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Periodic orbit theory expresses, in a semiclassically approximate way, the trace of the energy-
dependent Green’s function of a quantum-mechanical system in terms of a sum over periodic orbits
of the corresponding classical system. In this paper a periodic orbit sum is carried out for a Hamil-
tonian describing the rotational dynamics of the SF, molecule. Following Miller [J. Phys. Chem.
83, 960 (1979)], classically forbidden, or “tunneling” orbits are included in the sum. A closed-form
expression for the trace of the energy-dependent Green’s function is obtained; it depends on the ac-
tions and Maslov indices of the classical orbits, as well as the irreducible representatives of the gen-
erators of the molecular point group. The expression reproduces the rich structure characteristic of
the rotational spectra of symmetric molecules, including the exponentially near degeneracies for
large angular momentum, and the periodicities in eigenvalue symmetry assignments. The methods
used here complement the extensive studies of Harter and Patterson.

I. INTRODUCTION

Periodic orbit theory, developed by Gutzwiller, ! Balian
and Bloch,? and Berry,3 provides a semiclassical deter-
mination of the spectra of quantum-mechanical systems.
The theory relates the trace of the energy-dependent
Green’s function (alternatively, the quantum-mechanical
density of states) to a sum over classical periodic orbits.
Applications have included the anisotropic Kepler prob-
lem,* force-free motion on a surface of constant negative
curvature,® and most recently, the hydrogen atom in a
strong magnetic field,®” a system for which the predic-
tions of the theory can be compared directly with experi-
ment.

In its present form, periodic orbit theory applies to sys-
tems whose classical dynamics is chaotic. Indeed, it pro-
vides the only known analytical results concerning such
systems, and is an important tool in the study of quantum
chaos. In this paper we pursue a rather different applica-
tion of periodic orbit theory, namely, the calculation of
quantum tunneling effects. The novel idea is to include
complex, or classically forbidden orbits as well as real, or
classically allowed orbits in the periodic orbit sum. Our
approach follows Miller’s work on the double well oscilla-

tor;® several other authors have investigated the role of
complex orbits in periodic orbit theory.’ 1?2 A principal
advantage of all these treatments is their representation
independence. Periodic orbit theory involves only
geometrical and topological features of the classical dy-
namics, and its formulation is coordinate free. Tradition-
al treatments of tunneling are usually committed to a par-
ticular representation, which obscures the underlying
phase-space structure of the semiclassical approximation.

Tunneling effects play an essential role in the rotational
spectra of symmetric molecules, such as SF,. Ultrahigh-
resolution spectroscopy has revealed a rich and complex
structure in the rotational spectrum of SF,.'*7!8
Vibration-rotation interactions destroy the spherical sym-
metry of the molecular moment of inertia tensor, intro-
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ducing fine structure into the rotational spectrum. Tun-
neling between equivalent rotational motions produces a
superfine structure within the fine structure. There also
appears a remarkable periodicity in the eigenvalue sym-
metry assignments which cannot be explained on the
basis of standard group theory. The theory underlying
these spectra has been extensively developed,'®™ %! most
notably by Harter and Patterson.??” %% Their elegant
treatment combines semiclassical ideas and results from
the theory of induced representations within the frame-
work of degenerate perturbation theory.

Notwithstanding its success and intuitive appeal, the
semiclassical treatment of Harter and Patterson is heuris-
tic in nature. Also, it is not fully semiclassical, in that it
involves a quantum-mechanical calculation with semi-
classical input. A systematic semiclassical analysis along
the lines of traditional WKB theory 1is difficult to carry
out because the rotational Hamiltonian is not simply a
sum of kinetic and potential terms. In this paper we ap-
ply periodic orbit theory to the SFy rotational Hamiltoni-
an, and include both real and complex classical trajec-
tories in the analysis. We obtain results equivalent to
those of Harter and Patterson, including the periodicity
in symmetry assignments. Our approach is fully semi-
classical, and involves no quantum-mechanical manipula-
tions, such as matrix diagonalization.

The paper is organized as follows. In Sec. II we formu-
late the complex periodic orbit sum, and carry out the
sum for the symmetric double well. The example serves
as a pattern for the more complicated SF, calculation to
follow. In Sec. III we present a model for the SF, rota-
tional dynamics. We discuss the classical version of the
model, upon which the complex periodic orbit sum is
based, as well as the quantum version, from which the
fine and superfine structures emerge. In Sec. IV we carry
out the complex periodic orbit sum for the SF, model
Hamiltonian. Section V concludes with a summary of
the results and a discussion of questions for further inves-
tigation.
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II. COMPLEX PERIODIC ORBIT SUM

Periodic orbit theory establishes a semiclassically ap-
proximate relationship between the spectrum of a
quantum-mechanical system and the periodic orbits of its
corresponding classical system. The case of one degree of
freedom is a special one. Systems of one degree of free-
dom are not chaotic, and yet periodic orbit theory can be
applied to them. One obtains the following semiclassical
formula for the trace of the energy-dependent Green’s
function g (E):?®

il h— LT 2)
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where the notation ‘“‘sc” means ‘‘semiclassical.” The
right-hand side of Eq. (2.1) is a sum over classical period-
ic orbits with energy E. The index j labels the primitive
periodic orbits. (A primitive periodic orbit is a single
traversal of a periodic orbit.) For simple Hamiltonians of
the form T + ¥V, with single well potentials, there is only
one such orbit. But for multiple well potentials and for
more general Hamiltonians, there may be many. T; is
the period of the jth orbit, and S; is the action integral,
$p dg taken around it. p; is the Maslov index of the jth
orbit. The sum over k effectively includes multiple
traversals of the jth orbit in the sum.

For bound systems, the energy levels of the Hamiltoni-
an H can be completely determined from g(E).
(Throughout this paper, a caret is used to distinguish
quantum operators from their classmal counterparts.)
From the definition g (E)=Tr[(E —H )~ '], we obtain

n

d
g(E)ZEE“_—E— (2.2)

The poles of g(E) are the eigenvalues E, of H, and the
pole strengths are the eigenvalue degeneracies d,. To-
gether, Egs. (2.1) and (2.2) provide a semiclassical deter-
mination of the spectrum of systems of one degree of
freedom. Indeed, the summations of Eq. (2.1) can be car-
ried out explicitly. The result yields the Einstein-
Brillouin-Keller (EBK) quantization rule' for one degree
of freedom systems.

It is well known that quantum-mechanical tunneling
introduces corrections to the EBK rule, and there exists
an extensive literature devoted to tunneling in one dimen-
sion.?%?7 Several authors have used periodic orbit theory
to treat tunneling effects.® 2 These treatments possess
an important property not found in traditional treat-
ments, namely, representation independence. Equation
(2.1) serves as an illustration of what we mean by repre-
sentation independence. It relates a quantum expression
to a classical expression. The classical expression is
clearly independent of any particular choice of canonical
coordinates; it involves periods, actions, and Maslov in-
dices, all of which are geometrical or topological proper-
ties of the periodic orbits. The quantum side of the equa-
tion is clearly independent of any particular choice of
representation; it involves the trace of an operator. For
both theoretical and practical reasons, representation in-
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dependence is a desirable feature of any semiclassical
theory.

Our calculation of tunneling effects in the SF, rotation-
al spectrum follows the work of Miller.® Miller intro-
duced tunneling trajectories into the periodic orbit sum
and obtained the tunneling splittings in the energy levels
of the double well oscillator. The rest of this section is
organized as follows. In Sec. I A we present a prescrip-
tion, Eq. (2.3) below, for the complex periodic orbit sum.
The prescription is similar to Miller’s, although it in-
cludes a larger family of complex periodic orbits. It is
particularly suited to systems which have a discrete sym-
metry. As a simple application of Eq. (2.3), in Sec. II B
we carry out the complex periodic orbit sum for the sym-
metric double well oscillator, for which the symmetry is
parity. Some modifications of Miller’s original calcula-
tion are discussed.

A. Prescription

The complex periodic orbit sum is obtained by includ-
ing complex, or classically forbidden orbits, as well as
real, or classically allowed orbits, in the sum of Eq. (2.1).
We shall regard this prescription as heuristic, and shall
not attempt a derivation here. More rigorous treatments
may be found in the references. % '°

We restrict our attention to a system of one degree of
freedom with a discrete symmetry, and assume that its
primitive periodic orbits are related by this symmetry.
(Throughout this discussion, a primitive periodic orbit is
understood to be real.) The complex periodic orbit sum
is given by

ir, /i—pu, w/2)
kAT M TS 2.3)

g (E)= T 2
Here, f is the number of primitive periodic orbits with
energy E. Note that f may depend on the energy. For
example, for the double well, there are two primitive
periodic orbits at energies below the barrier, and one or-
bit at energies above. The period of the primitive period-
ic orbits is T. The index k labels the complex periodic or-
bits with energy E. (As a matter of terminology, we con-
sider the real periodic orbits to be a subset of the complex
periodic orbits.) T, is the action, $p dg of the kth orbit,
and u, is its Maslov index. Note that ', may be com-
plex.

