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Experiments with -rotating systems are analyzed from the perspective of a test theory of the
Lorentz transformations which permits, in principle, the verification of the latter's simultaneity re-
lation.

I. INTRODUCTION

The testing of the Lorentz transformations (LT's) is
often referred to as the testing of the line element of spe-
cial relativity (SR). The significance of the experiments
involved in this task is determined with the help of
Robertson's test theory' (RTT). A more recent and wide-

ly referenced test theory of SR by Mansouri and Sexi
is equivalent to RTT, as explicitly shown by MacArthur.

Rotating systems have played a prominent role in the
testing of the LT's. Mansouri and Sexi have discussed
these systems in connection with the time dilation effect.
In the recent literature, this role has become even larger
as they have additionally been used in connection with
the discrimination of transformations such as

x'=y(x —Vt), y'=y, t'=y 't,
from the LT's. ' RTT is not sufficiently comprehensive
for this discrimination, as a result of an assumption it
contains relative to the relation of simultaneity. This as-
sumption has been removed from a revised version of
Robertson's test theory, ' to be denoted as RRTT. The
present paper is concerned with analyses of experiments
with rotating systems from a RRTT perspective.

We shall concentrate on the resonant absorption of
photons in centrifuges and on the coordinated universal
time system (UTC). The Photon and centrifuge experi
ment can be analyzed by a variety of methods. The first
of these methods is due to Mufller, ' who used it in con-
nection with discriminating between the Galilean and
Lorentz transformations. Mansouri and Sexi later
adapted it to RTT, but only in a relatively low order of
approximation. The Mansouri and Sexi result was even-
tually used by Spavieri for distinguishing the LT's from
transformations (1). This use is inconsistent with the as-
sumptions made in the derivation of that result. It is per-
tinent, therefore, to produce analyses of the photon and
centrifuge experiment in the appropriate context, i.e.,
RRTT. This still can be done by several methods and, in
retrospect, the analysis should be carried out in a higher
order of approximation.

The M&lier method of analysis is relatively cumber-
some in orders higher than that of Mansouri and Sexi.
Maciel and Tiomno (MT) have produced a higher-order
analysis by a different, very elegant method. Although
MT do not mention RRTT, they work in the same spirit

of RRTT, since they do not impose ab initio any particu-
lar synchronization procedure. MT conclude that indeed
the photon and centrifuge experiment can be used to
determine whether the LT's or transformations (1) can be
said to be more fundamental. Their work requires some
qualifications. It also requires corroboration by other
methods of analysis, given the potential importance of
their result. For this purpose we have used in a RRTT
context the same elegant method of analysis that Misner,
Thorne, and Wheeler" (MTW) use in a relativistic con-
text. We have found exactly the same result as MT. A
qualification to the MT work is, however, necessary. The
LT s and transformations (1) differ in their respective
concepts of simultaneity. As explicitly stated by Gr@n,
the relativity of simultaneity plays an essential role in the
kinematical resolution' of the Ehrenfest paradox. It fol-
lows that, while there is no Ehrenfest paradox in SR, the
absolute simultaneity relation appears to preclude the ex-
istence of this solution in the context of transformations
(1). Distortions of the disk —in response to the incon-
sistency of the longitudinal and transverse contrac-
tions —may follow. Therefore, if one uses the photon
and centrifuge experiment to distinguish between the
LT's and transformations (1), one has to include in the
analysis of experimental results the possibility of the ex-
istence of such distortions.

Let us next consider the UTC system. This system is
related, by its very nature, to different important topics in
SR. In addition to the Ehrenfest paradox, these are the
Sagnac effect, the comparison of slow-clock transport and
Einstein's synchronization procedures, and the difference
in rate between clocks which move with the same speed
in different directions in the inertial frames to which the
coordinates (x',y', t') of Eqs. (1) apply. These topics
have to be included in any meaningful analysis of the
UTC system, when it is used for discriminating between
the LT's and transformations (1).

The contents of the paper are organized as follows. In
Sec. II we briefly summarize RTT and the kinematical as-
pects of RRTT. We show in Sec. III that requiring a
kinematical solution to the Ehrenfest paradox already
discriminates in principle the LT's from transformations
(1). In Sec. IV we consider in RRTT the Me{lier method
of analysis of the photon and centrifuge experiment in the
same order as in the Mansouri and Sexi derivation and
the Spavieri discussion. The higher-order, MT analysis is
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discussed in Sec. V. The result of the MT calculation is
corroborated in Sec. VI by the MTW analysis. UTC is
considered in Sec. VII. Results are summarized in Sec.
VIII.

II. REVISED ROBERTSON'S TEST THEORY
OF SPECIAL RELATIVITY

In Robertson's test theory, inertial frames are material-
ized by small free-falling elevators. This permits the in-
troduction of Cartesian coordinates. Isotropy is then
postulated in at least one local frame S. In conjunction
with appropriate choices of space-time origins and orien-
tations of spatial axes, the postulate of isotropy enables
Robertson to considerably reduce the number of non-null
independent coefficients in the coordinate transforma-
tions from the frame S to another inertial frame S' of ve-
locity V. Robertson additionally assumes (or chooses, or
imposes) the equality of the to and from speeds of light
and derives a set of coordinate transformations which,
when inverted, can be written as

x'=a(x —Vt), y'=ey, t'= j(t —Vx) . (2)

Robertson uses ideaized experimental results for the
Michelson-Morley (MM), Kennedy-Thorndike (KT), and
Ives-Stilwell (IS) experiments. He thus obtains
goo= —g» = —g22=1, i.e., that the Minkowski metric is
also valid in the inertial frames S'. This, of course, is
equivalent to determining that the coefficients a, e, and j
in Eqs. (2) are the same ones that appear in the Lorentz
transformations. The Robertson proof has eventually
been used by experimentalists as a test theory of the line
element of SR. Neither Robertson nor Mansouri and
Sexi have constructed the dynamics pertaining to the
different coordinate transformations among which the
test theory intends to discriminate.

