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Quantal phase-space analysis of the driven surface-state electron
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The quantum-mechanical phase space of the surface-state electron is studied in the presence of a
time-dependent field, for which the classical dynamics has been shown to be chaotic. A coherent-
state representation of the Wigner function for the surface-state electron Hamiltonian is construct-
ed. This is then used to compare and contrast phase-space characteristics for quantum states initial-

ly in regular and irregular regions of the classical phase space. In particular, the effects of the driv-

ing frequency on the dynamics are examined in detail. We confirm that at larger frequencies, for a

fixed field strength, the quantum phase-space evolution is restricted or localized. This localization is

in contrast with the diffusive behavior still present in the classical evolution. The quantal evolution,

at higher frequencies, appears better characterized by tunneling rather than by diffusion.

I. INTRODUCTION

The ionization of highly excited hydrogen atoms by
microwave photons has generated a great deal of interest
recently. ' Much of the initial impetus came from exper-
imental studies that reported the observation of enhanced
ionization rates. ' The process was seen to be highly
nonperturbative in nature as, at typical experimental mi-
crowave frequencies ( =10 GHz), on the order of 100
photons are required for ionization. In normal perturba-
tion theory this would be a 100th-order process and, con-
sequently, would not be important. The highly excited
nature of the atom (principal quantum number upwards
of n =40), however, implies that the system is not far
from its classical limit. This motivated early studies to
address this problem through the classical dynamics. In
large part, the attention this problem has received has
been provoked by the success of classical calculations in
reproducing novel features in the experiments, ' coupled
with the fact that the classical dynamics, beyond a fre-
quency and field dependent threshold, exhibit a transition
from quasiperiodic to nonquasiperiodic motion. The on-
set of nonquasiperiodic motion is seen as a precursor to
ionization at thresholds lower than those predicted ear-
lier. It is these experimental signatures that make this
system an attractive candidate in the search for quantal
manifestations of nonlinear classical dynamics.

Quantum calculations for this system are inherently
more tedious than the classical ones. In the last few
years, however, a number of such studies have been re-
ported and some insight has been gained into the origin
of the enhanced ionization mechanism in terms of the
quantal dynamics. Further progress has been hindered
by the fact that, in the area of nonlinear analysis, classical
intuition is well developed whereas (nonrelativistic) quan-
tum mechanics is just beginning to deal with such prob-
lems. Ideally, one would like to draw correspondences
between the ideas already present in classical theory with
those in quantum theory. For example, surface of section
plots can give detailed information about the dynamics of
the system. A quantal analogue of the surface of section

would provide similar information about the quantal dy-
namics.

In such an attempt, a function endowed with many
properties of a phase-space probability distribution, in-
troduced by Wigner, has been used to study quantal
phase-space structure for a variety of systems. Much
interest has been displayed in this function as in the clas-
sical limit; it reduces to the classical phase-space proba-
bility density. The body of literature in this diverse field
is vast and we make no attempt to do justice to it but re-
strict ourselves to a few relevant examples. The semiclas-
sical limit in both regular and irregular regions of classi-
cal phase space has been addressed as well as analysis of
the Wigner function for the Henon-Heiles and kicked
rotor systems. These (and other) studies concur that for
some quantal states in the classically irregular region of
phase space the function extends over much of the avail-
able phase space. This is in sharp contrast to its nature in
the regular region.

The Wigner function possesses many properties of the
classical phase-space density though there are some
significant differences. One major difference is that the
function is not positive definite making a direct proba-
bilistic interpretation invalid. However, a positive
definite distribution may be obtained through the pro-
cedure of coarse graining the Wigner function with that
of a coherent state, which then allows more direct com-
parisons with classical phase space. Throughout the pa-
per we shall refer to the coarse-grained Wigner function
as simply the Wigner function (or wave packet) for brevi-
ty. Recently, this technique was used to demonstrate a
dramatic correspondence between the classical surface of
section and the quantal equivalent for the system of the
kicked rotor. This problem, like the present one,
displays the transition from regular to irregular motion
and the agreement was shown in both regions. Before
proceeding, however, an important difference between
the two problems is worth appreciating. In the case of
the kicked rotor the Wigner function can be expressed in
the quantum action-angle representation. It is nontrivial
to do this in our case. This leads to a far less dramatic
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comparison between classical and quantal phase space
and interpretation is restricted to wave-packet dynamics.