To complete this explanation of the complex periodic
orbit sum, we must discuss the complex periodic orbits
themselves. What are they, and which ones are to be in-
cluded in the sum? There are several ways to define com-
plex periodic orbits; the following, appropriate to systems
of one degree of freedom, is well suited to our discussion.
A real periodic orbit may be thought of as a closed curve
on the real energy shell. We take a complex periodic or-
bit to be a closed curve on the complex energy shell.

The real energy shell is one dimensional (indeed, it is
composed of the primitive periodic orbits), and it con-
tains a countable set of periodic orbits, which correspond
to multiple traversals of the primitive periodic orbits.
The complex energy shell, on the other hand, is two di-
mensional, and contains a continuum of closed curves, or
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periodic orbits. In order to make sense of the sum over
complex periodic orbits, we must designate a countable
subset of this continuum. In what follows, we give
several rules to determine the subset of orbits to be in-
cluded in the complex periodic orbit sum.

First, we include only complex periodic orbits which
begin and end at some fixed point on a (real) primitive
periodic orbit. We shall call this point the base point.
The complex periodic orbit sum does not depend on
which of the primitive periodic orbits the base point is
chosen to lie upon, as these orbits are all related by sym-
metry. A typical orbit in the sum begins at the base
point, wanders about the complex energy shell, perhaps
visiting other primitive periodic orbits before returning to
the base point.

The second rule is that we include only topologically
distinct orbits in the sum. Two orbits are said to be topo-
logically equivalent if one can be continuously deformed
into the other while keeping the orbit confined to the
complex energy shell and its endpoints fixed at the base
point. Singularities on the complex energy shell may
prevent such a deformation from being realized, in which
case we say that the orbits are topologically distinct. As
defined above, topological equivalence is an equivalence
relation in the mathematical sense. Therefore, the com-
plex periodic orbits may be divided into classes of topo-
logically equivalent orbits. Restated, the second rule re-
quires that we include in the sum at most one orbit from
each class of equivalent orbits. It is this rule which limits
the sum to a countable set of orbits.

An important fact about topologically equivalent orbits
is that they have the same actions and the same Maslov
indices. As a result, the complex periodic orbit sum does
not depend on which orbits are chosen to represent the
classes. We will take advantage of this fact, and choose
as representatives orbits which possess certain properties.
These special representative orbits, as we shall call them,
consist of segments along which the action differential,
p dq is either purely real or purely imaginary. Segments
with real action are called classical segments; they are
segments of the primitive periodic orbits. Segments
along which the action differential is imaginary are called
tunneling segments. A useful feature of the special
representative orbits is that they are easily parametrized
in terms of sequences of classical and tunneling segments.

The third and fourth rules are most easily stated in
terms of the special representative orbits, and concern the
sense in which the classical and tunneling segments are to
be traversed. According to the third rule, a class of
equivalent orbits is included in the sum only if it contains
a special representative orbit whose action fp dq along
each of its tunneling segments is positive imaginary. This
means that the contributions of the tunneling segments to
the complex periodic orbit sum must be exponentially
damped, rather than exponentially enhanced. The fourth
rule determines the sense of traversal of the classical seg-
ments. A class is included in the sum only if it contains a
special representative orbit which traverses each of its
classical segments in the sense determined by Hamilton’s
equations. In other words, along classical segments the
orbit must move forward in real time. Note that the or-
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bits in the real periodic orbit sum, Eq. (2.1) also move for-
ward in time.

Let us summarize. A complex periodic orbit is a
closed curve on the complex energy shell. The complex
periodic orbit sum of Eq. (2.3) is taken over topologically
distinct, complex periodic orbits beginning and ending at
the base point, which lies on a real periodic orbit. For
convenience, we sum over special representative orbits
composed of classical and tunneling segments. To be in-
cluded in the sum, a special representative orbit must
have positive imaginary action along each tunneling seg-
ment, and must move forward in real time along each
classical segment.

B. An example: The symmetric double well

In this section we carry out the complex periodic orbit
sum for the symmetric double well potential.
Throughout the calculation, we set #=1. We consider
energies E below the barrier (the calculation is easily
modified to treat energies above). We take the base point
of the complex periodic orbits to be the turning point A4,
indicated in Fig. 1. The classical and tunneling segments
are also shown in Fig. 1. The classical segments coincide
with the primitive periodic orbits in each of the two po-
tential wells. The two tunneling segments are paths join-
ing the turning points 4 and B, along which the momen-
tum p is either positive or negative imaginary. As dis-
cussed in Sec. I A, we consider special representative or-
bits composed of classical and tunneling segments. Such
orbits oscillate in, and tunnel back and forth between the
two potential wells. Along classical segments, the orbits
must move forward in real time. On tunneling from 4 to
B, the orbits must take the tunneling segment with posi-
tive imaginary momentum, while on tunneling from B to
A, the tunneling segment with negative imaginary
momentum.

The main difficulty in carrying out the sum is the pa-
rametrization of the complex periodic orbitals. We must
make sure that all of the orbits which should be included
are included, and that each of these orbits is counted only
once. Let us call a sequence of consecutive classical seg-
ments a classical episode, and a sequence of consecutive
tunneling segments a tunneling episode. It is clear that
the special representative orbits consist of an alternating

H(q,p) = E

/‘F\”—_"b__‘\m
N A e

——)p—  Classical

Tunneling segment

segment

FIG. 1. Complex energy shell for the symmetric double well.
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sequence of classical and tunneling episodes. We can
parametrize the orbits by a sequence of integers which
describe both the number and the duration of these ep-
isodes, as follows:

{n;ag,by, .. a,,b, 44},
n=0,1,2,...
a,=0,1,2,...
a,...,a,b,...,b,=1,2,. ..
b, 1=0,1,2,.... (2.4)

Here, n +1 gives the number of classical and tunneling
episodes in the orbit, a; is the number of classical seg-
ments in the kth classical episode, and b, is the number
of tunneling segments in the kth tunneling episode.
Thus, the sequence {n;ay,by,...,a,,b, ,} describes an
orbit which consists of @ classical segments, followed by
b, tunneling segments , , followed by a,, classical seg-
ments, followed by b, , ; tunneling segments.

The parameter ranges insure that all orbits are includ-
ed in the parametrization, and that the parametrization is
unique. Since n +1 determines the number of distinct
classical and tunneling episodes, each of these episodes
must contain at least one segment. That is, we require
that @, 21 and b, 2 1. There are two exceptions to this
rule. We allow a, to be zero to account for trajectories
which begin with a tunneling episode. Similarly, we al-
low b, .| to be zero to account for trajectories which end
with a classical episode.

Having parametrized the complex periodic orbits, we
compute their actions and Maslov indices. Let S be the
action, $pdg taken around either of the primitive
periodic orbits. Let i0 be the imaginary action computed
along one of the tunneling segments between 4 and B
such that 0 is positive. Then the action of the orbit

{n;ay,by,...,a,,b, ] is given by
J
=235 5 3 5 iSew
n:an=0a],...,a"=lbl,A..,bn=1b"+1 0 m=0

Xexp

n+1
=S 2 a,+i0 ¥ b, . (2.5
k=1

I'{n;ag,by,...,a,,b,1,}

Next, we determine the Maslov indices. The primitive
periodic orbits have two turning points, so we increment
the Maslov index by 2 for each classical segment. How-
ever, the Maslov index should not be incremented when
an orbit tunnels through a turning point, i.e., when a tun-
neling segment follows a classical segment. To compen-
sate, we decrement the Maslov index by 1 for each tun-
neling segment along an orbit. If a tunneling segment fol-
lows another tunneling segments rather than a classical
segment, this decrement of the Maslov index may be at-
tributed to a turning point crossed from within the for-
bidden region. Thus, the Maslov index of the orbit

{n;ay,by,...,a,,b, ] is given by
n n+1
uinsag,by,...,a,,b,1}=2 3 a,— 3 b, . (2.6)
k=0 k=1

The parametrized orbits of Eq. (2.4) include not only
periodic orbits from A4 to A4, but also ‘“unperiodic” orbits
from A4 to B. Clearly, the orbit {n;ay,b,,...,a,,b, }
is a periodic orbit if and only if the total number of its
tunneling segments, 3, b,, is even. To insure that only
periodic orbits contribute to the complex periodic orbit
sum, we multiply the contribution of each orbit by the ex-
pression

1
1 3 exp|—im7 3 b | . (2.7)
m=0 k
Equation (2.7) is equal to 1 if 3, b, is even, and vanishes
if 3, by is odd.