In 1984, one of us advocated that test theories should
also include dynamical considerations rather than being
restricted to the kinematics. It was also proposed that
the testing of the line element should be based on the
more general transformations

x'=a (x —Vt), y'=ey, t'=hx +j t, (4)

a point that also Spavieri has explicitly made (it is also
implicit in the MT work). These transformations are
consistent with all the aforementioned Robertson postu-
lates, but do not assume the equality of the to and from
speeds of light. This equality implies that

h + Vj =0 (RE)

which, upon substitution in (4), yields (2). The last equa-
tion will be denoted as the Robertson-Einstein (RE) rela-

[Notice that these transformations do not contain those
of Eqs. (1) as a particular case.] The coefficients a, e, and
j, which depend on the velocity V of the transformation,
have to be determined by experiment. Using the Min-
kowski metric in S, dt —dx —dy (c =1), and the trans-
formations inverse to (2), the metric takes in S' the form

ds =goodt' +g'„dx' +g22dy'

tion. The three great optical experiments that Robertson
considers are not now sufficient to determine the four
coefficients a, e, h, and j in Eqs. (4). These three experi-
ments, respectively, imply that ' '

a =ye (MM),

j+ Vh =ay (KT),
j+ Vh =y ' (IS) .

(6a)

(6b)

(6c)

When substituted in Eqs. (4), these three experiments
only permit us to reach the following one-function family
of coordinate transformations:

x'=y(x —Vt),

t'=hx+(y ' hV)t . —

(7a)

(7b)

(7c)

We shall denote Eqs. (7) as the h family. It contains both
the LT's and transformations (1) as special cases.

The four relations (MM), (KT), (IS), and (RE), together
with transformations (4), yield the LT s. The time dila-
tion factor with respect to the frame S is given by j + Vh,
as can be seen from the time transformation in the equa-
tions inverse to (4):

x = Ax'+BVt',

y =Ey', z =Ez',
t =Cx'+Bt',

(8a)

(8b)

(8c)

where

~ =a-'(1+ Vhj-')-',
B =(j+ Vh)

C =a 'h(j+ Vh)

(9b)

(9c)

E=e (9d)

Hence

bt'(bx'=0)=B 'bt =(j + Vh)bt . (10)

III. EHRENFEST PARADOX AND THE TESTING
OF THE LORENTZ TRANSFORMATIONS

We now deal with the Ehrenfest paradox as a basis for
the distinguishability of transformations (1) from the
LT's. This paradox formulates the apparent inconsisten-
cies present in the kinematics of the rotating disk. ' The

Equation (6c) thus implies that the IS experiment deter-
mines the time dilation factor. As first stated by Robert-
son, the KT experiment means that the two-way speed
of light is independent of the velocity of the laboratory.
It translates into the relation (6b) between the time dila-
tion and longitudinal contraction factors, '' respectively,
j+h V and a. Similarly, the MM experiment means that
the two-way speed of light is independent of the path of
the ray. It translates into the relation (6a) between the
longitudinal and transverse contraction factors, ' re-
spectively given by the coefficients a and e.
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premises of the paradox are that the periphery of a rotat-
ing disk is contracted by the factor (1—co R )'~,
whereas the radius, which is transverse to the motion, is
not contracted. The ratio of periphery to radius is no
longer 2' but 2~(1 —co R )' . Notice that we are not
concerned here with the internal geometry of the rotating
disk, but rather with the shape of the disk relative to an
inertial frame comoving with the center of the disk. It is
worth pointing out that in the derivation, say, by
M&lier, ' of that geometry the implicit assumption is
made without explanation that there is no paradox or at
least that the disk in rotation remains a disk. This as-
sumption is unwarranted in a RRTT context ~

The varied solutions to the Ehrenfest paradox span
several decades (see, for instance, Refs. 12 and 16—18).
These solutions leave something to be desired, but further
consideration of these approaches is beyond our scope.
Suffice it to mention that they are inconsistent with the
widely accepted assumption that measuring rods in these
systems have exactly the same length as measuring rods
in the inertial frames in which they are instantaneously at
rest. In other words, the lengths of the rods are indepen-
dent of the acceleration.

We have only encountered one solution to the Ehren-
fest paradox that is consistent with this assumption. It is
due to Gr5n, ' and states that the motion that would
realize the aforementioned contraction of the periphery is
inconsistent with SR kinematics. Hence, in SR, there is
no paradox since its premises are not valid. ' Since the
relativity of simultaneity is essential to the resolution of
the paradox, a nonconventionalist framework is presup-
posed. It is not clear what kinematical solution could be
provided to the Ehrenfest paradox by those who maintain
that the relativity of simultaneity is a matter of conven-
tion.

