(y)=lnM, z =w

we obtain a Riccati equation for z, which we transform
into a Bessel equation. The final result is that (2.12) with
y=yo, b =ao, and ai =0 will yield a solution of (1.1) if M
satisfies the transcendental equation

M =e [ciJ &-(Q —3azpM )

R2=s, +cz Y ~3(Q —3azpM )]' ', (4.21)
r+s

34 2
—lq

q
=

—,'(3r +2s +2rs)'~, r &s 0 or 0& r &s

C = —,'(r +s)(r +s ),—

(4.19)

$=4e

1 f (A —8)cn(g, k)+ A +8
2e " (rA sB)cn(g, k)+—rA +sB

1/2—ABa 2

3
X,p'"+g, ,

a2ko4
S = — rs(r +s +rs)&0 .0

The corresponding phase diagram (shown only for the
case 0&r &s) is given on Fig. 4(b). From the figure, we
see that the solution for R will be finite and will satisfy
r ~R ~s.

Transforming (4.18) to its standard form, we find a
solution of the NLSE in the form (4.14) with

(r A sB)cn (g, k}+sB—+r A

( A 8)cn (g, k}+—A +8
1/2

rs(r +s +rs)

where mo, c, , and c2 are constants and J and Y are solu-
tions of the Bessel equation.

To sum up the solutions obtained in this Section, we
notice that they all have the form (2.12), with g{p) given
by (2.13). The amplitude M(p) is given by (4.3) or (4.7)
for ai&0. For ai =0 and a2 &0, we obtain the solution
(4.14) with W(g) as in (4.20). The amplitude M(p) has a

p
' point singularity for p=0 and is otherwise regular

and periodic for 0(p ( ~. A further solution is given by
(4.11). It also has a p

' singularity for p =0 and is oth-
erwise regular and nonperiodic. For a2 &0 and a& =0,
we obtain two types of solutions. They both have p
singularities for p=O. Solution (4.12) has a nonperiodic
amplitude M(p), singular for &p= —eco, which is in the
physical region only if we have @co (0. The other solu-
tion is (4.14) with W(g) and y(g) as in (4.15). The func-
tion W(g) has two poles per period and the amplitude
M(p) exists (i.e., is real) in bands in p space. Implicit
solutions are given by (4.21). Notice also that (2.18a) and
(2.18b) provides a further nonperiodic solUtion, singular
at p=O only (for a2 &0, we choose a & —,', for az &0,
a ) —,

' ).

V. CONCLUSIONS

(r —s) —
( A 8)—

4AB

3 =(r +2,rs +3s )'

8 =(3r +2rs +s )i

O~r (s,ko)0 .

(4.20) In Secs. III and IV we have obtained numerous explicit
solutions of the NLSE (1.1), satisfying initial conditions
of the type (1.2) for a2=0 and a&~0, respectively. The
main properties of these solutions were summed up in the
last paragraphs of the corresponding sections. Here we
shall only add a few comments.



39 EXACT SOLUTIONS OF THE CUBIC AND QUINTIC. . . 305

(1) Our solutions are adapted to a cylindrical geometry
but they are not solutions of the "cylindrical nonlinear
Schrodinger equation"

i g, +g~~+ @~—=ac&+a, glgl +a2&lgl . (5.1)
P

Indeed, the Lie algebra of the symmetry group of this
equation is given by

I T,M I, a, &0, az&0

t T,M, D I, (a„az)&(0,0), a, a2=0 .

(5.2a)

(5.2b)

None of the subalgebras of (5.2) leads to a Painleve-type
ODE.

Thus a careful analysis of the subgroup structure of the
symmetry group of the equation was crucial. If we set
a=O in (2.7), as suggested by the simplest interpretation
of cylindrical symmetry, we would loose virtually all the
solutions presented in this article. In terms of the Cau-
chy condition (1.2), this means that the solutions P(x)
have a prescribed I9 dependence at t =tp on the cylinder
p=po and that we cannot choose f, ((9,z) in (1.2) to be
constant. The emphasis in this article was on the
Painleve-type ODE's. Solutions are, however, sometimes
obtained for other ODE's [see, e.g. , (2.18), (3.34), and
(4.21)j.

(2) Most of the obtained solutions involve periodic
functions of the radius p, and llbl plays the role of a
periodic potential in (1.1). It is hence not surprising that
in some cases, in particular for az &0, we have solutions
de5.ned in bands, i.e., for p satisfying

p, +nKp (p &p2+nKp (5.3)

where Kp is related to the period of the Jacobi elliptic
function.

(3) Each solution presented in this article will provide a
class of solutions when acted upon by the Galilei group,
dilations (whenever applicable, i.e., if a& =0 or a&=0),
and refiections of any of the coordinates x, y, and z (e.g. ,
the replacement 8~ —8). The corresponding group
transformations are given in Ref. 26 and we shall not re-
peat them here.

The physical interpretation of the obtained solutions
depends on the model that leads to Eq. (1.1). The same
goes for the application of the solutions. If Eq. (1.1) is in-
terpreted as arising in a Hamiltonian or Lagrangian
theory, the solutions can be used to calculate the energies
of elementary excitations. They can serve as classical
limits of quantum solutions and be used in a quantization
of Eq. (1.1). The obtained exact solutions can also serve
as the basis of a perturbation scheme and will then induce
further classes of approximate solutions.ACKNOW%'LEDGMKNTS
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