Substituting Eq. (2.5) for the actions and Eq. (2.6) for
the Maslov indices into Eq. (2.3), summing over the
parametrized orbits of Eq. (2.4), and introducing the
coefficients of Eq. (2.7), we obtain the complex periodic
orbit sum for the symmetric double well,

—zmﬂ'Zbk ]

(2.8)

iS}k"ak OZbk—— [Zzak Zbk]

The number of primitive periodic orbits, f in Eq. (2.3), is equal to two. We may rearrange the phase factors in Eq. (2.8)
to obtain a product of geometric series in the a; and b, as follows:

M_.

g (E)= i % 2 2_0 2

=0n=0a,

{expliag(S —m)] - -

explia, (S —m)]}

(exp{—b,[0+i(m —{)7]} - -

Xexp{—b, + [0+i(m —])7]}) .
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Keeping in mind that a, and b, | range from O to oo,
while a; and b, for 1 =k <n, range from 1 to oo, we sum
the series and obtain

T 1 1
o E)=— -
& i ,,,E:(, 1+eS 1—i(—

1)7e °

_eiS l-(_l)meve
1+e® 1—i(—=1)"e™°

X X

n=0

The sum over n is now a geometric series as well. Per-

forming the sum, we get
_T . iS__ i _q1ym,—61—1

g« (E) ; > [1+e i(—1)me 917" . (2.9)
m =0

According to Eq. (2.9), the poles of g..(E) are the solu-
tions of the equation

eiS(E}:-1+i(—1)'"€70(EJ ,

where we have indicated the energy dependencies explic-
itly. If E is real, the left side of this equation has modulus
one, while the right side has modulus greater than one.
We may conclude that the poles of g, (E) are necessarily
complex. It turns out that if the Maslov phase shifts of
/2 are replaced by the WKB barrier transmission and
reflection coefficients, the complex periodic orbit sum
yields not only real energies for the poles of g . (E), but
the uniform WKB expressions for the splittings, valid for
energies up to the top of the barrier. Here, we shall take
a simpler approach, and obtain approximate real poles of
gs.(E) in the limit of small tunneling amplitude.

If the tunneling amplitude e~ in Eq. (2.9) is neglected,
the poles of g, (E) are the EBK-quantized energies, E,,
given by the condition

S(E)=2m(k +1),

where k is an integer. Let us expand g, (E) about an
EBK energy E,. Note that dS/dE is the period T, so
that

S(E)=2m(k +1)+T(E —E;)+O(E —E;)*.

We substitute this expression into Eq. (2.9) and regard
e ~9/T as a quantity of order (E —E, ). Then to first or-
derin (E —E}),

-1

E— |E,—

(—1)mef
T

1
g (E)= 3
m=0

Finally, let us sum over the quantum number k to obtain

—1

g (E)=3
k

{ E— |E %
m=0

—1
670

+
T

E_ E[‘+

(2.10)

m=1

The approximate poles of g..(E) are the EBK energies
E,, split by the tunneling energies e “?/T. The poles
have unit strength, so the associated energy levels are
nondegenerate. From quantum mechanics, we know that
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the eigenstates associated with the energy doublet
E,+e /T have definite parities. The state with lower
energy has even parity, while the state with higher energy
has odd parity. In Eq. (2.10) we have explicitly identified
the (m=0) and (m=1) terms from the sum over m. Note
that the (m=0) term contributes the poles associated
with the even parity states, while the (m=1) term con-
tributes the odd parity poles. Note too that the (m=0)
and (m=1) poles contain contributions from both the
complex periodic orbits from A4 to A4 and from the ‘“un-
periodic” orbits from A4 to B. These ‘““‘unperiodic” orbits
contribute in an essential way to the poles of definite pari-
ty. We shall discuss this further in Sec. IV C.

Our treatment of the symmetric double well differs in
certain respects from Miller’s original calculation. We
have included a larger family of complex periodic orbits
in the sum. The additional orbits render the
identification of the poles of g..(E) more straightforward,
and also yield the correct pole strengths. [Miller comput-
ed g (E) up to a proportionality constant.] The pole
strengths are more significant in determining the SF, ro-
tational spectrum, which contains degenerate energy lev-
els.

III. ROTATIONAL DYNAMICS OF SF,

In recent years, a wealth of research has been devoted
to the rotational spectra of symmetric molecules. Ad-
vances in ultrahigh resolution spectroscopy have revealed
fine, superfine, and hyperfine structures of great complexi-
ty. '~ 18 Theoretical analyses have evolved concomitant-
ly.'~2! Harter and Patterson, whose treatment com-
bines semiclassical ideas with results from the theory of
induced representations, have been particularly success-
ful.227% Several reviews of the field have been writ-
ten, 28730

In this section we describe a model for the rotational
dynamics of symmetric molecules. In Sec. IIIA we
present the classical version of the model. The classical
discussion has two goals. The first is to provide physical
intuition. The second is to lay the ground work for the
complex periodic orbit sum, which is based on the classi-
cal description of the dynamics. In Sec. III B we discuss
the quantum-mechanical version of the model. The pur-
pose of this section is to describe the rich structure of
symmetric-molecular rotational spectra, which will be
obtained from the complex periodic orbit sum in Sec. IV.
As many of the cited studies have done, we will take the
octahedrally symmetric molecule SF, as our primary ex-
ample.

A. Classical model

For the consideration of rotational dynamics, we re-
gard the SF; molecule as a semi-rigid body. The Hamil-
tonian

H(J)=al*+BJ}+J}+T}=32T%) , (3.1)
derived by Hecht,!® has been used extensively to model
the rotational dynamics of molecules with octahedral
symmetry. J,, J,, and J, are the components of the
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body-fixed angular momentum J. The first term in Eq.
(3.1) is the usual rigid body Hamiltonian for a spherical
top. (The moments of inertia of a rigid body with octahe-
dral symmetry are necessarily equal.) The quartic terms
introduce corrections to the rotational energy due to the
centrifugal distortion of the molecule. Note that
Ji+J}+J} and J* are the lowest-order polynomials con-
sistent with both octahedral and time-reversal symmetry.
These polynomials, with the components of angular
momentum replaced by the coordinates x, y, and z, are
well known from crystal field theory.!3 The parameters a
and B have been fitted to spectroscopic data for SF, and
are given by a=0.091083 cm™! and 8=54.4 Hz, or
1.81X107% cm ™1 173132

The equation of motion for the body-fixed angular'

momentum is Euler’s equation,

J=wXJ, o=—VH . (3.2)
Euler’s equation conserves the total angular momentum
J?. Thus, trajectories are confined to spheres of constant
total angular momentum in J space. For the remainder
of this discussion, we restrict attention to a particular
sphere, |J|=J, for some constant J. (The quantum-
mechanical analogue of this restriction is to fix the total
angular momentum quantum number j.)

Let us consider the qualitative features of the dynam-
ics, in which the octahedral symmetry of the Hamiltoni-
an plays an important role. Consider first the fixed
points, which correspond to the uniform rotation of the
rigid body about a fixed axis. The Hamiltonian, Eq. (3.1),
has six stable fixed points of maximum energy E,, =SJ%,
12 unstable saddle points with energy E,=f/2J* and
eight stable energy minima with energy E, =p/3J%

@ Energy maximum
S Saddle point
O Energy minimum

FIG. 2. Fixed points of SF, Hamiltonian. An octahedron is
inscribed in the sphere of constant angular momentum. Energy
maxima lie along axes through the vertices of the octahedron,
saddle points along axes through the faces, and energy minima
along axes through the edges of the octahedron. Only one of
each type of fixed point is shown.
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(The energies E,,, E, and E,, are quoted relative to the
constant energy aJ?—3/5B8J%) The positions of the
fixed points are indicated in Fig. 2, in which an octahed-
ron is inscribed in the sphere |J|=J. The energy maxima
are at the vertices of the octahedron, the saddle points lie
along axes bisecting the edges, and the energy minima lie
along axes through the faces of the octahedron.

It is easy to understand on physical grounds why the
rotational energy maxima and minima are situated as
they are for the SF¢ molecule. For fixed total angular
momentum, the energy of a rigid body rotating uniformly
about a fixed axis is inversely proportional to its moment
of inertia about the axis. Imagine the fluorine atoms ar-
ranged at the vertices of an octahedron, where they are
strongly bound to the sulfur atom at the center, and
weakly bound to each other. (It would be more accurate
to consider the stretching and bending vibrational modes,
but a simple-minded picture will do here.) When the SFy
molecule rotates about an axis through a vertex of the oc-
tahedron, the S—F bonds in the plane of rotation stretch
relatively little in response to the centrifugal forces. The
increase in the moment of inertia above its equilibrium
value is relatively small, and the rotational energy de-
creases relatively little. When the molecule rotates about
an axis through a face of the octahedron, the weaker F—
F bonds in the plane of rotation are stretched more by
the centrifugal forces. The increase in moment of inertia
is relatively large, and the rotational energy decreases rel-
atively more.