In this paper we are particularly interested in address-
ing an important aspect of the microwave ionization
problem. The enhanced ionization seen by experiment
has been understood in terms of a diffusive mechanism,
arising from the transition of the classical motion from
periodic to aperiodic behavior. With increasing frequen-
cy 0, important differences have been reported between
the classical and quantum behavior. The threshold for
this is best expressed in terms of a scaled frequency, Ao,
which is defined as the ratio of the external frequency to
the classical orbit frequency. This purely classical scaling
leads to Ao= [A(a.u. )]/n o, where no is the principal quan-
tum number of the initial state. For values of Qo greater
than one, the quantum evolution exhibits diffusive behav-
ior only at field strengths higher than those predicted
classically. This is a consequence of quantal interference
effects and the evolution, for fields lower than a critical
value, has been described as localized. The criterion for
localization is obtained by mapping the quantal distribu-
tion to the solutions of a Fokker-Planck equation. Here,
we address the question of whether diffusive behavior is
at all present at higher frequencies, in the quantal case,
by studying the time development of the Wigner func-
tion. This is done by contrasting the evolution with that
at lower frequencies as well as the corresponding classical
evolution.

It has also been conjectured that quantal localization
occurs due to the presence of classical barriers to
diffusion. One such scenario invokes invariant non-
periodic trajectories or cantori as these barriers. Cantori
possess gaps through which classical motion can diffuse.
But, if the size of these gaps is less than h (where N is
the number of degrees of freedom), it has been shown
that cantori act as barriers for quantal evolution. ' Ideal-
ly, the Wigner function can be used to test such
scenarios, but locating cantori in the classical dynamics is
extremely difficult. Consequently, in this paper, we will
concentrate on analyzing the quantal phase-space struc-
tures with only qualitative reference to the ideas men-
tioned.

The paper is formatted as follows. In Sec. II we con-
struct the Wigner function for the unperturbed surface-
state electron (SSE) Hamiltonian and describe the numer-
ical calculation of the perturbed problem. Section III
discusses the preliminaries which include choice of the
coarse-graining parameter, use of a finite basis in the
quantal evolution, and interpretation of the Wigner func-
tion plots. We discuss the results of our study of the dy-
namics in Sec. IV. The time evolution of the Wigner
function for varying frequency and field strength is con-
sidered within the context of a diffusive scenario and of
localization at higher frequencies. We conclude in Sec. V
with a discussion of the limitations of this procedure and
possible improvements as well as future work.

II. CALCULATIONS

The surface-state electron Hamiltonian subject to an
external perturbation offers a simple, low-dimensional

model system with which to test ideas of classical sto-
chasticity. Discussions of the relevance of the SSE Ham-
iltonian to microwave ionization experiments and com-
parisons with higher-dimensional versions exist in the
literature (see Refs. 3, 8, and 9, for example). In this pa-
per, we treat the SSE as simply a model system in which
the classical and quantal dynamics are compared and
contrasted. This motivation precludes any detailed dis-
cussion of issues relevant to comparison with particular
experiments, like field switching and the presence of addi-
tional fields.

The unperturbed Hamiltonian is given by

P
—1/x, x )0

Ho(x, P)= + ' (0
while the perturbation is of the form

V(x, t) = Fg (t—)x sin(At ), (2)

where F and fl are the peak amplitude and frequency of
the microwave field. g (t) represents an envelope function
for the field amplitude. For all the calculations reported
here, g(t)=e(t), implying a sudden turn on and otf. It
will be seen that the method developed here is in no way
restricted to this particular choice, and the generalization
to arbitrary g(t) is trivially accomplished. An additional
d.c. field is also sometimes present but that too can be in-
cluded in a straightforward manner. Atomic units are
used in all the equations throughout this paper except
when specifying the external field and frequency when the
scaled variables Fo=noF and Ao=noA are used. As
mentioned earlier, these are classical scaling rules but
they facilitate demarcating the regular-irregular transi-
tion as well as comparison with other works.

The unperturbed bound-state wave functions satisfying
the SSE Schrodinger equation are

P„(x)=, pe t'L„" ', (2p),
n

(3)

where p=x/n and I, ' j, is the associated Laguerre poly-
nomial" and n is the principal quantum number. The
wave functions, P„(x), are the same as R„l(x)/x for 1 =0,
where R„I is a radial hydrogenic function and x has been
substituted for r.

