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Electron and kinetic energy densities for an arbitrarily closed shell
in a bare Coulomb field from s-state densities
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It is known from previous work that the total electron density matrix for closed-shell atoms in a

bare Coulomb field is determined solely by the corresponding s-state contribution. In keeping with

this philosophy, an expression is derived for the closed-shell electron density p„(r) and kinetic ener-

gy density t„(r) in terms only of s-state components p„,(r) and t„,(r) for arbitrary quantum number

n. A proposal for the generalization of the present model for any central field of force is given in

the Appendix.

I. INTRODUCTION

One of us has shown, for the model of the bare
Coulomb field which has significance in atomic physics in
the important 1/Z expansion, ' that Kato's theorem has
the spatial generalization

c)p( r ) 2Z fi

dr ao me

II. DIFFERENTIAL EQUATION RELATING
RADIAL WAVE FUNCTION R„I To R«

It is well known that for any central field the total
wave function g„t (r) is the product of a radial wave
function R„t(r) and a spherical harmonic Yt (8,$). The
radial function for an arbitrary central potential energy
V(r) satisfies the wave equation

for an arbitrary number of closed shells with nuclear
charge Ze. In Eq. (1.1) p(r) is the total electron density
with s-state contribution p, (r)

Subsequently, Theophilou and March have given the
total density matrix solely in terms of the s-state density
matrix. Here, we derive a relation between the closed-
shell density p„(r) and its corresponding s-state density

p„,(r) for arbitrary quantum number n. This latter result
has a counterpart when the nth-shell kinetic energy den-
sity t„(r) is expressed only in terms of p„,(r) and its s
state contribution t„,(r).

To begin this program we show first that the radial
wave function R„t(r) is determined solely by R„,(r) for
arbitrary principal and orbital quantum numbers n and l,
respectively; this statement can in fact be generalized to
any central field (cf. Appendix). Then using an earlier re-
sult of one of us for the s-state kinetic energy density in
terms of the total density p(r) in the bare Coulomb mod-
el, a direct way of generating the total density p„(r) for
the nth closed shell from its s-state contribution p„,(r) is
exhibited. Our previous result for the K+L shells is
recovered from this expression as a simple check of its
validity. The final section of the paper deals with the
generalization of these results to kinetic energy densities.
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It wi11 be convenient below to denote the product rR„I by

P„t, which evidently from Eq. (2.1) satisfies the equation

Pnt 2m fi l (l +1)
(2.2)

It is clear that if we write Eq. (2.2) for the special case of s
states, i.e., l =0, and note that for the bare Coulomb field
the eigenvalues are independent of I, then subtracting the
s-state expression corresponding to Eq. (2.2) from Eq.
(2.2) itself yields immediately
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III. RELATION BETWEEN p„(r)
AND S-STATE CONTRIBUTION p„,( r )

As in our earlier example on K+L shells, we shall
consider, to be definite, singly occupied levels. Then the
s-state density p„,(r) is immediately given by

p„,(r) =R„,(r) =P„,(r) l(4ttr ) . (3.1)

If we now define the kinetic energy t„, for the s states by

This equation makes abundantly clear the philosophy un-

derlying the present work. Given the s-state radial wave
function R„,=r 'P„„Eq. (2.3) shows that, at least in

principle, the general angular momentum state P„I can be
determined without recourse to the (bare Coulomb) po-
tential energy. This is su%ciently interesting for us to
record in the Appendix the corresponding equation for a
general central potential V(r) for which the eigenvalues
depend on both n and l.

Having established this point in terms of wave func-
tions, we now turn to one of the main aims of the paper;
to relate the total electron density p„(r) for the nth closed
shell to its s-state contribution.
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t„,(r)= — i'„„V it„„,2m

then in terms of P„, and its derivatives this becomes

2m (4~t )

(3.2)

(3.3}

IV. RELATION BETWEEN t„(r)
AND S-STATE CONTRIBUTION t„,( r )

Here, we turn to the derivation of an expression for the
kinetic energy density t„(r) for the nth closed shell in
terms only of the s-state contributions t„,(r) and p„,(r).
As before, we find that the ratio P„'(/P„( can be written in
terms of the radial wave function R„( and derivatives as

or in terms of the s-state density contribution p„,(r) to
the closed-shell density p„(r),

P„'(
rR „(R„'( (4.1)

g2 P"
t„,(r) = — p„,(r)2m

(3.4) considering that the density matrix for the subshe11 nl is
defined in the form

However, we next note that one of us has obtained an al-
ternative expression for t„,(r) in terms of p„(r) and

p„,(r), namely, when we allow for difFerence in definitions
of the kinetic energy density,