We consider next the periodic orbits of the system.
The periodic orbits are contours of constant energy on
the sphere |J|=J. Both the number and the disposition
of these orbits depend on the energy. At energies greater
than the saddle-point energy E;, there are six periodic or-
bits, which encircle the six energy maxima. These orbits
are shown in Fig. 3(a); they correspond to the precession
of the body-fixed angular momentum about an axis of
maximum energy. The orbits are mapped into each other
by octahedral rotations. As a special case, each orbit is
invariant under a rotation by 7/2 about its center. Fol-
lowing Harter and Patterson, we refer to these as fourfold
orbits. At energies less than the saddle-point energy E,
there are eight periodic orbits encircling the eight energy
minima, which are shown in Fig. 3(b). These orbits cor-
respond to the precession of the body-fixed angular
momentum about an axis of minimum energy. They are
also mapped into one another by octahedral rotations. In
particular, each orbit is invariant under a rotation by
27/3 about its center. We will refer to these as threefold
orbits. The orbits with energy equal to E; are the separa-
trices. For this reason, we will often refer to E, as the
separatrix energy. The separatrices join the saddle
points. The threefold, fourfold, and separatrix orbits are
illustrated in Fig. 3(c). [Figures 2 and 3 may be regarded
as simplified versions of the rotational energy (RE) sur-
face, a graphical representation of rotational dynamics
developed by Harter.2>%0]

The complex periodic orbit sum, Eq. (2.3) is based on a
canonical description of the classical dynamics. In par-
ticular, it requires the canonical actions of the periodic
orbits, real and complex. Therefore, the equation of
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@ Energy maximum

O Energy minimum

@® Energy maximum
S Saddle point

O Energy minimum

FIG. 3. Periodic orbits of SFy Hamiltonian. (a) E > E,. Six orbits encircle the energy maxima clockwise. Only one energy max-
imum is shown. (b) E <E. Eight orbits encircle the energy minima counterclockwise. Only one energy minimum is shown. (c) Por-
tions of orbits of different energies on an octant of the constant angular momentum sphere. The separatrix orbit joins the saddle

points.

motion, Eq. (3.2), must be cast in canonical form. The
variables ¢ and J,=J cosf, where (0,¢) are spherical
coordinates on the sphere |J| =J, serve as canonical coor-
dinates. That is,

(b, J,}=—1. (3.3)

Equation (3.3) may be regarded as the definition of the
Poisson bracket on the sphere |J|=J, which we now re-
gard as a classical phase space. If the Hamiltonian H and
the body-fixed angular momentum J are expressed in
terms of J, and ¢, the canonical equation of motion

J={J,H} is equivalent to Euler’s equation. Motivated
by Eq. (3.3), we take the action differential dS to be

dS=—J,d¢=—JcosOd¢ . (3.4)

The minus sign in Egs. (3.3) and (3.4) has its origin in the
commutation relations of the body-fixed angular momen-
tum.

B. Quantum model: The rotational spectrum of SF

To obtain a quantum-mechanical description of the ro-
tational dynamics of SFg, we must transform the classical
Hamiltonian into a quantum-mechanical operator. This
“‘quantization procedure” is beset with the usual ordering
ambiguities. We have studied a well-defined mapping be-
tween classical and quantum-mechanical observables for
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rotational systems, analogous to the Wigner-Weyl
correspondence and hope to discuss it in a future publica-
tion. For present purposes, we simply replace classical
variables with quantum-mechanical | operators. Thus, the
quantum-mechanical Hamiltonian His given by
A=al 2+BIT4+T3+T4-2T27],

3
5

(3.5)

where fx, jy, and fz are the body-fixed angular momen-
tum operators.

Because the body-fixed angular momentum operators
do not mix states with different total angular momentum,

can be restricted without approximation to a finite-
dimensional subspace of fixed total angular momentum.
To demonstrate this more explicitly, it is convenient to
introduce the |jmk ) basis states for the rigid body Hil-
bert space. The |jmk) states are simultaneous eigen-
states of the total angular momentum J2, the z com-
ponent of space-fixed angular momentum _]z, and the z
component of body-fixed angular momentum J The ei-
genvalues of these three operators acting on the state
|jmk) are j(j+ 1) m, and Kk, respectlvely, where
j=0,1,...and —j = <m, k <j. Since J? and j, commute
with H, we can restrict A to the (2j +1)-dimensional sub-
space spanned by the states |jmk ) with fixed j and m.
On this subspace, H is represented by the matrix
H,,.={jmk|H|jmk’), and its spectrum can be obtained
by diagonalizing this matrix. Fox et al. computed the
spectrum of A for j=1,...,100,%! and pointed out
many features of the fine and superfine structure of A
that we will presently describe. For the remainder of this
discussion, we regard j and m as fixed, and regard Hasa
(2j +1)X(2j +1) matrix. We confine ourselves to the
case of integral j.

Let us address first the symmetries and spectral degen-
eracies which can be anticipated on the basis of standard
group theory. H has octahedral symmetry. Its (2j +1)
eigenvectors belong to degenerate subspaces which carry
irreducible representations, or irreps, of the octahedral
group. The octahedral group has five irreps. It has two
one-dimensional irreps 4, and 4,, a two-dimensional ir-
rep E, and two three-dimensional irreps T, and 7,. In
the absence of accidental degeneracies, the eigenvalues of
H are either nondegenerate, doubly degenerate, or triply
degenerate. Each eigenvalue may be labeled by the irrep
carried by its eigenspace.

There is considerable structure in the SF, rotational
spectrum beyond the degeneracies produced by. octahe-
dral symmetry. With increasing j, the eigenvalues
coalesce to form nearly degenerate clusters. Clusters
with energies greater than the classical separatrix energy
E; contain precisely six levels, degeneracies counted,
while clusters with energies less than E; contain precisely
eight levels, degeneracies counted. The fine structure
refers to the splitting between adjacent clusters. At j
values for which the model Hamiltonian H is valid, the
fine-structure splitting is much smaller than the separa-
tions between energy levels with different j. Using the
values of a and S quoted above, the difference in the
spherical top energies, aj(j +1), of the j=30 and j=31
multiplets is about 5 cm !, while the fine-structure split-
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tings] within the j=30 multiplet are on the order of 10™*
cm™ .

We will use the terminology of Hartree and Patterson,
and refer to clusters of six levels as fourfold clusters, and
clusters of eight levels as threefold clusters. The terminol-
ogy has its origins in their semiclassical analysis, as there
is a correspondence between the fourfold clusters in the
quantum spectrum and the fourfold classical orbits dis-
cussed in Sec. IIT A, and an analogous correspondence
between the threefold clusters and the threefold orbits. >

One of the most remarkable features of the clusters is
the regularity and periodicity of their irrep content.
Among the fourfold clusters, one finds a cluster contain-
ing an A,, T, and E level. (Note that the number of lev-
els in the cluster, degeneracies counted, is 1+3+2=6.)
With decreasing energy, it is followed by a cluster con-
taining a T, and T'; level, which is followed by a cluster
containing an E, T, and A4, level, which is followed by a
cluster containing a T, and T, level. This cycle of clus-
ters then repeats itself down to energies close to E;.
There the pattern is interrupted, as the fourfold clusters
merge with the threefold clusters. Figure 4(a) illustrates
the cycle of fourfold clusters. The clusters are assigned
indices O, 1, 2, and 3, which correspond to the order in
which they appear. The cycle begins with the fourfold
cluster of highest energy; its index is given by

j mod4 . (3.6)

For example, if j=30, then j mod4=2, and the cluster
with highest energy contains an E, T,, and 4, level.

A similar pattern exists for the threefold clusters. One
finds among them a cluster containing an A4,, T,, T,
and A4, level. (Note that the number of levels in the clus-
ter, degeneracies counted, is 1+3+3+1=8.) With in-
creasing energy, it is followed by two clusters containing
aT,, E,and T, level. This cycle of clusters then repeats
itself up to energies close to E,. There the pattern is in-
terrupted, as the threefold clusters merge with the four-
fold clusters. Figure 4(b) illustrates the cycle of threefold
clusters; the three clusters in the sequence are labeled by
indices O, 1, and 2. The cycle begins with the cluster of
lowest energy; its index is given by

(3.7

Thus, if j= 30, the j mod3 =0, and the cluster with lowest
energy contains an A, T, T,, and 4, level.

The superfine structure refers to the splitting between
the levels within a cluster. For most clusters, the
superfine splitting is much smaller than the fine splitting.
Indeed, it is this separation of scales that enables one to
identify the clusters in the first place. For a few energy
levels in the middle of the spectrum, the two splittings
are of the same order of magnitude. These levels span a
transition between the fourfold clusters and the threefold
clusters. In effect, two clusters of each type overlap, and
the levels in question are shared by both.

The superfine structure introduces additional structure
in the irrep content of the clusters. It turns out that the
levels in the clusters occur in a definite sequence which
depends on the parity of j. As an example, consider the

jmod3 .
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fourfold cluster of index O, for the case of even j. The 4,
level has the highest energy, followed by the T level, fol-
lowed by the E level. The other sequences are described
in Figs. 4(a) and 4(b). For odd j, the ordering of the lev-
els within the clusters is reversed. Let us point out a final
remarkable feature of the superfine structure. The
superfine splittings approximately obey certain simple ra-
tios. As an example, consider the fourfold cluster of in-
dex O, for the case of j even. The splittings of the three
levels 4,, T, and E from their degeneracy-weighted
mean are in the ratio 2:0: —1. When j is odd, the signs of
the splitting ratios are reversed. The splitting ratios for
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FIG. 4. Clusters and superfine splitting. The irrep content,
ordering, and the relative splitting A of the superfine clusters is
shown. (a) Fourfold clusters, indexed by 0, 1, 2, and 3. (b)
Threefold clusters, indexed by O, 1, and 2.
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the other clusters are given in Figs. 4(a) and 4(b).