The Wigner function defined for a coordinate space
wave function P is

1
IV(x,p) = —f dq exp( —2ipx )P*(x +q)P(x —q) . (4)

where a= &co(q+ip /co) and co is the coarse-graining pa-
rameter. Thus, the coarse-grained Wigner function is
defined as

Smoothing or coarse graining with another Wigner func-
tion yields a positive definite distribution function. A
form of coarse graining that has a simple interpretation
uses a coherent state wave function

1/4

exp ——(x —q) +ip x ——CO 2 . q
2 2
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qi(q, p) = f f dp dq W&(q, p)W~(q, p),
where W& and W+ represent the Wigner functions of it
and N, respectively. It can easily be shown that, in this
case,

where the q and p dependence is contained in the parame-
ter a [cf., Eq. (5)]. qt is now a positive definite function
that can be interpreted as a probability density. By ex-
panding the Laguerre polynomial in Eq. (3) as a power
series in x and integrating each term, we obtain

ip 1
exp ————+2' n 6 2'

n —
1

X g (
—1)"'(m +1)

m=0
(m +2)/2

4
exp( z /4)D—

I,„+z ~
(z),

cal and quantal dynamics and, to reiterate, there is evi-
dence of some significant differences.

Having obtained the coefficients c„(t) by numerical in-
tegration, the time evolution in phase space is easily real-
ized. Using the expansion (9) we find

qt(q, p, t) =
I ( p(t) ~+ &

~'= g c„*(t)c (t)@„e
n, m

where ili„= ( ili„~ @ & ( iIi
~ P & and is the coarse-

grained equivalent of a Moyal function. ' The quantal
phase-space dynamics may be studied using +(q,p, t).
The eigenvectors it, of the time evolution operator can be
similarly treated using the expansion (10) to get

(12)

It is clear that coherence effects due to quantum interfer-
ence occur through the summations in (11) and (12).
Structures in the quantal phase space, during the course
of evolution, are a consequence of these effects.

g(t) =g c„(t)(ii„e (9)

where F., are the unperturbed energies. For studying the
long-time dynamics, it is simpler to exploit the periodici-
ty of the Hamiltonian to construct and diagonalize the
one-cycle time evolution operator U such that
c (T)= U(T, O)c( )0where T=2irIQ The eige.nvalues,
exp(in, ), and eigenvectors, P, , of U are given by

Ug, =e "f, and i(, =g 3' P„. (10)

The time-averaged transition probabilities are easily ex-
pressed in terms of P, . This procedure is, however, limit-
ed to sudden switching of the field and hence, to maintain
generality, we construct the dynamics in terms of the ex-
pansion coefficients c„(t). The classical transition from
regular to irregular motion is manifest both in the distri-
bution of the eigenvalues co, (Ref. 13) and in the projec-
tion of it, shown in Eq. (10).' However, neither is a
direct indicator of the extent of similarity between classi-

where co=n e~, z =(1—qS —ip ) I tIei, and D,„ is a par-
abolic cylinder function. '' In all the equations A has been
set to 1 (atomic units). At this juncture, it should be
stressed that we do not use A' as a parameter to get the
classical limit, but rather look at the quantum-
mechanical wave packet dynamics associated with A'= 1.

To study the interaction with the oscillatory electric
field we need the Schodinger wave function P(t) of the
full Hamiltonian, H =H„+ V(t) We get .it by a close-
coupling calculation as described in Ref. 12. We will out-
line the procedure here for completeness and as a refer-
ence for further discussion.

The solution to the time-dependent Schrodinger equa-
tion may be obtained numerically through an expansion
in P„

III. PRELIMINARY ASPECTS

Before discussing the results, there are a few aspects of
this treatment that need to be clarified. Numerical trac-
tability forces the choice of an incomplete basis set for
the expansion (9) and finite basis eFects can appear. '

The main consequence is reAection of probability if the
evolution encounters the end of the basis. By choosing a
large basis and by restricting the time of evolution, finite
basis effects can be minimized. Also by varying the size
of the basis, we have verified that the conclusions of this
paper are not affected by the use of a finite basis. A relat-
ed issue is our exclusion of the continuum in the expan-
sion (9). This is justified partly by our interest in the
transition from regular to irregular dynamics within the
bound states. Further, calculations using Sturmians and
box-normalized continua point to the negligible role of
the continuum for the field parameter values we consid-

15

As mentioned earlier, the value of A is 1 for all the re-
sults presented in this paper. This is in contrast to most
other studies that use the Wigner function to examine
quantum systems whose classical analogues are nonin-
tegrable. In these, A is used as a parameter in order to
semiclassically resolve structures in classical phase space.
However, having 6=1 is consistent with our purpose of
looking for strictly quantal analogues of classical stochas-
ticity.