Let us now consider the same paradox in the context of
transformations (1) and under the assumption that these
transformations may in principle be distinguishable from
the LT's. In Eqs. (1), simultaneity is absolute. Grdn's
stated solution no longer applies. Let us first assume for
simplicity in the argument that the center of the rotating
disk is at rest in the preferred frame S. Then the contrac-
tions or lack of contractions relative to the frame S are
the same as in SR. As a result of the inconsistent longitu-
dinal and transverse requirements to which the paradox
refers, a rotating disk will be subjected to stresses that
will result in strains. Since S is a frame of isotropy, the
disk will be strained (to different degrees at different
points), but will remain a disk if the velocities are not ex-
cessively high. Let us now assume that the center of the
disk is at rest in an inertial frame S' different from the
preferred frame. Such frames are not in general frames
of isotropy. Hence the deformations caused by the
longitudinal-versus-transverse inconsistency may, in this
case, not even permit the disk to maintain the shape of a
disk in the rest frame of its center. In the context of
transformations (1), the specific degree of elasticity or
plasticity of the disk has to be considered in the calcula-
tion of the shape of the rotating disk.

We have just shown that the LT's and transformations
(1) already produce different physics in the case of a ro-

tating disk: in the context of Eqs. (1), a rotating disk
(even) in the preferred frame is not equivalent to a disk
that follows the laws of relativity. The relativistic disk is
only stressed by the forces that give centripetal accelera-
tion to its different points. Disks in a world governed by
Eqs. (1) experience the aforementioned additional stresses
and strains.

A complete analysis of rotating disk experiments for
the testing of SR should include the finding of the shape
of the disk in the context of the test theory. Even if the
disk is elastic and velocities are small, this is not just a
problem of elasticity in the way we presently know it ~

Under the contractions that are involved in the theory of
elasticity, the atoms and molecules become more (or less)
closely packed. By contrast, a change of the scale of
space itself is the case in the contractions of the LT's and
pertinent alternatives. This is an enormously involved
problem which in addition requires the development of a
dynamics for the test theory. Moreover, the complica-
tions increase in the context of testing the LT's and not
just of comparing them with transformations (1). Indeed,
Eqs. (1) and the LT's are just two members in the h fami-
ly, the coefficient h indicating the amount of relativity of
simultaneity present in each member of the family.

In the rest of the paper we shall make the assumption
of the mel1-behaved disk. We mean by this that the disk
does not experience deformations and that, therefore, the
speed of all points in its periphery is the same. As we
have argued, this is inconsistent in sufficiently high ap-
proximation orders (for further details, see Sec. V). How-
ever, since this is the assumption that everybody has
made so far (by not contemplating the possibility of dis-
tortions of the disk), we shall also make it for sorting out
a contradiction between the MT and Spavieri results.
Furthermore, since a dynamics consistent with Eqs. (1) is
not known, the predictions of the test theory for the
well-behaved disk constitute a reference point against
which any non-null experimental results might be com-
pared, if necessary.

We may summarize this section as follows. Gr5n's ki-
nematic solution to the Ehrenfest paradox shows that ro-
tating disks argue in favor of the distinguishability in
principle of the LT's from transformations (1). It also in-
dicates that the testing of SR with rotating systems is, at
some order of approximation, intertwined with the solu-
tion given to this paradox.

IV. MUFLLER METHOD OF ANALYSIS

Next we present a self-contained analysis of the photon
and centrifuge experiment by the M@ller method of
analysis. The experiment is described in Refs. 10 and 11.
Experimental results can be found in Ref. 3. The present
argument differs from a comparable argument by Man-
souri and Sexi' in that we do not assume any unwarrant-
ed simultaneity relation disguised in the form of a syn-
chronization procedure (see Appendix A for details).
Also, the analysis of Mansouri and Sexi is not completely
self-contained, as it is a modification of a similar proof by
Mgller for the Galilean case. '

A plane wave travels in a straight line from emitter to
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absorber. The characteristics of this wave in the frame of
isotropy S will be denoted as (co, k). In the rest frames of
absorber and emitter, the frequency will be called co and
co, . It is a simple matter to relate co, and co to (co, k).
One readily finds '

1 —Uu =1+V (u,' —u' ) .
1 —Uu e

Hence

cu = coo [ I+ [ I +2 (J +H ) ][V. ( u,
' —u' ) ] ) .

(17)

(18)

B 1 —(k/co). u
CO~

—Q)e' B, 1 —(k/co) u,
(12)

The emitted frequency is coo. Furthermore, in the pre-
ferred frame and in a vacuum situation, the ray velocity
of light U is simply given by

e)k kU= ——=
k k

since we have set c =1 (hence co equals k). Thus

B 1 —U u

B, 1 —U u,
(13)

Let us denote by V the velocity of the center of the
centrifuge, at rest on the earth, with respect to the
ab initio rest frame S. As already argued by Spavieri,
the candidate value for this velocity is 10. On the oth-
er hand, typical velocities u, of points of the periphery
of centrifuges relative to its center have a magnitude of
about 10 . We shall define as 6 the quantity 10 and
expand in powers of it. The velocities V and u „respec-
tively, represent one and two powers of 5. We calculate
in third order of 5, the dominant order in which the cal-
culation yields nontrivial results. In this way we obtain

co, =B,(co —k.u, ),
where B, denotes the result of evaluating the function B
of Eq. (9b} for the velocities u,, of absorber and emitter
in the rest frame of the center of the disk. From (11), one
gets

The idealized null result for this experiment, co =coo,
thus implies

J+H = —
—,
' (19)

which is the second-order version of the (IS) relation, Eq.
(6c).