Harter and Patterson have developed a semiclassical
theory which explains the qualitative features of the SF
rotational spectrum, and which is in good quantitative
agreement with quantum-mechanical calculations. The
fine-structure levels are obtained from the Bohr-
Sommerfeld quantization rule. The patterns and periodi-
city in the irrep labels are explained on the basis of the
Frobenius reciprocity theorem. Their treatment is not
fully semiclassical, however, in that the superfine split-
tings are obtained by diagonalizing a nearly degenerate
block of the quantum Hamiltonian. (The matrix ele-
ments are determined from semiclassical information.) In
Sec. IV we obtain similar results using a very different
method, namely, sums over complex classical periodic or-
bits. The treatment is fully semiclassical, and involves no
quantum-mechanical computations, such as matrix diag-
onalizations.

IV. CALCULATION

In this section we apply the complex periodic orbit
sum, Eq. (2.3) to the SF; model Hamiltonian discussed in
Sec. III. Throughout, we set #i=1. In Sec. IV A, we con-
sider energies greater than the classical separatrix energy
E, and in Sec. IV B, energies less than E,. The two cases
must be treated separately because the topology of the
complex energy shell is different in each case. The calcu-
lation for E > E is carried out in detail, and it parallels
the double well calculation of Sec. II B. The main result
is Egs. (4.9) and (4.10), which give the fine and superfine
structure for the fourfold clusters. The presentation of
Sec. IV B is considerably condensed. The main result is
Eq. (4.14), which gives the fine and superfine structure for
the threefold clusters. In Sec. IV C we discuss a surpris-
ing result of the periodic orbit calculations, namely, the
determination of the symmetry labels of the energy eigen-
values.

A. Case E > E;

The complex energy shell is the stage on which the
complex periodic orbit sum is performed. For this prob-
lem, it is a two-dimensional surface in complex J space
given by the intersection of the surfaces J-J=J? and
H(J)=E. [H is the rotational Hamiltonian of Eq. (3.1).]
As it turns out, we will have no need to work with the
complex energy shell directly. For energies E > E,, we
claim that it is topologically equivalent to the “chicken
wire mesh,” or spherical lattice shown in Fig. 5(a). The
six rings of the lattice are the fourfold periodic orbits dis-
cussed in Sec. III A and shown in Fig. 3(a). These orbits
are the primitive periodic orbits of the complex energy
shell. In Fig. 5(a) 24 nodes stud the orbits, four to an or-
bit. The nodes are obtained by applying the octahedral
rotations to the node 4. We will take A to be the base
point of the complex perodic orbits in the sum. We take
the classical segments to be one-quarter cycles of the
fourfold orbits, with nodes as endpoints. An example is
the path from A4 to C, shown in Fig. 5(a). Joining each
fourfold orbit to its four nearest neighbors are tunneling
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segments. An example is the path from A4 to B in Fig.
5(a). There are, in fact, two topologically distinct tunnel-
ing segments between each pair of neighboring orbits,
along which the action differential dS is either positive or
negative imaginary, although only one is shown in Fig.
5(a).

In accordance with the prescription of Sec. II A, we
sum over paths on the lattice which begin at A4, pass from
node to node along classical and tunneling segments, and
then return to 4. (These paths are the special representa-

e———=o (lassical segment

R » Tunneling segment

&>

Classical

segment
&t * Tunneling segment

FIG. 5. Complex energy shell for SF, Hamiltonian. (a)

E > E;. Tunneling segments join the real periodic orbits to.

their four nearest neighbors. (b) E <E,. Tunneling segments
join the real periodic orbits to their three nearest neighbors.
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tive orbits.) Classical segments must be traversed in the
sense determined by Euler’s equation, that is, clockwise.
Tunneling between neighboring orbits must occur along
the tunneling segment for which the action | dS is posi-

tive imaginary. With these restrictions, it is clear that at
each node a path can continue in one of two ways. It can
orbit clockwise, or else it can tunnel along one of the two
tunneling segments. Therefore, we may adopt the param-
etrization of Eq. (2.4), and describe the paths by an alter-
nating sequence of classical and tunneling episodes. As
in Sec. II B, the sequence {n;ag,b,,...,a,,b, .} corre-
sponds to a path which consists of @, classical segments,
followed by b, tunneling segments , ..., followed by a,
classical segments, followed by b, ;| tunneling segments.
Of course, most of the parametrized paths {n;ay,b,,
...,a,,b, ] are not periodic, and terminate at some
node other than A. For the moment, we defer the prob-
lem of identifying the periodic orbits from among the
parametrized paths, and determine their actions and
Maslov indices first.

The action differential dS of Eq. (3.4) is proportional to
the magnitude of the classical angular momentum J. To
obtain agreement with quantum-mechanical results we
must quantize J. We impose the quantization condition

J=(+1), 4.1)

where j is the total angular momentum quantum number.
An alternative quantization condition, used by Harter
and Patterson,®® is to take J =V'j(j +1). Note that this
condition differs from Eq. (4.1) by terms of relative order
1/j%. Substituting Eq. (4.1) into Eq. (3.4), we obtain

dS =—(j+1)cosbd¢ . (4.2)

The action T" and Maslov index p of the parametrized
paths are obtained by adding up the actions and Maslov
index adjustments along individual segments. Both the
formulas for T' and u, Egs. (Al) and (A2), and their
derivations are more complicated than the analogous
ones, Egs. (2.5) and (2.6), for the double well. They are
obtained in the Appendix. For the complex periodic or-
bit sum, we require only the total phase I'—um/2 of the
parametrized paths, which is given by the following equa-
tion, Eq. (A3) in the Appendix:

T
F_zﬂ {n;ap,by,...,a,,b, 11}

n n+1
S g, +[i0—G+m] S by .
k=0 k=1

S
4

Here, S is the action taken around the fourfold orbit
encircling the north pole, and 6 is the action taken along
a tunneling path chosen so that 0 is positive. We see that
each classical segment contributes S/4 to the total phase,
and each tunneling segment contributes i0—(j +1/2)7.
The term (j +1/2)7 is due to the Maslov index.

It remains to identify the periodic orbits from among
the parametrized paths. We determine first the node at
which the path {n;ay,b,,...,a,,b, ]} terminates. Ob-
serve that the classical and tunneling segments can be
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generated by octahedral rotations. As an example, con-
sider the base point A4 in Fig. 5(a). The classical segment
at A goes to the node C, which is obtained from A4 by a
rotation about the z axis by —7/2. Let w denote this
operation,

w=R,(—m/2) . (4.3a)

The tunneling segment at 4 goes to the node B, which is
obtained from A4 by a rotation about the z axis by , fol-
lowed by a rotation about the y axis by 7/2. Let 7 denote
this operation,

T=R, (7m/2)R,(7) . (4.3b)

At nodes other than A, there are different rotations
which generate the classical and tunneling segments.
However, these are related to w and 7 by conjugation.
For example, at the node g- A4, obtained by applying the
octahedral rotation g to A, the classical and tunneling
segments are generated by gwg ~ ! and g7g ~ !, respective-
ly. Thus, the parametrized paths can be generated by ap-
plying a sequence of rotations of the forms gwg ! and
g7g ! to the base point 4. It is straightforward to show

that the path {n;ayb,,...,a,,b,;} terminates at

the . node obtained by applying the rotation

0" 07" to A. Therefore, the path

{n;ay,by,...,a,,b, .} is periodic if and only if
@0t = s

where I is the identity element of the octahedral group.