It is useful at this juncture to discuss the motivation
for the choice of parameters. We begin with our choice
of the coarse-graining parameter co. The driven-SSE sys-
tem is examined by an expansion of its Wigner function
in terms of Moyal functions of the unperturbed system.
Thus, cu must be chosen for the hydrogenic Moyal or,
equivalently, hydrogenic Wigner function. For the
coherent state, co represents the frequency of a corre-
sponding harmonic oscillator. The natural frequency for
a surface-state electron in a state labeled by a principal
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quantum number n is 1/n . Setting u to be the natural
frequency of the unperturbed system was proposed and
discussed by Husimi, ' in the context of thermodynamic
Wigner functions. Though the applicability of Husimi's
analysis to this case is unclear, this choice of co appears
intuitively correct for this problem. Criteria for the
choice of co can be obtained from the uncertainty rela-
tions for q and p, as co determines the extent of quantal
Auctuations for the coherent state. For the coherent
state, (5),

b, q =&Pi/2' and b,p = &fico/2. (13)

(bp)~=(&p)'„+

where 0 designates the coarse-grained Wigner function
and n the nth hydrogenic state. Further, (b,q)„—n and
(bp)„—n . From (14) we see that the two widths are
approximately equal if the following condition is satisfied:

1 2((m ((
271 n

(15)

The choice of co= I /n ensures (15) for large n Obviou. s-

For the coarse-grained Wigner function the widths are
given by'

(bq )~ = (hq )„+ 1

(14)

ly, this choice is not unique, and this fact will be used
later in the discussion.

In order to clearly demonstrate the effect of varying
the coarse-graining parameter, Fig. 1 shows the Wigner
function for the unperturbed SSE for three representative
values of co, co=0.01co„, co, , and 100co„, respectively,
where ~, =1/n . The range of variation of x is 0 to
25000 a.u. and the range in p is —0.05 to +0.05 a.u.
The Wigner function plotted is for the state with princi-
pal quantum number n =63. In units of co„, re= I [Fig.
1(c)] is the case that has been used for all calculations re-
ported in this paper. Also shown for comparison, in Fig.
1(d), is a classical trajectory for initial action correspond-
ing to the quantum state n =63. It is clear that the co=1
case best corresponds to wave packet described above.
The peak occurs at p =0 where the electron spends most
of its time and for large momenta, we see that the Wigner
function trails off. For the cases of co not equal to the
natural frequency, we see that the wave packet is
"squeezed"; the width in p or q is exaggerated depending
on cu being greater than or less than 1/n . This clearly
demonstrates that co=co, is the proper coarse graining
for the unperturbed SSE Wigner function. This also
shows that at t =0 we get correspondence between quan-
tal and classical phase space. Any differences that devel-
op at later times are, thus, a consequence of the dynam-
1cs.

In the expansion (11), we cannot have co= 1 ln for
every n in 4„; a specific co must be chosen. We use

(c)

~RRRR$I& I I' l'e
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FICJ. 1. Quantal phase-space density as a function of the coarse graining. The coarse-graining parameter co is in units of co„where
co„=1/n . n (=63) is the principal quantum number. The value of co is (a) 0.01'„,(b) 100.0co„, and (c) cu„. (d) is a classical trajecto-
ry for action equal to 63. The axes for the 30 figures are as follows in a.u. : p: —0.05 to +0.05 and x: 0 to 25 000.
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FIG. 2. Unperturbed Wigner function corresponding to quantal states: (a) n =63 and (b) n =100. The same coarse graining was
used in both cases, co= 1/63'.

co=1/no where no is the quantum number of our initial
state. However, (15) gives some latitude in the value of
co, and for our basis we still satisfy (15) by choosing
co=1/no. To illustrate this and show how the unper-
turbed Wigner function appears, Fig. 2 shows the unper-
turbed Wigner functions for n =63 and 100 with
co= 1/63 for both cases. Both the three-dimensional
plot and the contour plot of the Wigner function are
shown, with the x and p scales shown for the contour
plot. In Fig. 2(a), we see the Wigner function peaks at
about 8000 a.u. which corresponds well with the classical
trajectory in Fig. 1(d). In general, the peak of the Wigner
function of an unperturbed n is located at x =2n and

p =0, corresponding to the turning point of the classical
trajectory. It can be easily verified that the n = 100
Wigner function in Fig. 2(b) with peaks at 20000 a.u. and
the n =63 peak at 8000 a.u. satisfy this condition.