I
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p„(r)= 2r p„,—(r) + — (r p„, ) .
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Hence, equating (3.4) and (3.5) yields for p„(r) the result

1 d
rp„t(r) dr,

Then Eq. (4.1) becomes
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P„(
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But from Eq. (3.1) it readily follows that

2P„', =4nP„, '(r p'„, +2rp„, ),
and a further differentiation yields

(3.7)

(4.3)

where p„&(r) is the diagonal density matrix obtained from
(4.2). Inserting Eqs. (3.4) and (4.3) in (2.3) one obtains

d2 1 d 2m Pni(r)
p„t(r, r, ) + — p„t(r)+ t„,(r)

T
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Using Eq. (3.7) for P„', this becomes

(3.g) In order to find an expression for t„(r) in terms of t„,(r)
we shall define the kinetic energy density t„&(r) for the
subshell nl in the form

2
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Thus, for arbitrary principal quantum number n, a re-
markably simple expression emerges in terms of the s-
state density p„, for the sum of p, d, etc. , contributions to
the density of the nth closed shell. Since knowledge of s-
state properties in a bare Coulomb field determines the
nth closed shell and therefore the total electron density,
this motivates the subsequent discussion of the counter-
part of expression (3.10) for kinetic energy densities.

—(r p'„', +4rp'„, +2p„, ) . (3.9)

Inserting this in the first term on the right-hand side of
Eq. (3.6) and using Eq. (3.1) to eliminate P„, yields after
some algebra

V, R„i(r)R„,(r, )
2m
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This expression is reduced further if we take into account

(4.5)

After operating V& over the radial and angular func-
tions that depend on the coordinates with subindex 1 and
using the result in (4.4) one finds that

p„,(.)
t„,(.)= "

p„.(r) "'
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the fact that p„&(r, r, ) can be written from (4.2) in terms
of the diagonal density p„&(r) as

P I(r "i ) +P l(")P I("1) (4.7)

(4.&)

hence the second term in the right-hand side member of
Eq. (4.6) vanishes and it becomes

over n, , the first term represents the s-state contribution to
the kinetic energy (see Ref. 5), and the second the kinetic
energy coming from the remaining subshells.
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Fina11y, summing over 1 we arrive at

p„(r)t„(r)= r„,(r) .
pno " (4.9)

This last equation is one of the important expressions
given in the paper since it is possible to obtain the kinetic
energy density for the nth closed shell from the density
p„(r) and s-state contributions t„,(r) and p„,(r) We c.an
avoid the use of the factor t„,(r) in (4.9) by means of Eq.
(3.5); in this case Eq. (4.9) is

APPENDIX
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In order to obtain the general angular momentum state
P„&(r) for any central field in terms of the s-state function

P„,(r), we shall proceed to find a similar equation to that
given in (2.3). Allowing for the fact that in general the ei-
genvalues of the Schrodinger equation depend on the
quantum numbers n and I, a similar procedure to that
used to obtain Eq. (2.3) yields

P (") A' 1 1
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Therefore the total kinetic energy for the nth shell is
given in the form

T„= f t„(r)d r

For simplicity, we write

P„", P.".

P„,

Hence Eq. (A 1) can be expressed in the form

(A2)

p'„(r)

m o p„,(r)

(4.11)

r F„,+ r (E„,—E„, )
—l(l+1)=0. (A3)

Diff'erentiating the Eq. (A3) once to eliminate I, then di-
viding by r and differentiating again to eliminate the ei-
genvalues, we arrive at the following equation:

which is a general expression for T„ in the bare Coulomb
field. It is clear that if we use the relation for p„(r) in
terms of p„,(r) as given in Eq. (3.10) then T„can be ex-
pressed as a function solely of p„,(r), which was one of
the main aims of the paper. Finally, we shall derive a
new expression for T„by using the results (3.10) and
(4.9). Inserting (3.10) into (4.9) and taking back (3.5) we
arrive at

d' 3dF +——F =0.
dr

(A4)

This last result shows that in principle the general angu-
lar momentum function P„I is completely determined by
the s-state function P„, for any central potential V(r). As
an example of this result in the bare Coulomb field, we
deduce immediately from the second term in Eq. (3.10)
the relation

pno pno

3 R
4m

r' (p2o)'
pro

p2o
(A5)

(4. 12)

From here we can see that when we carry out the sum

where the functions R2, and pro are related to P2& and
Ppo respectively, in the form R 2, =Pz, /r and p2o

P2o ~(4'~'), hence ~elat~~g Pzi to P20.
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