It is a standard result from group theory that the &
function at the identity can be expressed as a sum over
the characters of the irreducible representations.’*” Let
Xm(g) denote the character of the mth irreducible repre-
sentation of the octahedral group, and let d,, be its

o * o«

em=C33 3 3 3
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dimensionality. Then the expression

8(g;IN=2% > d X m(g)

is equal to 1 if g is the identity, and vanishes otherwise.
To insure that only periodic orbits contribute to the com-
plex periodic orbit sum, we multiply the contribution of
each parametrized path by the expression

a, b b
23 d Xm0 ' ceeME Ay (4.4)

m

Let us note that the d function, Eq. (4.4), is completely
analogous to Eq. (2.7) of the double well calculation,

1
> exp|—im7m 3 b,
k

m=0

-

Indeed, Eq. (2.7) may be interpreted as a sum over the
characters of the cyclic group C,. C, contains two ele-
ments: the identity 7, which generates the classical seg-
ments in the double well, and the reflection R, which gen-
erates the tunneling segments. C, has two irreducible
representations: the trivial representation, labeled by
m=0, and the repreesntation which assigns 1 to I and

—1 to R, labeled by m=1. The phase factor
exp(—imm 3, b;) is just the character y,, evaluated at
the group element I1°R" - IR b"", and the sum
in aEqI; (2'7(), ibs just the group & function,
SI°R™---T"R ")

Substituting Eq. (A3) for the actions and Maslov in-
dices into Eq. (2.3), summing over the parametrized paths
of Eq. (2.4), and introducing the coefficients of Eq. (4.4),
we obtain the complex periodic orbit sum for the SF
Hamiltonian,

b au,rbn+1)

a
! 0
ﬁzdm)(m(w T 104
0 m

Xexp [(iS/4) S ap—[0+i(j +1)m] S by | . 4.5)
k k

The number of primitive periodic orbits, f in Eq. (2.3), is equal to six, and T is the period of these orbits. To proceed,
we express the character x,,(g) as the trace of the irreducible matrix representative, D ,,(g). Using the representation
property D , (gg’')=D ,,(g)D ,,(g'), we have that

Xm(wuoTbl PR Q)a"Tb,"l):Tr[Qm(a))a()Q m(,r)bl .. .Q,n(a))uan(T)bn#—l] . (46)

We substitute Eq. (4.6) into Eq. (4.5), and rearrange phase factors so as to obtain a product of geometric series in the a,
and b;. Then

© © © B © . Ty b
sB=2Lls4 535 3 S 3 Tri[eSAD (@] e UMD (0]
i24 57 n=0a,=0a,,..., a,=1b,,..., b,=1b,,,=0

X[eS/4D (w)]an[e—H—i(j+l/2th m(T)]bn 1y

=m
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The terms in the series are matrices. We sum the series,
keeping in mind that a, and b, ;, range from O to oo,
while a, and b, for 1 =k <n, range from 1 to «. As in
the double well calculation, the sum over n becomes a
geometric series which is easily carried out. We obtain
finally

8l E)= 1 S d, Tr{[L,—¢""*D ()

+i(=1)Ye D (017"} . @7

Equation (4.7) is a closed-form, semiclassically approxi-
mate expression for the trace of the energy-dependent
Green’s function g (E). It depends on the classical ac-
tion S of the primitive periodic orbits, their Maslov in-
dices, which manifest themselves in the phase factor
i(—1), the tunneling action 6, and the irreducible matrix
representatives of the generators of the classical and tun-
neling segments, D , (w) and D, (7). As we shall see,

Eq. (4.7) contains all of the structure of the SF, rotational
J
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spectrum described in Sec. III B. Similar expressions can
be obtained for other rotational Hamiltonians.

To obtain the poles of g..(E) explicitly, we need to sub-
stitute actual matrices for D ,,(w) and D ,, (1), where @
and 7 are given by Eq. (4.3). While the irreducible matrix
representatives of the octahedral group are not often
found in the standard references, it is a straightforward
matter to construct them.* Substituting these matrices
into Eq. (4.9), we obtain an explicit expression for g .(E).
One finds that this expression has complex poles, as does
Eq. (2.9) for the double well. We make the same approxi-
mation we used earlier. In the limit of vanishing tunnel-
ing amplitude, the poles of g, .(E) are the EBK-quantized
energies E,, determined by the condition

S(Ey)=2rk . 4.8)

We expand g.(E) about the EBK energies, taking
denominators to first order in the tunneling amplitude
and numerators to zeroth order. Summing over the EBK
quantum number k, we obtain

1 1
J(E)= ‘ + .
8 % { (1=i")C +i"E —E)—4(—1Ve % | 4 ‘(1+i")C-i"(E—Ek)+4(—l)fe_9 4,
2
+ 4
(1=04)C /240 (E—E)+2iK—1)Ve ™ |,
4 3(3—2i*+0,)
(1=i")(1+0,)C +[i* =20, +3(—DNE —E ) +4(1—i*)(—1)e 0 |1,
N 33+2ik+0,)
(1+i5(14+0,)C —[i*+20, +3(—D*NE —E)—4(1+i%)(—1Ye ° |1, |’
[
where 1 3
SE)= .
. & E—[E +4(—1Ve °/T) |4 |E—E |1,
—(—1)k =4
o,=(—1)"and C T 4.9 )
E—[E,—2(—1/e %/T] |, ’
Equation (4.9) is our final result for the trace of the
energy-dependent Green’s function g, (E) for the SF( k mod4=0, (4.10a)

Hamiltonian at energies above the classical separatrix en-
ergy E;. The expression is complicated, but then the
spectrum it is intended to describe is complicated as well.
Note that we have labeled the terms in the expression by
irreps of the octahedral group. In effect, we have explic-
itly identified the terms from the sum over irreps in Eq.
(4.7). We will assign these irrep labels to the energy levels
obtained from Eq. (4.9). That is, poles in the first term of
Eq. (4.9) will be labeled by 4,, poles in the second term
by A,, etc. Although the complex periodic orbit
prescription does not indicate that these irrep assign-
ments are warranted, they turn out to be correct.

Let us determine the poles in the neighborhood of an
EBK energy E,. Examination of Eq. (4.9) reveals that
the pole structure depends on the value of (k mod4); the
singular terms are those in which the coefficient of C van-
ishes for a given k. Consider first the case where
(k mod4=0). Then g, (E) is given by

where the ellipsis represents finite terms that consist of
nonsingular contributions to g, (E). Equation (4.10a)
predicts a nondegenerate level with energy E,
+4(—1Ye %/T and irrep label A4, a triply degenerate
level with energy E; and irrep label T, and a doubly de-
generate level with energy E, —2(—1)e °/T and irrep
label E. Note that the degeneracies, which are deter-
mined by the pole strengths, are consistent with the irrep
labels. Let us compare these results with the spectra of
Fig. 4(a). Evidently, Eq. (4.10a) describes the structure of
the fourfold cluster of index 0. The irrep labels appear in
the correct order. The splitting ratios are reproduced.
The sign of the splitting exhibits the correct dependence
on the parity of j. Furthermore, we see that the mean en-
ergy of the cluster is E,, and the splitting A is given by
2(—1Ye " %/T.

Consider next the case (k mod4=1). Then g (E) is
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given by
3
(E)= :
B E—[E +2(—1Ye%/T] |1,
3
E—[E,—2(—1Ye %/T] |7, ’
kmod4=1. (4.10b)

According to Eq. (4.10b), there is a triply degenerate level
with energy Ej +2(—1)e ~%/T and irrep label T,, and a
triply degenerate level with energy E, —2(—1 Ye /T
and irrep label 7. Evidently, Eq. (4.10b) describes the
fourfold clusters of index 1, in which the mean energy of
the cluster is E;, and the splitting A is given by
2(—1Ye %/T. Finally, consider the remaining cases
(k mod4=2) and (k mod4=3). Then g,.(E) is given by

g (E)= 2 3
s E—[E,+2(—1Ye /T] |, | E—E, |1,
1
E—[E,—4(—1Ve °/T] |4, ’
k mod4=2, (4.10c)
and
3
(E)= -
£ E—[E,+2(—1)e /T |1,
3
E—[E,—2(—1ie %/T] |71, |
k mod4=3 . (4.10d)

The reader may verify that Eqs. (4.10c) and (4.10d) de-
scribe the fourfold clusters of indices 2 and 3, respective-
ly. We may conclude that the cluster with mean energy
E, has index (k mod4). Since the largest EBK energy is
given by S (E;)=2mj, the cluster with highest energy has
index (j mod4), and we recover the rule of Eq. (3.7).

To summarize, Eq. (4.9) describes the fine and
superfine structure of the fourfold clusters, and repro-
duces the patterns and periodicities in their irrep labels.
Apart from the quantization condition Eq. (4.1), our re-
sults agree with those of Harter and Patterson. For a
comparison between semiclassical and quantum eigenval-
ues, the reader should consult their papers.25 For j=30,
the semiclassically determined fine-structure levels are ac-
curate to within 1%, and the accuracy improves with in-
creasing j. Semiclassical superfine splittings agree with
quantum values to within about 5%. It is interesting to
note that Harter and Patterson obtain the sign of the
superfine splittings, (—1), from an analysis of the
Wigner 3-j symbols.?* In our treatment, the sign factor
emerges from Maslov phase shifts.

B. Case E <E;
The complex periodic orbit sum for energies less than

the classical separatrix energy E; is carried out in much
the same way as the calculation for energies greater than
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E;. The presentation in this section is condensed; we
point out details which differ from the previous case, and
summarize the results.

For energies E < E,, the complex energy shell is topo-
logically equivalent to the spherical lattice shown in Fig.
5(b). The lattice has eight rings, which correspond to the
threefold periodic orbits discussed in Sec. IITA and
shown in Fig. 3(b). These are the primitive periodic or-
bits of the complex energy shell. We obtain the 24 nodes
of the lattice, three to an orbit, by applying the octahe-
dral rotations to the node A4, shown in Fig. 5(b). 4 will
be the base point of the complex periodic orbits. The
classical segments are one-third cycles of the threefold or-
bits, with nodes as endpoints. An example is the path
from A to C, shown in Fig. 5(b). Each orbit is joined to
its three nearest neighbors by tunneling segments, an ex-
ample of which is the path from A to B. There are two
topologically distinct tunneling segments between each
pair of neighboring orbits, whose actions differ by a sign.
Only one is shown in Fig. 5(b).