A few remarks need to be made concerning the range
of variation of the Wigner functions shown. The range of
x and p used does not completely enclose the entire densi-
ty distribution. This is seen by the bumps at the edge for
large momentum and small position in Fig. 1(c). The
range in x and p has been chosen to optimally resolve the
important features in phase space. The probability out-
side this range is smaller than the resolution of our con-
tour plots and no discernible behavior occurs.

All the contour plots show the same set of levels.
These are 2X10, 9X10, 4X10, 2X10
8.7X10, and 4X10 . The values of the levels were
chosen using a logarithmic scale in order to get the full
range of heights. The plot height of all the three-
dimensional (3D) plots are not the same but are scaled for
maximum resolution. Therefore, the contour levels

should be used to determine relative heights. The range
of phase space calculated is 0—25000 a.u. for x and
—0.05 to +0.05 a.u. for p. These ranges apply both to
the contour and 3D plots.

IV. DISCUSSION

In assessing the time evolution of phase-space probabil-
ity we considered a range of the external field parameters,
namely, the frequency and field strength. However, in
the course of this discussion we restrict ourselves to a few
representative cases to illustrate the features seen. To ex-
plore the question of stability we begin by considering the
time evolution of the phase-space density corresponding
to the initial conditions in the classically regular and ir-
regular regions. Figures 3 and 4 show such an evolution
when starting with a Wigner function of the n =63 state
with field strengths Fo =0.04 and with frequencies
00=0.3 and 0.7, respectively. Changing the frequency at
this value of the field strength is sufficient to put the ini-
tial state above the threshold for classical stochasticity.
Figure 3 shows the evolution for an initial condition in
the classically regular regime ( Qo =0.3 ) while Fig. 4
shows the evolution from an initial condition in the irreg-
ular regime (Do=0.7). In units of the external time
period T=2~/Ao, the progression of the wave packet at
times t =0, T, 5T, and 10T is shown. In the regular re-
gime the evolution produces oscillations in the density
distribution with little movement in the position of the
central peak. The Wigner function stays in approximate-
ly the same region of phase space, but it redistributes it-
self within that region. In contrast, in the irregular re-
gime, the density evolves to higher values of x (Fig. 4). It
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delocalizes to the top of the basis after a very short time,
on the order of five cycles. We considered the transition
from the regular to irregular regime by varying the fre-
quency so as to maintain the same initial state, n =63.
For the case 00=0.7, the state n =55 is in the classically
regular region and we have confirmed that its evolution is
like that for the regular state n =63 at O,o=0.3. It is
clear that for these parameter values, the phase-space dy-
namics shows a dramatic difference when starting in clas-
sically regular and irregular domains.

The parameter values considered do not satisfy the
condition for the onset of quantal suppression effects.
Let us now increase the driving frequency to determine
whether the pattern of evolution for quantum states in
the irregular regime persists on approaching the localiza-
tion threshold. In Figs. 4 —6, we show the evolution for
frequencies Slo=0. 7, 1.5, and 2.5, respectively. In all
three cases the field strength FO=0.04 and the initial
condition n =63 is in the classically predicted irregular
regime. In each case, the figures plot the density at times
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FIG. 3. Time evolution for parameters Fo=0.04, no=63, and 00=0.3. The times plotted are (a) 0, (b) T, (c) 5T, and (d) 10T, re-
spectively, where T=2~/0„. The initial state is the unperturbed n =no state.
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t =0, T, 5 T, and 10T where T is the period of the exter-
nal field. As we are varying the frequency, the density is
not shown at the same physical times. This does not alter
any of our conclusions and we demonstrate this a little
later by considering the evolution over long times.