The result just obtained has several implications. Con-
trary to Spavieri's claim, this experiment cannot
differentiate in third order of 6 between the LT's and
transformations (1), since both sets of transformations
satisfy Eq. (19). Similarly, this experiment does not yield
the relativistic one-way speed of light from a RRTT per-
spective, as substitution of (19) in (16) only replaces J for
H (see also Appendix A). Finally, contrary to Mansouri
and Sexi's presentation of results, this is not a first-order
experiment in any meaningful way. Indeed, Eq. (18)
shows that this is a second-order experiment in the veloc-
ities. The same comment applies by reference to Eq. (19),
since J is the coefficient of the second-order expansion of
the function j.

The present authors have carried this method of
analysis to the 6-' order, but only for the configuration in
which emitter and absorber are on opposite ends of a di-
ameter. The calculation is extremely cumbersome. [A
null result is obtained vis -a -vis the discrimination of
transformations (1) from the LT's. The more general re-
sult obtained by MT (Ref. 6) and by the present authors
in Sec. VI also becomes null for this particular
configuration. ]

B

B,
1+(J +H)LI, =1+2(J+H)[V (u,' —u' }], (14)1+(J+H)u

where the parities of j and h have been taken into ac-
count in defining j ( V) = 1+JV + and h ( V)
=HV+ . We similarly have

1 —U-u

1 —U-u,
1 —U-u' —U V

1 —U.U' —U Ve

=1+U (u,' —u' )+(U V)[U (u,' —u' )] . (15)

U=, =U'+V+HU'(U' V) .
1 H(U'.V)— (16)

Under the assumption of the well-behaved disk, u,' —u' is
perpendicular to U'. Equations (15) and (16) yield

In deriving (14) and (15) we have used an expression for
the addition law of velocities that can be found in Ref.
21. The same expression can be used to substitute for U
in terms of U'. We need to do so only in first order since
U multiplies factors which are of the second or third or-
der. Thus

V. ANALYSIS OF MACIEL AND TIOMNO

In their analysis of the photon and centrifuge experi-
ment, MT neglect possible effects related to the Ehrenfest
paradox as being, they contend, of higher order than
those they consider. In other words, they are assuming
that the disk is well-behaved in their approximation. As
justification, they refer to a paper by Ives, ' which does
not actually prove the MT statement. We now show that
the terms that may arise from not having a kinematical
solution to the Ehrenfest paradox in the context of abso-
lute simultaneity are indeed of the fifth order in 6, con-
trary to the MT contention. We then review their
analysis.

The geometry of the well-behaved disk enters the
derivation of the result (19) when we use that
U'. ( u,

' —u' ) is zero. Because of the distortions of the
disk, this term may differ from zero by quantities like
U'. (b,u,

' —b, u' ). Hence the order of the fractional fre-
quency shifts is the order of

~
b, u'~, which is the same as

that of co~b.r'~ and of u' b, r'~ /r' where b, r' represents the
strains in the disk. These strains are due to the different
Lorentz contractions relative to the preferred frame or
frame of isotropy, contractions that now have an absolute
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character and are proportional to (1 —u )
" . Since u is

approximately equal to V+u' and V is the same for all
points of the disk, ~b, r'~/r' may be of the order of V.u'.
We can thus expect distortions of the disk (associated
with the Ehrenfest paradox) of the order of u'( V u'), i.e.,
of the fifth order in 6. In spite of this, and due to the
reasons and purposes stated in Sec. III, we shall continue
the discussion of the MT derivation as if the assumption
of the well-behaved disk were justified. This assumption
is also implicitly present in the work by Spavieri and by
Mansouri and Sexi. As a conclusion to one of their pa-
pers, the last two authors state that the photon and cen-
trifuge experiment, among others, cannot distinguish be-
tween SR and preferred frame theories. The expectation
would thus be that there is an error in the MT derivation
and corresponding result. We deal with this aspect of the
derivation next.

Close scrutiny of the MT derivation shows that their
equation

N(t)=N(0)+coot+ Vvocos[@(0)+snot]+O(voV ) (20)

is incorrect, as substituting t =0 into it shows. One also
observes that in the process of obtaining it, the authors
first differentiate an equation and the result is then in-
tegrated. Such a procedure cannot give anything new but
an integration constant. We have removed this unneces-
sary complication from the derivation. What remains is
just a substitution of Ives coordinates [to follow the name
given by MT to the coordinates on the left-hand side of
Eqs. (1)] in terms of Lorentz coordinates in the expression
for the time-dependent angular coordinates of emitter
and absorber. If one does this, one readily obtains their
Eq. (2) and the remainder of the proof continues without
fIaws. Before we proceed to reproduce the MT result by
an alternative calculation, let us elaborate on the role of
rigidity in the MT derivation and in the contents of the
paper itself.