As in the preceding calculation, we sum over paths on
the lattice which being at A, pass from node to node
along classical and tunneling segments, and then return
to A. Classical segments must be traversed in the coun-
terclockwise sense, and tunneling must occur along the
tunneling segment for which the action is positive imagi-
nary. We adopt the path parametrization of Eq. (2.4).
The total phase of the parametrized paths, including the
action and Maslov index, is given by

T
F_P‘? {njap.by,...,a,,b,.4}

S x n+1
=3 > a Hlio+Gi+H7] I by,
k=0 k=1

[Eq. (A4) in the Appendix], where S is the action taken
around a threefold orbit, and i6 is the action taken along
a tunneling path chosen so that 0 is positive. As is ex-
plained in the Appendix, the axis of quantization is taken
through a fixed point of minimum energy.

We have still to identify the periodic orbits from
among the parametrized paths. As in the preceding case,
the classical and tunneling segments may be generated by
octahedral rotations. It is straightforward to show that

the path {n;ay,b,,...,q,,b, ]} terminates at the node

1

obtained by applying © 7 ' -+ "7 """ to A, where ®

and 7 are given by

w=R,(7/2)R (7/2) , (4.11a)

7=R,(m/2)R, (7) . (4.11b)

[By examining Fig. 5(b), the reader can verify that o gen-
erates the classical segment from the base point 4 to C,
and 7 generates the tunneling segment from A to B.]
Thus, the path {n;ay,b,,...,a,,b, ]} is periodic if and
only if the group element o °r ' - - - 7" =1 To
guarantee that only periodic orbits contribute to the com-
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dices into Eq. (2.3), summing over the parametrized paths
of Eq. (2.4), and introducing the coefficients of Eq. (4.4),
we obtain the complex periodic orbit sum for energies
less than E,

plex periodic orbit sum, we multiply the contribution of
each path by the & function of Eq. (4.4), with @ and 7
given by Eq. (4.11).

Substituting Eq. (A3) for the actions and Maslov in-

J

© © 0 b

: S S daxn @O 0"

=L 3 3 3

l

Xexp |(iS/3) Y a, —[6—i(j+1)m] > by (4.12)
k k

The number of primitive periodic orbits, f in Eq. (2.3), is equal to eight. As in Sec. IV A, we express the characters in
terms of the irreducible matrix representatives, and sum the geometric series in the parameters a,, b,, and n. We ob-

tain

gSC(E)=% S d, Tr{[I,,—eS”D , (0)—i(—1)e °D , (r)]"'} .
I m

(4.13)

To determine the poles of g, (E), we substitute into Eq. (4.13) explicit matrix representatives for D , (w) and D ,,(7),
where o and 7 are given by Eq. (4.11). These matrices are given in Ref. 34. Finally, we expand g..(E) about the EBK
energies, sum over the EBK quantum number &, and obtain, to first order in the tunneling amplitude,

4,

T,

1 1
(E)= . + -
8sc % [(1—rk)c+r’<<E—Ek)+3(—1)fe‘9/T 4, [(1—r")C+rk(E—Ek)—3(—l)fe'9/T
2(2+r%) 3
(1+r54+r*)C —(rk+2r*(E —E,) |, | E—E,—(—rF—r?)(—1Ye /T
3
+ k_ 2k j,— 6 ’
E—E, +(1—r*—r)(—1Ye °/T
[
where ciple, this sum should have been carried out first. How-
) ever, in deriving Egs. (4.9) and (4.14), we have inter-
r=e2™/3 and C:ﬂ ) (4.14) changed the sum over irreps and the sum over paths.
T

Equation (4.14) is our final result for the trace of the
energy-dependent Green’s function g, (E) at energies E
below the classical separatrix energy E,. As in Eq. (4.9),
we have explicitly identified the terms from the sum over
irreps of the octahedral group. According to Eq. (4.14),
g.(E) has poles near the EBK energies E;. The pole
structure depends on the value of (k mod3); the singular
terms are those in which the coefficient of C vanishes. It
is straightforward to determine the pole structure of
g..(E) for the different cases,** as we did in Eq. (4.10).
One can verify that Eq. (4.14) reproduces the fine and
superfine structure of the threefold clusters in Fig. 4(b),
including the symmetry assignments, and correctly deter-
mines the index of the cluster with lowest energy, Eq.
(3.8). The results agree with those of Harter and Patter-
son.

C. Symmetry labels

A surprising result of the complex periodic orbit sum is
the determination of the eigenvalue symmetry labels. We
had no reason to expect this information from the com-
plex periodic orbit prescription, Eq. (2.3). The symmetry
labels emerged from the sum over irreducible representa-
tions, Eq. (4.4). Recall that this sum was introduced to
pick out the contributions of the periodic orbits. In prin-

Thus, the poles of Egs. (4.9) and (4.15) contain contribu-
tions from all of the parametrized paths, and not just the
periodic orbits. The “unperiodic” orbits appeared at first
to be artifacts of the calculation. Now it appears that
they contribute to the poles of definite symmetry in an
essential way. We have not yet found an explanation of
this result. What follows is an interpretation, which may
lead to a better understanding of it.

Throughout the calculations we have emphasized the
octahedral symmetry of the classical rotational dynamics
of SF,. This symmetry may be exploited as one would a
continuous symmetry. By identifying points of the spher-
ical phase space related by symmetry, one may construct
a reduced phase space. Note that for continuous sym-
metries, the reduced phase space has a lower dimension
than the original one, while for discrete symmetries, it
has the same dimension but a smaller volume. For the
present case, the reduced phase space is the wedge-
shaped region illustrated in Fig. 6; its area is -4 that of
the sphere. A point p on the sphere |J| =J may be associ-
ated with the pair (7w(p),g (p)), where 7(p) is the point in
the reduced phase space related to p by symmetry, and
g (p) is the octahedral rotation which maps m(p) into p.
g (p) plays the role of an ignorable coordinate. One may
solve for the dynamics of the reduced phase space, and
obtain the evolution of the (discrete) ignorable coordinate
by quadrature.
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(a) (b)

FIG. 6. Symmetry-reduced phase space. (a) Each point on
the sphere is equivalent, under fourfold rotations, to a point in
the shaded octant. (b) By a threefold rotation, each point in the
octant may be mapped into the shaded wedge.

The parametrized paths in the complex periodic orbit
sum begin and end at nodes, which are related by symme-
try. Therefore, the projection of a parametrized path
onto the reduced phase space is a periodic orbit on the
reduced phase space. The group element

P R represents the value of the ignorable
coordinate at the end of this path. Thus, the complex
periodic orbit sums of Egs. (4.5) and (4.14) may be inter-
preted in the following way. The sums are taken over
complex periodic orbits on the reduced phase space. The
contribution of each orbit is weighted by the character of
the irreducible representation, y,,, evaluated at the value
of the ignorable coordinate at the end of the orbit. The
character determines the symmetry of the energy levels;
orbits weighted by Y,, produce poles with symmetry m.
This interpretation applies to the double well calculation
as well. The characters of the cyclic group C, produces
the poles of definite parity.

The role of symmetry in the periodic orbit sum needs
further study. Perhaps the interpretation described here
can be extended to continuous symmetries, and may lead
to an interesting perspective on the emergence of
quantum-mechanical symmetries from semiclassical ap-
proximations.

V. CONCLUSION

The rotational spectrum of the SF¢ molecule may be
approximately obtained from a sum over classical period-
ic orbits. The fine structure of the spectrum is generated
by the real, or classically allowed orbits, while complex,
or classically forbidden orbits produce the superfine
structure. Most remarkably, the periodic orbit sum de-
scribes the patterns and periodicities in the eigenvalue
symmetry assignments. The calculation has also been
carried out for the case of half-integral angular momen-
tum. > In this case, it is necessary to add to the periodic
orbit sum the contributions of orbits which make an even
number of revolutions, and subtract the contributions of
orbits which make an odd number of revolutions. To dis-
tinguish between the two kinds of orbits, we introduce
the double octahedral group in Egs. (4.5) and (4.14).

We have pointed out several heuristic elements of the
periodic orbit calculation. These can be divided roughly
into two categories. The first concerns the WKB approx-
imation on the spherical phase space, for which a sys-
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tematic analysis is lacking. The problem is an interesting
one; as the classical phase space is compact, the corre-
sponding quantum-mechanical Hilbert space is finite di-
mensional. The Schrodinger equation on this space is not
a differential equation, but rather a difference equation.
Various subtleties of the semiclassical treatment, such as
the correspondence between quantum operators and clas-
sical variables, the Maslov index, and the transmission
and reflection coefficients for classically forbidden pro-
cesses, all need to be developed systematically for the
spherical phase space. Recent progress on a related prob-
lem has been made by Delos, Waterland, and Du,?*> who
have applied the methods of Maslov and Fedoriuk.