Let us now examine the evolution of the phase-space
density in detail. Even at the end of a single cycle of the
external field the eft'ects of increasing Ao are clearly visi-

ble. While the initial state for all cases is peaked at about
8000 a.u. =2n, part of the DO=0. 7 case has evolved in q

space to about 10000 a.u. In contrast, both the Do=1.5

and 2.5 have not evolved at all. In fact, in the case of
O,O=2. 5 there is no perceptible diA'erence between the

distributions at t =0 and t = T. For Bo= l. 5 the Wigner
function has redistributed its probability within the t =0
phase-space regime, much like the behavior in the regular

regime. It appeases that increasing Ao at least slows the

flow of the wave packet to increasing q even for very

short times.
At the end of five cycles there is a dramatic change in
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FDIC&. 4. Time evolution for parameters Fo=0.04, no=63, and 0,~=0.7. The times plotted are (a) 0, (b) T, (c) 5T, and (d) 10T, re-

spectively, where T=2wlQ„. The initial state is the unperturbed n = no state.
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the O,o=0.7 Wigner function. The phase-space density
extends beyond 20000 a.u. , which corresponds to the
neighborhood of the n =100 state. The initial wave pack-
et separates into smaller wave packets and the propaga-
tion of each appears coherent. It should be noted that
the size of the small separated parts is significant on the
scale of a phase volume. The O,o= 1.5 case has evolved to
about 10000 a.u. (2 X 71 ), far less than the previous case.
However, the density flow up to 10000 a.u. is very small;
the bulk of the wave packet remains distributed much the
same as at t =0, although there has been a rearrangement

within that region. Here again the similarity with the
regular regime is striking. Higher still, at 00=2.5 the
center of the wave packet has not appreciably moved.
Thus, for 00=1.5 and 2.5 practically no Outuard evolu-
tion in coordinate space has occurred after five cycles; the
densities only redistribute themselves within the original
region of phase space. But for the 00=0.7 case there is
significant evolution outward through the splitting of the
original wave packet into smaller pieces.

By ten cycles the Do=0. 7 Wigner function has encoun-
tered the edge of our basis, and therefore we see reflection
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FIG. 5. Time evolution for parameters F0=0.04, no=63, and 0„=1.5. The times plotted are (a) 0, (b) T, (c) 5T, and (d) 10T, re-
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effects. For 00= 1.5, there is only insignificant Aow

beyond 10000 a.u. (2X712). The only contour observed
is the lowest at 4X10 . The localization is more pro-
nounced at Q,o=2. 5 where there is no Aow at all beyond
10000 a.u. which corresponds to n =71. Therefore, it is
already clear that the low-frequency case evolves in q
space quite readily in contrast to the higher frequencies.
The question now is whether the higher-frequency densi-
ties evolve further in q over longer times, or whether they
remain localized.

In the cases considered, we confirm the qualitative
agreement between the classical and quantal (Wigner
function) distributions for short times (up to 10T), shown
earlier. It is, however, on longer time scales that the
differences between quantum and classical evolution be-
come apparent. In Figs. 7 and 8 the densities for DO=1. 5
and 2.5 are plotted at times t =20T, 30T, 80T, and 100T.
With these interaction times we have realized the time
scales over which Casati et al. report differences in
quantum and classical behavior.
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FIG. 6. Time evolution for parameters Fo=0.04, no=63, and 00=2.5. The times plotted are (a) 0, (b) T, (c) 5T, and (d) 10T, re-

spectively, where T=2~/Qo. The initial state is the unperturbed n = no state.
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Both Figs. 7 and 8 show some evolution beyond 10000
a.u. for Q,p=1.5 and 2.5, respectively. By 20 cycles the
Ap: 1.5 plot shows a significant fraction of the density
has evolved to just above 10000 a.u. A discernible piece
has reached 18000 a.u. =2X95 at 30 cycles. By this
time, there is a more appreciable fraction from 10000
a.u. to just above 15 000 a.u. =2 X 87 . The picture does
not change much for the longer times of 80T and 100T
except for growth of the peak at 15000 a.u. All of the

structure that has flowed from the original wave packet is
of a size larger than h. Going to the O,p=2. 5 case, the
density distribution at t =20T is not qualitatively
different from that at shorter times. There is, however,
some probability at about 10000 a.u. After 30 cycles a
small fraction of the original wave packet evolves beyond
10000 a.u. , but it is of the order 4X10 (the lowest lev-
el). For both the 80- and 100- cycle plots the furthest ex-
tent is 15000 a.u. , but it is very small. There is some evo-
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FIG. 7. Parameters same as in Fig. 5. Times considered are t =20T, 30T, 80T, and 100T.
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lution as seen by the amount of probability ( —,', the main

peak) at 12 000 a.u. at t = 100T.
While there is some flow to higher values of q in Figs. 7

and 8, it is not of the same magnitude as that seen in the
Go=0. 7 case in just five cycles. By this time in the 0.7
case the distribution had reached the end of our basis.
The higher-frequency cases do not achieve this even at
the end of 100T. Thus, a factor of 2 or 3 change in fre-
quency leads to more than a factor of 20 in evolution
times. It would seem that the time scales for the high-

frequency evolution are disproportionately longer than
the low-frequency cases.