One readily notices that the role of rotating disks in
the MT calculation is that of providing, at least in princi-
ple, both emitter and receiver with the same Ives speed
[speed defined in terms of the coordinates that enter Eqs.
(1)] in a circular trajectory. The same effect should be ob-
tained if one just assumed that emitter and absorber are
two beads moving with constant Ives speed over a nonro-
tating ring. Rigidity is not of the essence of the calcula-
tion itself; the equality of the Ives velocities is. We can
obtain the MT effect, even in a relativistic world, by pro-
viding emitter and absorber with the program of motion
briefly described as "constant Ives speed over a ring. "
However, we do not want to introduce explicitly a partic-
ular program of motion since the value of the final result,
the frequency shift, will depend on what program of
motion we introduce. We do want nature itself to decide
whether the program of motion will be a particular one,
if simultaneity is absolute, or a difterent one, if simul-
taneity is relative. For this purpose we should choose a
physical problem with a neutrally speci/ed program. It is
then the inner workings of nature, i.e., the dynamics, that
will decide whether the resulting program of motion is
one or another (say, constant Ives speed versus constant
relativistic speed). The particular dynamics that the

world follows will thus manifest itself in the form of
different Doppler results for the neutrally specified prob-
lem. Since one does not know the Ives dynamics, MT
bypassed this difficulty by choosing "rigid rotating disks"
for generating the neutral program of motion. The intro-
duction of Ives rigidity therefore represents an assump-
tion of a practical nature rather than a fundamental,
structural postulate of a theory. It is not a perfect solu-
tion to the problem of the photon and the centrifuge, but
it is a reasonable hypothesis in the context of the testing
of the LT's against transformations (1).

p„' =(E', —p') =(~', —k'), (22)

where fan=1, and where u,
' represents the velocities in

the S'( V) frame of emitter and absorber. All these equa-
tions apply equally well to all velocities V such that V (c
and, at least, to all possible functions a, e, h, and j which
permit a one-to-one correspondence of the coordinates on
the left of Eqs. (4) to the Cartesian coordinates of the
pseudo-orthonormal frames of Minkowski space-time.
Contraction of (21) and (22) yields a scalar. The meaning
of the scalar can be obtained by going to the rest frame of
the emitter (absorber), which is at rest in its proper refer-
ence frame S"of velocity u. Thus

1,0
ds "(u)/dt*'

The contraction (p, u) of the four-vectors p and u is a sca-
lar. The form of this scalar in terms of physical magni-
tudes will depend on the coefficients a, e, h, and j. By cal-
culating in the rest frame of the emitter (absorber) we
have

II

(p, u)= „„=co"[goo(u)]
ds "(u /dt" (24)

where co" is the energy of the emitted (absorbed) photon.
We notice that (p, u) only depends on the coefficient goo,
when referred to the rest frame of emitter (absorber).
Such is not the case in general. We thus have

co"=(p, u)[goo(u)]' (25)

Next we calculate in the comoving frame the scalar (p, u)
for both the emission and absorption of a photon. From
(21) and (22) one gets

co k 0
[dE'( V ) /61t '], (26)

VI. MISNER- THORNE-WHEELER METHOD
OF ANALYSIS

The following derivation of the non-null result by
Mansouri and Sexi (MS) is based on a similar relativistic
derivation by MTW. " The two basic physical magni-
tudes that enter this analysis are the four velocities of
source and absorber and the four momenta of the pho-
tons. They are given by

t

dt, dr & eo.

ds'(V) ds'(V)/dt'



39 TESTING OF THE LINE ELEMENT OF SPECIAL. . . 2883

At this point we abandon the generality of the calculation
of Sec. IV and specialize (26) to a world governed by Eqs.
(1). This is automatically achieved by using in the
denominator the metric that corresponds to Ives coordi-
nates:

ds(V) [(1 y, .u )2 u 2]1/2
dt' (27)

[Notice the appearance of other coefficients of the metric
now that we are referring (p, u) to magnitudes of inertial
frames other than the rest frame of the emitter or the ab-
sorber. ] We thus have

VII. COORDINATED UNIVERSAL TIME

Several authors ' ' have discussed the detection with
stable clocks of variations in the speed of light due to the
motion of the earth. In particular, Spavieri has claimed
that the comparison of readings in the UTC system
amounts to the performing of the extra type of experi-
ment required by RRTT. %'e shall now contest this
claim, for it has been made with neglect of several impor-
tant aspects of this problem: the effect of slow-clock
transport, Sagnac effect, and the different time dilations
at different points on the periphery of a rotating disk.

(co' —k' u' ) [(1—V.u,') —u,
' ]'i

(co' —k' u,') [(1—V u' ) —u' ]' (28) A. Slow-clock transport versus Einstein's
synchronization in the inertial frames of RRTT

where we have used the fact that goo is unity for the
metric that corresponds to the Ives coordinates. At this
point it is convenient to use relativistic quantities for the
next step in the calculation. The wave vector k' does not
go in the direction of emitter to absorber. We relate it to
its relativistic homologue, k', . Thus we have

k'=k'„+co'V=~'(c+ V), (29)

with ~c~ = 1. Hence, in fifth order of 5, we have that the
first factor in the right-hand side of (28) can be written as

co k 'U~

CO k Ue

1 —c.u' —V.u'

1 —cu,' —V u,'

1 —8 —V =1+(V, —V )(1+W),
e

(30)

and the second factor as

[(1—V.u,') —u,
' ]'

=[1—V, —u,
' ][1+V +u' ][(1—V.U' ) —B

' ]'

=I —(V, —V ), (31)

where

V, =V.u', , 8'—=c.u' =c u,
'

Thus

(32)

co" /co", —1 = ( V, —V ) W . (33)

The dominant parts of V, and 8'are, respectively, the
third- and second-order terms so that, in order to get (33)
in fifth order, it suffices to calculate the angles in zeroth
order. Hence

co"/co,
"—1 = u

' V sin(24O)cos(cot +No), (34)

which is the same result that MT obtained by a different
method.