The second category of questions concerns the complex
periodic orbit sum itself. Given its success, both for the
double well and the SF, Hamiltonian, it should admit a
formal and perhaps a rigorous derivation. Such a deriva-
tion has been extensively pursued by Balian, Parisi, and
Voros for the case of the quartic oscillator.”'® We hope
to apply their results to the present work. The represen-
tation independence of the periodic orbit theory and its
topological flavor make it an appealing method to de-
scribe tunneling processes. One motivation underlying
Miller’s calculation was the hope that complex periodic
orbit sums might lead to a description of tunneling in
multidimensional systems,® for which a complete theory
is lacking.” We believe this remains a worthwhile goal.
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APPENDIX

In this appendix we compute the actions and Maslov
indices of the parametrized paths of Eq. (2.4) for the SF,
rotational dynamics. Only the case E > E is considered
in detail, in Secs. A 1 and A 2. The results for the case
E <E, are quoted in Sec. A 3.

1. The action, E > E;

The action of a parametrized path is the sum of the ac-
tions along its segments. Consider the classical segments
first. For energies greater than the separatrix energy E,,
the action along a classical segment is one-fourth of the
action of the primitive orbit on which it lies; this follows
from the fourfold symmetry of the primitive periodic or-
bits. However, the primitive periodic orbits do not all
have the same action. This fact might seem surprising,
since these orbits are related by symmetry. The source of
the difference is the singularity in the angle ¢ at the north
and south poles of the sphere |J|=J. Orbits which en-
close either the north or the south pole pick up contribu-
tions of 4:(j +1)27 to their actions, the sign depending
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on the sense of the orbit. Thus, we need to distinguish
between polar orbits, which encircle energy maxima on
the =z axes, and equatorial orbits, which encircle energy
maxima on the +x or £y axes. If S is the action ﬁdS
taken around a polar orbit, then the action taken around
an equatorial orbit is S —(j +1)27. A polar classical
segment (which lies on a polar orbit) has action S/4,
while an equatorial classical segment (which lies on an
equatorial orbit) has action S$/4—(j +1)7/2. The tun-
neling segments pose no further complications; they can
be chosen so as to have the same action which we take to
be i6, with 0 real and positive. Thus, the action of the

path {n;ay,b,,...,a,,b, .} is given by
T{n;apg,by,...,a,,b,4,}
S & n+1 T
:Zkz ak+i9k21bk—(j+%)?ah-, (A1)
=0 =

where a; denotes the number of equatorial calssical seg-
ments. It would be difficult to calculate a, explicitly in
terms of the a;, and b, but it turns out that it will not be
necessary to do so. The difference in the actions of the
polar and equatorial classical segments is compensated by
a difference in their Maslov indices.

2. Maslov index, E > E;

There is no systematic theory of the Maslov index for
spherical phase spaces, so we must define one by analogy.
On a flat phase space, the Maslov index is adjusted at the
turning points of the configuration space coordinate gq.
On the spherical phase space |[J|=J, we adjust the
Maslov index at the turning points of the coordinate ¢.
For the flat phase space, there is a rule which determines
the sign of a turning point’s contribution to the Maslov
index. Along an orbit and in the neighborhood of a turn-
ing point, q is regarded as a function of p. At the turning
point, dg /dp=0. If dq /dp is negative before the turning
point and positive after it, the Maslov index is increment-
ed. If the opposite is true, the Maslov index is decre-
mented. We will apply this rule to the spherical phase
space, substituting ¢ for g and —(j + 4 )cos6 for p. Thus,
if d¢/d(—cosO) is negative before a turning point and
positive after it, the Maslov index is incremented. Other-
wise, it is decremented.

We consider the classical segments first. Along polar
classical segments, ¢ is either monotonically increasing or
decreasing, and there are no turning points. However, ¢
does have turning points along equatorial classical seg-
ments; the turning points coincide with the nodes of the
equator. [See, for example, nodes D and E in Fig. 5(a).]
As Fig. 5(a) illustrates, before the turning points, ¢ is in-
creasing while cosf is decreasing. That is, d¢ /d (—cos6)
is positive. After the turning points, ¢ is decreasing while
cosf is decreasing. According the rule obtained above,
the Maslov index is decremented.

Using symmetry arguments, we may determine the
magnitude of the Maslov index increments. There is no
intrinsic difference between polar orbits and equatorial
orbits; the distinction arises from our choice of coordi-
nates. Let us demand that both kinds of orbits make
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identical contributions to the complex periodic orbit sum.
From Eq. (2.3), the total phase associated with an orbit is
' —u(m/2), where I is the action of the orbit and u is its
Maslov index. The action of a polar orbit is S, and as we
noted above, the action of an equatorial orbit is
S —(j +3)27. A polar orbit has no turning points, so its
total phase is S. An equatorial orbit has two turning
points at which the Maslov index is decremented; its total
phase is S —(j +1)2m+2ugm/2, where p, is the mag-
nitude of the decrement. Requiring the total phases of
the orbits to be equal, we find that S=S5—(j
+3027+2ugm/2.  We conclude that puy=2j+1.
An equatorial orbit consists of four equatorial segments,
each of which either begins or ends at a turning point.
We divide the Maslov decrements equally among the four
equatorial segments, and assign to each a decrement of
j+i

We consider next the tunneling segments, and in par-
ticular, the equatorial tunneling segments, which join two
equatorial orbits. An example is the path from D to E in
Fig. 5(a). Like the tunneling segments of the double well,
the equatorial tunneling segments begin and end at turn-
ing points. Since the Maslov index should not be adjust-
ed when an orbit tunnels through a turning point (instead
of reflecting from it), we increment the Maslov index by
2j+1 for each equatorial tunneling segment along a
path. What about polar tunneling segments, which join
polar orbits to equatorial orbits? These also contribute to
the Maslov index because they introduce new turning
points. To see this, refer to Fig. 5(a) and consider the po-
lar tunneling segment from the base point A to the node
immediately below, B. Along the classical segment lead-
ing to A, ¢ is decreasing. Along the classical segment go-
ing from B, ¢ is increasing. Thus, ¢ has a turning point
along the polar tunneling segment from A to B. Accord-
ing to the sign rule, the Maslov index should be incre-
mented at this turning point. [One can show that
d¢/d (—cosf) is negative before the tunneling segment
and positive after it.] Thus, we increment the Maslov in-
dex by 2j +1 at both polar and equatorial tunneling seg-
ments.

Collecting the preceding results, we obtain the follow-
ing formula for the Maslov indices of the parametrized
paths:

pinsag,by, ... a,,b, 1}

n+1
=—(+hag+2j+1) 3 by,
k=1

(A2)

where a; denotes the number of equatorial classical seg-
ments. Let us combine Egs. (A1) and (A2) and obtain an
expression for the total phase of the parametrized paths,

m
Ff?/v‘ {n;a0,by,...,0,,b,,,}
S & n+1
== 3 g +[i0—(G+m] S by . (A3)
4 k=0 k=1

As is evident from Eq. (4.3), the phase depends only on
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the total number of classical and tunneling segments, and
not on the number of equatorial segments.

3. Total phase, E <E;

Using arguments analogous to those preceding Egs.
(A1)-(A3), we may determine the actions and Maslov in-
dices of the parametrized paths with energies less than
the separatrix energy E;. It is convenient to choose a
new axis of quantization Z, which passes through a fixed
point of minimum energy. (In Secs. A 1 and A 2, the axis
of quantization was taken to be the z axis, which passes
through a fixed point of maximum energy.) The action
differential dS is then given by —sz{ﬁ, where J_ is the
component of angular momentum along the quantization
axis, and ¢ is the azimuthal angle about the axis. Let S
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be the action around a polar orbit, i.e., an orbit which
encircles the 7 axis, and let i0 be the action along a tun-
neling segment, chosen so that 6 is real and positive.
Then the total phase of the parametrized paths is given
by

T
F—u 5

{n;ag,by,...,a,,b, }

n n+1
=0 k=1

|t

= 3 (A4)

Note that the Maslov phase associated with tunneling
segments is positive, whereas in Egs. (A2) and (A3), it is
negative. The change in sign is due to the counterclock-
wise sense of the threefold orbits, and is consistent with
the rule which determines the sign of the Maslov index.
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FIG. 2. Fixed points of SF, Hamiltonian. An octahedron is
inscribed in the sphere of constant angular momentum. Energy
maxima lie along axes through the vertices of the octahedron,
saddle points along axes through the faces, and energy minima
along axes through the edges of the octahedron. Only one of
each type of fixed point is shown.
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FIG. 6. Symmetry-reduced phase space. (a) Each point on
the sphere is equivalent, under fourfold rotations, to a point in
the shaded octant. (b) By a threefold rotation, each point in the
octant may be mapped into the shaded wedge.