Let us now consider the classical dynamics over the
time scales shown in Figs. 7 and 8 ~ We have plotted in
Figs. 9 and 10 the classical Poincare sections at times
20T, 30T, 80T, and 100T, for frequencies O,O=1.5 and
2.5, respectively. The plots are in x and p although the
dynamics was evaluated in an action-angle representa-
tion, ' as this is more consistent with our strictly bound-
state quantum evolution. The plots were created using
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1000 initial values of the angle evenly distributed at an
action Io =63. This classical ensemble corresponds to the
quantal initial condition. A cutoff at a scaled action
I/Io: 1 . 7 has been imposed; this corresponds to an uns-
caled action which approximates the top of our quantum
basis.

Classically, after an equal number of cycles the
Go=2. 5 case is more stable than the O,o=1.5 case. A
measure of excitation is the number of trajectories that
are excited above our cutoff by the end of the interaction

time. After 100T the Q,o=2. 5 case has 48 of 1000 trajec-
tories above the cutoff of 1.7, while the Do=1.5 case loses
447 of 1000 trajectories. Furthermore, the classical dy-
namics reaches the equivalent of the end of the basis
(I=1.7) after 40 cycles for 00=2.5 and after 20 cycles
for $2o=1.5; even at times shorter than 100T the classical
evolution extends far further than the quantal evolution.

The differences between the classical and quantal dy-
namics can now be illustrated. Neither the DO=1. 5 or
2.5 quantal densities reach the end of the basis after 100
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FIG. 11. Time evolution for parameters F0=0.05, no =63, and Do=3.4429. The times plotted are (a) 0, (b) T, (c) 5T, and (d) 10T,
respectively, where T=2~/Ao. The initial state is the unperturbed n =no state.
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cycles. This disparity is most evident in the Op=1. 5 case
where 45% of the classical trajectories go beyond I= 1.7.
For there to be such a significant fraction of the quantal
phase-space density above the top of our basis the main
peak must move. No such movement of the main peak
has been observed. Even to achieve the smaller 5% evo-
lution for Op=2. 5 case would require a substantial peak
near the top of the basis. This demonstrates a significant
difference between the classical and quantal high-
frequency evolution. In relation to the classical evolu-

tion, the quantal evolution out of the initial phase-space
region is inconsequential.

We have, so far, considered only one field strength,
Fp =0.04 We now brieAy comment on some of the
effects of the field strength on the Wigner function. In
Figs. 11 and 12 we show the time evolution of the cases
Fp=0. 05 and 0.15 with Op=3. 4429 with the same initial
state, n =63. Increasing the field strength from 0.05 to
0.15 causes resonant structures present in the 0.05 case to
disappear. ' It is these structures that present classical
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barriers to diffusion in the 0.05 case. The times con-
sidered in Figs. 11 and 12 are t =0, T, 5T, and 10T. For
the FO=0.05 case the wave packet does not move but
rearranges itself within the same region of phase space.
This conforms with the behavior observed above for the
high-frequency cases. However, the Fo =0. 15 case is
quite different. We see a very large peak at 10000 a.u. in
the 5T plot [Fig. 12(c)]; this peak's size is of the same or-
der as the initial peak remnant at 8000 a.u. After ten cy-
cles there is still a large peak at 10000 a.u. together with
a smaller but significant peak at 15000 a.u. We see here
behavior reminiscent of the Go=0. 7 case. Even though
this is a high-frequency case, we are seeing evolution of
the wave packet to higher g values. This case was includ-
ed to illustrate that all aspects of this problem can be ad-
dressed in this formulation.

V. CONCLUSIONS

We have examined the evolution of the phase-space
density for the driven SSE Hamiltonian using a coarse-
grained Wigner function. Our primary motivation was to
assess the dynamics in different frequency regimes, both
for short and long times, for initial conditions chosen
within regular and irregular regions in classical phase
space. We confirm that for higher frequencies, and pa-
rarneters satisfying the criterion for suppression, the
quantal evolution is predominantly localized within the
initial region of phase space. An increase in the evolution
time by a factor of 20 relative to a increase in frequency
by a factor of 2 or 3 does not yield significant movement
of the wave packet. This is in sharp contrast with the
classical dynamics which shows diffusive Aow. In fact,
the quantal, high-frequency behavior is reminiscent of the
evolution of a wave packet in a classically regular part of
phase space, which is constrained by the presence of in-
variant tori.