8' = u 'cos@o,

V, —V =2u V cos(cot +@o)sin4&o,

where No is half the angle between emitter and absorber.
We finally have

A familiar attempt at measuring the one-way speed of
light by time-of-flight measurement involves the task of
first synchronizing clocks by slow-clock transport. After
calculating the time of flight of light for different
members of the Robertson family, Spavieri states
without proof that "the time delay measured with the
help of clock transport is equivalent to that given by
Einstein's synchronization, i.e., tF =I.o/c. " By compar-
ison of these two times, Spavieri concludes that this
time-of-flight method can be used to distinguish between
the LT's and transformations (1). Notice that the argu-
ment, if correct, would apply even in inertial frames. In
the quoted statement, Spavieri appears to be misinter-
preting a correct result by Mansouri and Sexi, who ob-
tained that the slow-clock transport and Einstein's synch-
ronization procedures "agree if and only if the time dila-
tion factor is given by the special relativistic value. . . ."
In other words, this time-of-flight measurement is
equivalent to the IS experiment, a result which is corro-
borated by our analysis in Appendix B.

Mansouri and Sexi did not calculate either the times of
fight or the delays by slow-clock transport for the
different members of the Robertson family. We have cal-
culated them in Appendix B. Both the time of flight and
the delay are found to depend on the particular member
of the family. The difference between the times of flight
and the time delays is, however, a constant for all
members of the Robertson family that satisfy the IS rela-
tion. The value of the constant is the time of flight of
special relativity, which is consistent with the Mansouri
and Sexi result. On the other hand, transformations (1)
cannot be distinguished from the LT's since both of them
satisfy the IS relation. Spavieri's result is incorrect be-
cause of his incorrect time delay for slow-clock transport.
Notice, by the way, that in SR this time delay is zero and
not Lo/c.

Coincidentally, one of us (J.Cs.V.) had previously corn-
mitted a similar mistake' ' to that made by Spavieri ~ It
was stated that slow-clock transport cannot give a rela-
tion among the coefficients of the transformations. This
was based on the argument' ' that, if the transforma-
tions are given by differentiable functions, any effect
caused by slow-clock transport with velocity u will go to
zero as u itself goes to zero. This is certainly correct if, in
the expression for the corresponding effect, u multiplies a
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term that does not grow too fast as u goes to zero. Un-
fortunately, the verification of this condition was over-
looked.

B. Measuring the one-way speed of light
in the periphery of a rotating disk using slow-clock transport

ct =2wr+rcot . (35)

From the perspective of observers on the disk, light takes
a time t' to return to P' which, in the first order, is equal
to t. If these observers use Einstein's synchronization on
the rotating disk (i.e., if they set ct =2mr), they .commit
an error (Sagnac effect) given by

rcpt res 2~r5t=
C C

(36)

Rather than "synchronizing a clock with itself" after a
complete turn around the periphery of the disk, we might
wish to synchronize clocks at P' and P", separated by an
angle P. Instead of (36), we would now have

This measurement has not been analyzed in a RRTT
context. We shall not do it here, for the results will de-
pend on the solution given to the Ehrenfest paradox in
the context of transformations (1). However, it is neces-
sary to point out that the Sagnac effect is being over-
looked in the Spavieri argument. For completeness, we
discuss this briefly below.

In a rotating disk, the speed of light is not a constant in
general. ' ' This is why naive Einstein's synchroniza-
tion, At =L /c, does not work and gives rise to the Sag-
nac effect, which is the correction to the incorrect synch-
ronization in a relativistic context. This effect is detect-
able by sending a light signal a whole turn around the
earth. It has been experimentally confirmed by means of
the global positioning system of satellites. ' It has a
trivial explanation from the perspective of an inertial
frame comoving with the center of the earth, which we
briefly describe.

A light ray travels along the periphery of a rotating
disk until it returns to the same point P fixed to this peri-
phery. With respect to the inertial frame S in which the
center of the disk is assumed to be at rest, the point P'
has moved a distance rest, where co is the angular velocity
of the disk and t is the time elapsed. Relative to the
frame S, light has covered a distance ct. This distance is
given by 2mr+ root. Thus

[1—
( V+v) /c ]'

which, in the pertinent order, differs from [1—V /c ]'
by the quantity Vv/c . Multiplication by the time of
travel of the transported clock yields again VL /c, which
represents a kind of Sagnac effect for slow-clock trans-
port also. It follows that if we use slow-clock transport
on the periphery of the disk and, as is also the case in
inertial frames, we do not correct the readings of the
transported clocks, the neglected correction will cause
the velocity of light in rotating disks to appear with the
value c. A similar analysis of these two Sagnac effects
would also have to be done in RRTT before one can draw
any implications from the data of the UTC. Hence
Spavieri's claims in this respect have to be disregarded.

C. Measuring the one-way speed of light
in the periphery of a rotating disk

without slow-clock transport

There is a different time-of-flight experiment that does
not involve a previous synchronization by slow-clock
transport. Let two clocks be located at points P' and P"
on the periphery of a rotating disk. Their synchroniza-
tion is ignored. One studies the evolution, as a function
of orientation, of the arrival times at P" of pulses that
leave P' at regularly spaced proper time intervals. This
time-of-flight experiment seems to be what Spavieri had
in mind when he stated that "Actually the clock trans-
port can be provided by the earth's rotation. . . and no
diurnal changes are observed. . . ." (Notice that the ve-
locity provided by the earth rotation is not the relative
velocity between two clocks that enters the comparison
of the slow clock transport and Einstein's synchroniza-
tion procedures. ) In making his argument, Spavieri fails
to consider that, from the perspective of RRTT, clocks at
different points on the periphery of the disk tick with
different rates. As Gr5n has shown, this has to be con-
sidered even in SR (when the behavior of the clocks is an-
alyzed from the perspective of an inertial frame that is
not comoving with the center of the rotating disk). Be-
fore any conclusions can be drawn as to whether UTC
can be used in this way to differentiate between Eqs. (1)
and the LT's, this difference in clock rates has to be in-
cluded in the analysis in RRTT context.