There are two alternative scenarios that have been pro-
posed to explain the quantal suppression effects seen at
higher frequencies. One is the localization theory which
is a consequence of quantal interference, while the other
relates to the presence of classical barriers to evolution.
This second picture would have the quantal evolution
occurring by tunneling through classical barriers present
in phase space. Localization effects result in the proba-
bility distribution, over energy eigenstates, being an ex-
ponentially decaying function. In our formulation, this
is refiected in the expansion coefficients c„(t) [Eq. (11)]
and, hence, in our phase-space distributions. In princi-
ple, our long-time evolution of the phase-space densities
should allow an assessment of the relative merits of these
theories. The localization picture requires a measure of
the time-dependent Bow whereas the cantori effects
would be seen in the size of the smaller wave packets.
We were, however, unable to construct an unambiguous
quantitative measure of either quantity and so restrict

ourselves to a qualitative assessment.
In the localization scenario, a measure of quantal inhi-

bition is a characteristic length I. This parameter, in
turn, provides an estimate of the upper time bound rb (in
units of field cycles) for diffusion. rb is interpreted as the
time beyond which quantum effects localize the evolu-
tion. For our high-frequency cases, the values of the so-
called break time ~& are 4.9 and 1.5 for Ao of 1.5 and 2.5,
respectively. These values predict diffusion on time
scales comparable to those considered in Figs. 5 and 6.
However, the How observed is on time scales longer than
those predicted (Figs. 7 and 8).

In the cantori (classical barriers) scheme, the nature of
the evolution is related to the size of "turnstiles" or
gaps in the cantori. When the cantori gaps get too small
(with respect to h) for the quantum wave packet to diffuse
through, the evolution is restricted to tunneling through
the cantori barriers. It is interesting that estimates of the
cantori gaps are consistent with our long-time observa-
tions. They are smaller than h for both the 1.5 and 2.5
cases though larger for Do=0. 7. Thus, for the lower fre-
quency when the cantori gaps are large on the quantum
scale, we see what appears diffusive, but at the higher fre-
quencies when the gaps get smaller, we see a much slower
flow. This is manifest in the time scales over which the
How occurs.

We would like to conclude with a few comments on
some limitations of this approach. The Wigner function
calculated here is a function of Cartesian variables. As
mentioned, classical phase space is better mapped in an
action-angle representation. This has been illustrated
convincingly for the kicked-rotor problem. This would
also provide a better topological understanding of the dy-
namics in terms of local invariances. Furthermore, the
relationship to a Fokker-Planck equation is facilitated in
this representation. This brings up the problem of quan-
tum action-angle coordinates. ' Berman and Kolov-
sky have suggested an approach which may be useful for
quantal studies like the present one. There still remains
the problem of proper coherent states for action-angle
variables. Work in the area of quantal analogs of
action-angle variables is therefore extremely important
and essential to the mapping of nonlinear classical dy-
namics to quantum theory.

We also attempted to obtain an analytic Fokker-Planck
approximation to the evolution of the Wigner equation
and it appears that it is not possible to achieve such an
approximation. Deriving this quantal Fokker-Planck
equation is important due to the fact that it provides a
basis for a diffusive picture. Wigner in his 1932 paper
gives two forms of the evolution equation. The deriva-
tion of the first form assumes that the potential can be ex-
panded in a power series. The singular nature of the
Coulomb potential does not allow the use of the first form
as a starting place. Further, the derivation of a Fokker-
Planck equation requires the use of a power-series expan-
sion. In performing this expansion even the second form
fails to avoid the Coulomb singularity. It would appear
that any evolution equation involving the SSE Wigner
function (at least in Cartesian coordinates) will not cir-
cumvent this problem. In classical dynamics, the
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Fokker-Planck equation is derived in action-angle coordi-
nates which regularize the Coulomb singularity. Howev-
er, it would be interesting to consider deriving the quan-
tal Fokker-Planck equation for a Hamiltonian with a
nonsingular potential. Work we have done to this point
suggests that this is possible.
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