Let us finally observe that this experiment is similar in
nature to the centrifuge experiment, which has already
been analyzed (for well-behaved disks) in fifth order.

res Pr
c c c 2

(37) VIII. SUMMARY OF RESULTS

where L is the length of the arc between P' and P" and V
is the tangential velocity at the periphery of the disk.
Equation (37) thus gives the correction in rotating disks
for the Einstein synchronization correction of the inertial
case.

Although this effect is very real, it cannot be detected
by using slowly transported clocks on the periphery of
the disk with velocity v. These clocks move with velocity
V+v with respect to an inertial frame comoving with the
center of the disk. The time dilation factor is now given
by

In recent years, contradictory results on rotating disk
experiments have been published in this journal. We
have shown that the analyses by Spavieri were complete-
ly inappropriate and we have reproduced, by an alterna-
tive calculation, the main result in the work by MT.
The conflict has been resolved.

Another result exhibited in this paper is the realization
that the Ehrenfest paradox constitutes in principle a
powerful argument in favor of the distinguishability of
the LT " s from transformations (1). Unfortunately, it has
limited practical value unless a consensus should develop
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as to how one should deal with it in the context of
theories with an absolute simultaneity relation. It inter-
feres with the analysis of the resonant absorption of pho-
tons in centrifuges and other similar experiments.

The relation of different experiments to the determina-
tion of the speed of light has been illustrated. Slow-clock
transport and Einstein's synchronizations have also been
compared in RRTT.
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APPENDIX A: DISGUISING THE IVES-STILWELL
EXPERIMENT AS A MEASUREMENT

OF THE ONE-WAY VELOCITY OF LIGHT

RT's+(MM)+(KT)+(IS)+(XX) =LT's .

[A particular case of (XX) is, of course, (RE).] If

RT's+(MM)+(KT)+(XX)

(A3)

one-way speed, regardless of whether the (RE) relation is
satisfied or not. Suppose now that we were in a hypothet-
ical world in which the (MM) and (RE) relations were
known to be satisfied, for one reason or another, but the
(KT) experiment had not yet been performed. In such a
world the one- and two-way speeds would coincide but
would be direction dependent. If one then performed a
(KT) experiment and a null result were obtained, said ex-
periment might be misinterpreted to determine the con-
stancy of the one-way speed of light although it clearly is
a two-way experiment.

(c) Let us denote as (XX) those relations that satisfy

In Sec. IV we have corroborated the Mansouri and
Sexi result that, in a low order of approximation, the pho-
ton and centrifuge experiment is equivalent to the IS ex-
periment. We now illustrate a few issues that are often
confused in the literature, namely, (a) that IS is complete-
ly unrelated to the speed of light, (b) that a measurement
of the two-way speed of light can be disguised as a mea-
surement of the one-way speed of light, and (c) that, simi-
larly, an IS experiment can be disguised as an experiment
measuring the one-way speed of light. Finally, (d) we
specialize these considerations to the Mansouri and Sexi
analysis of the resonant absorption of photons in centri-
fuges in low order of the velocities.

(a) The relations (MM), (KT), and (RE) represent in-
dependent statements about the speed of light. Thus, at
least three relations between the coefficients of transfor-
mations (4) are necessary to completely determine the
one-way speed of light. The sufficiency of these three re-
lations for the same purpose is shown as follows. Consid-
er the Robertson transformations (RT's) which satisfy
(MM), (KT), and (RE). They can be written as

x'= j(x —Vt), y'= jy 'y, t'= j(t —Vx) . (A 1 )

This subfamily will be written as RT's+(MM)+(KT)
+(RE). Its members do not satisfy, in general, the (IS)
relation. As Eq. (A2) shows, the velocity of light for this
subfamily is a constant, as in SR. The (IS) relation can
thus be said to be independent of the one-way speed of
light.

(b) The (RE) relation amounts to the equality of the to
and from speeds of light and, as a consequence, to the
equality of the one-way and two-way speeds. This rela-
tion has to do only with reversing the direction of the
speed of light, not with changing the orientation of the
path. The (KT) relation, on the other hand, means that
the two-way speed of light is independent of the direction
of the path of light. If the two-way speed of light de-
pends on the direction of the path, so does necessarily the

The relation between the coordinates on the left of Eqs.
(A 1) and Lorentz-Einstein coordinates, j tL, rt ], is

(A2)

=RT's+(MM)+(KT)+(RE),

the velocity of light of the subfamily RT's+ (MM)
+(KT)+(XX) is the relativistic one and the (IS) experi-
ment does not appear to determine this velocity. But if
these two subfamilies do not coincide, the (IS) experiment
appears to determine this velocity. [The reason is that, in
the process of requiring compliance with (IS), one is also
achieving compliance with (RE).] The proper way of
stating this is to say that the four relations (MM), (KT),
(IS), and (XX) together determine the one-way speed of
light, but no subset of these relations does.

(d) We finally consider the family that Mansouri and
Sexi use in their analysis of the photon and centrifuge ex-
periment ~ In the order in which Mansouri and Sexi work
out this problem, two of their undetermined coefficients,
b and d, become unity. In addition, those authors impose
the synchronization relation e =a '/b, which derives from
slow-clock transport in inertial frames. So, their subfam-
ily is

RT's+(b =1)+(d = I)+(@=a'/b) .

The transformations of this subfamily are

x =L —VT, y = Y, t =T+2aVx,

(A4)

(A5)

where u is a coefficient in the expansion a =1+o.V
+ - . For comparative purposes, the subfamily
RT's+(MM)+(KT)+(RE) can be written in the same or-
der as

x=X —VT, y=Y, t=T —Vx . (A6)

Transformations (A5) and (A6) do not coincide (except
for a particular value of a), which means that the velocity
of light of the subfamily (A4) is not the relativistic one.
Transformations (A5), however, become the LT's when
the (IS) relation is imposed on them. This means that the
(IS) experiment will appear to determine the one-way
speed of light (of course, it does not, as we already know) ~

The relations (b =1), (d =1), (a=a'lb), and (IS) togeth-
er determine the one-way speed of light, but no subset of
these four relations does. From the perspective of
RRTT, the difficult part in the testing of the LT's is in
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finding experiments that will yield a relation like e =a'/6,
and which should not be imposed by convention.

APPENDIX 8: SLOW-CLOCK TRANSPORT
AND EINSTEIN'S SYNCHRONIZATION

FROM THE PERSPECTIVE
OF THE REVISED ROBERTSON'S TEST THEORY

OF SPECIAL RELATIVITY

In this appendix, we shall calculate the correction that
has to be introduced in the procedure for synchronizing
clocks by slow-clock transport. This correction is then
taken into account when performing a time-of-flight mea-
surement of the one-way speed of light.

Let two identical clocks at the same point P, read the
same time. One of them is slowly moved from P& to
another point P2 of an inertial frame. Upon arrival at
P2, we would set a clock at P2 to read what the moving
clock reads, after applying a Robertson-slow-transport
correction, which we now calculate.

The line element for the Robertson family is given in
Eq. (40) of Ref. 9. For a slowly moving clock it yields, in
first order of u',

ds= {By '+y[(C/V) —A](V.u')]dt', (B1)

where all the functions are evaluated at V. For u' =0, the
relation between line element and proper time is ob-
tained, namely,

In SR, J +H = —
—,
' and H = —l; thus 6t' equals zero in

the rest frame of P, and P2.
We next calculate the velocity of light in the S' frame

under the usual assumption that it is a constant in
Robertson's preferred frame. When we express the veloc-
ity U' of light in S' as a function of the velocity V of the
laboratory, we obtain an expression that contains the
functions a, e, h, and j evaluated at V, namely, '

eU+V[(a —e) V (U.V) —a]
h V '(U. V)+j (B6)

where U is the velocity of light in the preferred frame.
The functions a, e, and j are even. Furthermore,
a (0)= e (0)=j (0)= 1. Thus, in first order,

U'=U[1 —
A V '(U. V)]—V,

and, therefore, the magnitude U' of U' is given by

(B7)

U'= 1 —(1+H)(e'.V), (BS)

where h has been defined as in Appendix A and where e'
is the unit vector in the direction of U'. The time of
flight in the Robertson family is in first order given by

plication by the arbitrarily small quantity u'. We now ex-
pand 6t' in first oder in V and obtain

ot'= —2V(1/2+ J +H)P~P2+(1+H)(V. n')P&P2 .

(B5)

(B2) t'=P, P2[1+(1+H)(e'.V)] . (B9)

6t'=At' —h~

B(B 'y)
1 2

1

B 'y

y8 '[(C/V) ——A](V.n')P, P2, (B4)

where we have replaced P&P2 for u'At' and where n' is
the unit vector in the direction of u . Notice the disap-
pearance of the arbitrarily large time ht' through multi-

where the subscript u denotes the evaluation of the
respective functions at u. Eliminating ds between (Bl)
and (B2) and solving for dr, we get the expression for the
proper time in terms of the differentials of the coordi-
nates in arbitrary inertial frames. Thus

dr=BB„'y 'y„dt'+yy„B„'[(C/V) —A](V u')dt' .

(B3)
Let b t' be the arbitrarily large time (of S') that the mov-
ing clock takes to go from P, to P2. Let A~ be the corre-
sponding time elapsed in the rest frame of the moving
clock. We use Eq. (B3) to obtain the correction, ot ',

If the clock at P2 has been appropriately synchronized,
a light ray that leaves P, at t =0 arrives in P2 at t given
by Eq. (B9). Through slow-clock transport, the clock at
P2 is reading a time ~ given by t' —6t'. So, although the
speed of light is given in first order by the right-hand side
of (B9) for all members of the Robertson family, we actu-
ally measure an apparent time of flight t' —5t' given by

t' —5t'=P, P2+2V( —,'+1+H)P, P2, (B10)

where we have used the fact that n=e'. If the apparent
time of fiight takes the relativistic value P, P2 (over c), we
obtain J+H = —

—,', which is the second-order version of
the (IS) relation. We again find that this experiment does
not measure the speed of light or a relation of the fourth
type in RRTT. It is really an IS-type experiment.

Finally, by setting J +H = —
—,
' in Eq. (B5), we notice

that the slow-clock-transport correction still depends on
FI. It is not a constant as Spavieri incorrectly claims.
The constant comes only from the combination of (B5)
and (B9), once the (IS) relation has been assumed.
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